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The structure of the more and of the less symmetric phases between which a phase transition occurs are 
regarded as being distorted with respect to a still more symmetric phase, which is called the parent phase. 
The distortions of structure of the phases are described by means of a single irreducible representation of 
the symmetry group of the parent phase. It is shown that when these distortions are small, i.e., when the 
phase transitions are close to a multicritical point on the phase diagram, the constants of Landau's theory 
for the transitions under consideration have anomalous values, which show up both in the temperature 
variations of thermodynamic quantities and in the narrowness of the range of inapplicability of Landau's 
theory. Within the framework of the Landau theory, these phase transitions can be only transitions of 
second order. The treatment is carried through for the case of an arbitrary type of two-dimensional 
irreducible representation of the symmetry group of the parent phase. 

PACS numbers: 05.70.Jk, 64.60.K~ 

It is known that Landau's1 phenomenological theory 
applies well to structural phase transitions (so far  it 
has not been possible to detect with certainty, for any 
crystal, a range of inapplicability of this theory). 
Moreover, the material constants of crystals contain 
no small parameter that might enable us  to demonstrate 
a physical reason for the narrowness of this region, a s  
is the case, for example, for phase transitions into 
the superconducting state.2 As will be shown below, it 
is possible to demonstrate such a reason for a quite 
broad class of structural phase transitions. It is known 
that the structures of many crystals are often only 
slightly distorted with respect to more symmetric 
structures: the so-called pseudocubic and pseudohexa- 
gonal crystals and others. Such a slight distortion can 
also serve as the small parameter that determines the 
good applicability of ~andau ' s  theory to the structural 
phase transitions under consideration. In other words, 
the set of constants that characterizes the region of in- 
applicability of Landau's theory is a small quantity in 
proportion to the smallness of the distortion; and the 
other constants, determining the temperature variations 
of thermodynamic quantities, are anomalous. 

Phase transitions from a more symmetric phase to a 
less symmetric will be treated below within the frame- 
work of Landau's theory; not, however, on the basis of 
a thermodynamic potential written for the more symme- 
tric phase, but on the basis of the thermodynamic po- 
tential of a still more symmetric phase-the "parent 
phase,"g with respect to whose structure the more and 
the less symmetric phases are only slightly distorted. 

For definiteness, we shall consider phase transitions 
between phases that correspond to a single two-dimen- 
sional irreducible representation of the parent phase. 

All possible two-dimensional (mathematically) irre- 
ducible representations of the space groups of crystal. 
symmetry can be classified according to the degree of 
one of the two independent invariants. Designating the 
basis functions of the representation by 17 and 5 and in- 
troducing suitable polar coordinates p and cp, 

4-p cos cp ,  ~ = p  sin c p ,  (1) 

we can express the independent invariants I and 1' in the 
form4 

I=$, ~ ' = p *  cos ncp, (2) 

where n is an integer; n )-3. Thus the two-dimensional 
irreducible representation, designated hereafter by E ,, 
can be characterized by the number n. 

The thermodynamic potential iP for the representation 
E n  can be written as a series of powers of the invariants 
I and I' of (2): 

@ = ~ z + @ I ~ + ~ I ~ +  . . . +a1Zr+i3'zfL+ . . . + f i " ~ ~ ~ +  . . . (3) 
To this potential, a s  follows from the condition that iP 
shall be an extremum with respect to the variable cp, 

a@/acp=@,=(D,.Z,'- (a'+2i3'Z1+i3''I) (-npn sin ncp) =O, 

correspond four types of solution: 
0 )  p=O. 
I), 2 )  sin ncp=O, cos ~ ~ v = r l ,  

a'+$"p2 
3)  cos ncp = - ----- 2@'pn ' 
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FIG. 1. Stability limits of 
phases 0, 1, 2, and 3 in 
the cia* plane (a* = a'+ 
+ p" p2) for the thermody - 
namic potential (3);  P > 0, 
p' > 0. 

corresponding to four phases: the parent phase 0 and 
the three less symmetric phases 1, 2, and 3. The sym- 
metry groups of phases 1, 2, and 3 are subgroups of 
the symmetry group of phase 0 (GI,,,, C G ~ ) ;  further- 
more G,CG ,,,, but the groups G, and G ,  are not sub- 
groups of each other. It is obvious that there are n do- 
mains in each of phases 1 and 2 62 different values of cp : 
cp =n(2m + l)/n in phase 1 and cp = n2m/n in phase 2, 
where m =0, 1, . . . , (n- 1)) and 2n domains in phase 3. 

Figure 1 shows the phase diagram in the plane a, a' 
(or a"=@* = an+p "p2) for fixed values of the remaining 
coefficients of the thermodynamic potential (3). The 
phase diagram in the temperature-pressure plane will 
be topologically similar. We note a peculiarity of the 
phase diagram, the existence of a tetracritical point, 
determined by the coordinates a = 0, a l = O  (see Fig. 1). 
We emphasize that the phase diagram with tetracritical 
point represented here differs from the phase diagrams 
considered by Liu and Fisher5 and by Bruce and Ahar- 
ony6; there 77 and 5 transform according to two different 
one-dimensional representations of the symmetry group 
of the ordered phase (a phase diagram with a tetracriti- 
cal point was first considered for two one-dimensional 
representations in Landau's paper7; see also Lifshitzs 
and Landau and Lifshitz'). 

The stability limit of phase 0 is a=0.  The stability 
limits of phase 3 coincide with its existence limits, 
which are determined by the conditions cosncp =r 1 or, 
from (4), by the conditions 

Phase 3 is stable if the inequality 

is satisfied; this follows from the conditions 

@,=I,"@,.,,=(npn sin ncp)'2p'>O, 

@,Q,-@,~=I~Z;'(@,~Q~,I.-@~*) 

=(2p)'(npn sin nq)'[(2~+6yp~2~'-p"2]>0. 

The stability limits of phases 1 and 2 coincide with the 
stability limits of phase 3 and of phase 0; the latter is  cor- 
rect for n > 3 andS > 0. WhenS < 0, the phase transition 
from phase 0 is  of first order, and a tetracritical point does 
not exist. For n =3, a tetracritical point exists, but it 
is an isolated point of transitions of second order?*10 
(A phase diagram with a nonisolated tetracritical point 
for a two-dimensional representation, of the type E ,, 
was considered in Ref. 3.) We note that if the Lifschitz 
condition is not satisfied, i.e. if there is a gradient in- 
variant of the form' 

then there is no tetracritical point on the phase dia- 

gram, because in this region of phase space an incom- 
mensurable phase will be stable (see Ref. 11 for E,  and 
Ref. 12 for E ,). We shall suppose hereafter that the co- 
efficient p and the coefficient p' of (6) are  positive. 

We are interested in the phase transitions 1-3 and 
3 -3. For their occurrence, as  is seen from Fig. 1, a 
sufficient assumption is that only the coefficient a' var- 
ies  with temperature (at fixed pressure), according to 
the linear law 

Then the transition temperatures 8, and 8, are deter- 
mined from the condition (5): 

We expand the thermodynamic potential (3), near the 
points T=8 , ; ,  of phase transitions 1,2 -3, in the deriva- 
tion of from its equilibrium values in phases 1,2; we 
denote the deviation also by cp. As a result we get 

where 

Here, in addition to (3), we have taken into account the 
gauge invariant 

In the vicinity of the tetracritical point, i.e., for val- 
ues of the coefficient a that are not too large in magni- 
tude, we may neglect the coefficients 6' and y and also, 
in a number of cases, the coefficients (1' and p'. Then 
for the spontaneous value p, we obtain, in all the phases 
1, 2, and 3, the expression 

and by (lo), @,= -a2/@. The value (11) of p, is small 
and decreases with approach to the tetractitical point on 
the phase diagram. 

As is evident from the expression (lo), we may take 
as order parameter for the transitions 1,2 -3 the quan- 
tity cp (or p g ) .  We emphasize a peculiarity of the phase 
transitions 1,203. They can be (within the framework 
of the Landau theory and near the tetracritical point) 
only transitions of second order, a s  long as the coeffi- 
cient B of cp4 in the thermodynamic potential (10) is 
positive. Otherwise @'<O) the phase 3 would be unstable 
by (6), and a phase transition 1-2 of first order would 
occur. 

The applicability of the Landau theory to the phase 
transitions 1,2 -3 is determined by a dimensionless 
parameterlgg2*' which, as is evident from the thermo- 
dynamic potential (lo), has the value 

The parameter may be anomalously small. In fact, it is 
proportional to the small quantity p3,(n4', which de- 
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creases on approach to the tetracritical point accord- 
ing to the law lo!13(n-2)'2. In the immediate vicinity of 
the tetracritical point, besides fluctuations of the order 
parameter cp, fluctuations of the value of p, begin to 
play a role in the phase transitions 1,2, -3 (because of 
the closeness of the phase transitions 0-1,2,3). But it 
may be expected that there will be a region of phase 
space in which the fluctuations of p, are already insig- 
nificant, while the parameter (12), which determines 
the role of the fluctuations of the order parameter cp 
for the phase transitions 1,2 -3, is still anomalously 
small. This region is obviously larger, the larger the 
number n. 

The closeness of the phase transitions 1,203 to the 
tetracritical point determines, along with the parame- 
ter  (12) that describes the applicability of the Landau 
theory, anomalous values of other thermodynamic quan- 
tities also; of these, we shall consider the specific heat 
and the susceptibility. The discontinuity AC of the 
specific heat in the phase transitions 1,203 is deter- 
mined from (10): 

it is independent of p, and should therefore have the 
usual orders of magnitude. 

The susceptibility x =ap&/ah, where h is the intensity 
of the field conjugate to the order parameter q, 5 for the 
transitions 0-1,2 (a term - p ~ h  in the thermodynamic 
potential (lo)), is determined in phases 1,2, a s  follows 
from (lo), by the relation 

The Curie constant 

C- (nap:-'ccr')-' 

in the Curie-Weiss law (14) is inversely proportional to 
the small quantity p3-2 and therefore is anomalously 
large. We emphasize that for phase transitions of the 
shift type, the inverse susceptibility of (14) i s  pro- 
portional to the elasticity of the normal oscillations p ~ ;  
in other words, the square of the frequency of a soft 
mode is anomalously small for the transitions 1,203. 

If the quantity p& is a component of a polarization 
vector or  of a deformation tensor, i.e. if the repre- 
sentation En is contained in avectorial representationor 
in a symmetrized square of a vectorial representation 
of the symmetry group of phase 0, then x of (14) is a di- 
electric or  mechanical susceptibility, easy to measure 
experimentally. If this is not so, then the expression 
(14) does not determine either a dielectric or a mech- 
anical susceptibility; these may, however, be deter- 
mined by other expressions (see below). In this connec- 
tion, those quantities are of considerable interest that 
occur linearly in the thermodynamic potential (3), cou- 
pled with an arbitrary power of components of the order 
parameter q, 5 (or p, cp). In order to find such quanti- 
ties, we ask how arbitrary symmetrized powers of the 
representation En transform. This can be seen from 
tables compiled for the E n  with the smallest n, odd 
(n =3) and even (n=4); tables for other En, for example 
for E ,  have a similar form (see Table I). Since pro- 

TABLE I. Transformation of the quantities pmcosmcp and pmsin 
mcp for the two-dimensional representations En(n = 3,4,6) ac- 
cording to which the quantities p coscp = 7) and psincp = 5 of (1) 
transform. 

Reprexnt- I Degree of the basis of the representation" 

a t ion*)  2 1  1 2 1 3  1 I 1 6  1 8 1  ... 

*B,,,, , a r e  one-dimensional representations; A is  the identical 
representation. 
**For conciseness of notation, the abbreviations cm~cosmcp 
and sm = sinmcp are used. 

ducts of arbitrary powers of the cosine and sine can be 
expressed in terms of cosines and sines of multiple an- 
gles, the tables show how products of arbitrary powers 
of and 5 transform. The antisymmetric square of the 
representation En, i.e. the quantity q[ - 5q =p2 sin@, 
transforms according to the representation B,. 

In the phase 3 of lowest symmetry, those quantities 
are  different from zero, i.e. have spontaneous values, 
that transform according to any of the representations 
of the corresponding table. In phase 1 or 2, as  is evi- 
dent from the solutions (4), quantities transforming ac- 
cording to the one-dimensional representations B, and 
B, or B, are zero, i.e. do not have spontaneous values. 
Hence it follows that these quantities (we denote them 
by P,, P,, P,) are linearly coupled with the order pa- 
rameter cp . In other words, the thermodynamic poten- 
tial (10) contains the invariants 

These invariants are obtained from the mixed invariants 

a,P,pnl' sin L/2nrp+a2~,pn12 cos */,ncp+a,P,pR sin ncp, (1 6) 

which, as follows from the tables, are contained in the 
thermodynamic potential (3) (for odd n there is obvious- 
ly only the invariant with the coefficient a,). There are 
also other mixed invariants (for n >4; see Table I), but 
they are of no interest here. 

The quantities P,, P,, and P,, which transform ac- 
cording to the one-dimensional representations B,, B,, 
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and B, and assume spontaneous values in the phase frequency is proportional to by (14). 
transkons 0-1,2,3, we shall call "improper" quanti- 
ties with respect to these transitions; it is now custo- 
mary to apply that term to the transitions themselves 
in the literature on ferroelectric and ferroelastic ma- 
t e r i a l~ . ' ~  The quantities 77 and < we shall call "proper" 
with respect to the transitions 0-1,2,3. The quantity 
cp, or p,q, is proper for the phase transition 1-3 (or 
2 -3). The quantities P, and P, (or P, and P,) may be 
called "pseudoproper" with respect to the transition 
1-3 (or 2-31. These quantities transform like the 
order parameter cp, according to the same one-dimen- 
sional representation of the symmetry group of phase 1 
(or of phase 2). 

The one-dimensional representations B,,,, ,  may be 
contained in a vector representation or  a symmetrized 
square of a vector representation of the symmetry 
group of phase 0; that is, the quantities PI,,,, may have 
the meaning of components of a polarization vector or 
of a strain tensor. We shall find the susceptibility 

we designate by El,,,, the intensities of the fields con- 
jugate to the quantities P,,,,,. Adding to the thermody- 
namic potential (3), and consequently also to (lo), and 
(15), terms 

we find in phase 1 

and similarly in phase 2 with the substitution 1-2. The 
susceptibility X, in phase 1 (or X ,  in phase 2) is not of 
interest, because the Curie-Weiss law is not obeyed. 
We note that when the terms (17) are taken into account 
in the thermodynamic potential, the expressions for the 
transition temperatures 8,,,, in Eq. (14) for X(E ,, ,,, = 0) 
and in Eq. (18) differ from (9) by a term 

The Curie constants C,,, =a,, ,/16%, ,a > for the sus- 
ceptibilities x,;, of (18) are independent of p, and should 
therefore have the usual orders of magnitude. The 
Curie constant C, =a~p",4x~a > for X, of (18) is propor- 
tional to p",d should assume anomalously small val- 
ues. For transitions of the shift type this is due, as is 
evident from (18), to the fact that in phase 1 (or in 
phase 2) the contributions of the soft mode b,cp) to P, 
(or to P,) and to P,, i.e. the soft-mode oscillator 
strengths, are proportional to py2 and and respec- 
tively [see (15)], whereas the square of the soft-mode 

Thus, we emphasize, while the square of the soft- 
mode frequency in phase transitions 1 ,203  of the shift 
type, which is determined by the expression (14), has 
an anomalously small value, the Curie constant in the 
Curie-Weiss law for a dielectric or  mechanical sus- 
ceptibility may have either an anomalously large value 
(14) (a proper ferroelectric or ferrelastic phase tran- 
sition) or  ordinary or anomalously small values (18) (a 
pseudoproper transition). 

An analogous treatment can be carried out for repre- 
sentations or more than two dimensions. It is also ob- 
vious that all the results presented above are valid also 
for magnetic transitions (in a region still far  removed 
from saturation p,), when 77 and 5 transform according 
to two-dimensional irreducible representations of the 
magnetic space groups. Such phase transitions are 
usually called spin-reorientation  transition^.'^ 

The author is grateful to I. M. Lifshitz, whose re- 
marks provided the basis for the carrying out of this 
research, and to A. P. Levanyuk for useful advice and 
fruitful discussions. 
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