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It is established that the trajectories of a vortex system exhibits local exponential divergence if the motion 
is not quasiperiodic. It is shown by the same token that two-dimensional flow of an ideal fluid (or of a 
plasma in a magnetic field) is in general not a completely integrable system. The global stochastic 
properties (ergodicity and mixing) of a vortex system, which correspond to some natural division of phase 
space into fourteen cells, are investigated. 

PACS numbers: 47.10. + g 

We formulate here a number of questions of interest 
in the modern theory of turbulence. Is turbulent flow 
inthe general case  stochastic[11 (does it have the proper- 
ty of mixing in phase space)? If i t  is stochastic, does 
i t  remain s o  in the absence of viscosity, when an inte- 
gral  of the energy i s  obtained? This question i s  par- 
ticularly vital for two-dimensional flow of an  ideal 
liquid, when the vorticity in the liquid particles i s  
additionally conserved. Is  this two-dimensional flow 
of an ideal liquid a completely integrable system in the 
sense established for the Korteweg-de Vries equa- 
t i o n ~ [ ~ ] ?  Finally, if stochastization does take place, 
what is the minimum number of degrees of freedom 
characterizing the flow? 

We note that the models obtained when the hydrody- 
namic equations a r e  truncated by projection on a cer-  
tain finite system of functions (e. g., Ref. 3) cannot 
answer the foregoing questions, since they do not cor- 
respond to the exact hydrodynamic equations. To de- 
monstrate with a particular example that turbulent flow, 
generally speaking, i s  stochastic it is necessary to 
find for the exact hydrodynamic equations a solution 
that possesses this property. 

1. SYSTEM OF FOUR VORTICES 

We consider, on an infinite plane, four point vortices 
with intensities (circulations of the velocity around the 
vortices) x ,  (a! = 1, . . . ,4). 

The Cartesian coordinates x i u )  ( t )  (i= 1, 2) of the 
vortices satisfy a system of Hamilton  equation^,^^' which 
we write in the form 

Here t i ,  i s  an  anti-symmetrical tensor (&,, = - G, = 1, 
c,,  = s,,= 0), with summation from 1 to 2 over the Latin 
indices, I,, i s  the distance between the vortices, and 
the prime on the summation sign means that the t e rm 
with a! = P i s  omitted. The quantity H has the meaning 
of the interaction energy of vortices and i s  an integral 
of the motion, The invariance of H relative to shifts 
and rotation of the reference frame leads to additional 
three integrals of the motion: 

As i s  frequently the case in mathematics, when 2,- %.z,'.', (1.3) 
searching for a general theorem it is convenient to 
expand the class of solutions by forgoing the smooth- I- x ~ ~ ( z ; ~ '  )*. 
ness requirement. In this sense, a useful model of 

(1.4) 
E 

two-dimensional turbulence i s  a system of linear vor- [t is useful to use also a of the invariants 
tices.C4] Suchvortices, a s  i s  well known, play a funda- z i  and I (Ref. 4): 
mental role in superfluidity and superconductivity 
phenomena, and a r e  widely used in the simulation of M-x ~.~~(z,'.'-s:" ) - 2 1 x  %.-22,'. (1.5) 
various non-smooth flows a s  well a s  of plasma in a 0.3 a 

magnetic field. The integrals (1.3)-(1.5), naturally, a r e  in involu- 

Thus, i s  a system of vortices stochastic, and if so,  
what i s  the minimum number of vortices necessary for 
stochastization? According to Helmholtz, two vortices 
rotate uniformly. The equations for a system of three 
vortices can be integrated by numerical quadrature. 
The relative motion of three identical vortices i s  al- 
most always periodic (the absolute motion i s  quasi- 

tion with H (in the calculation of the Poisson brackets 
i t  is necessary to choose the quantities Ix, 1'' 2x:a) a s  
the canonical variables). The integrals (1.3) and (1.4), 
however, a r e  not involution with each other. Thus, 
the four independent integrals (1.2)-(1.4) a r e  insuffi- 
cient to integrate the system of four vortices by stan- 
dard methods of Hamiltonian mechanics.[6] 

periodic), with the exception of one value of a decisive We note that in the case of vortices of like sign the 
dimensionless parameter, a t  which the motion i s  quantities IV, I, and Z: a r e  in involution. Using two 
aperiodic and unstable. In the present paper, making of these quantities in H, we can integrate the system 
use of numerical experiments, we show that a system of three vortices of like sign by the standard methods 
of four vortices has stochastic properties. The re-  indicated above. It i s  more convenient, however, to 
sults a r e  used in Sec. 5 to  draw certain conclusions integrate the system of three vortices (both of like 
in light of the questions raised above. sign and of opposite signs) after first considering the 
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FIG. 1. Vortex configurations: a-initial configuration for 
numerical experiments (the arrows indicate the directions of 
the initial displacements), b-typical convex and nonconvex 
configurations and transitions between them. 

relative motion of the vortices.[41 

There a re  a number of particular cases when a sys- 
tem of four vortices can be integrated. Foremost 
.among them a re  symmetrical configurations. If a 
vortex of arbitrary intensity i s  placed in the center of 
an equilateral triangle with identical vortices at i ts  
vertices (Fig. la) ,  then the system will rotate rigidly 
around the central vortex (we shall show later on that 
such a motion is unstable for four identical vortices, 
see also Ref. 7). Four identical vortices located a t  
the vertices of a square will also rotate rigidly. The 
question of the motion of four vortices that have pair- 
wise equal intensities and a re  symmetrically arranged 
about the center of gravity can be integrated in analogy 
with the problem of three vortices.[4] 

Other integrable particular cases involve configura- 
tions with noncommensurate distances between the vor- 
tices. For  example, if two vortices lie very close to 
each other, then they can be replaced, infirst-order ap- 
proximation, by one vortex whose intensity is the sum 
of the two, and corrections can then be introduced by 
perturbation theory. The case when one vortex is 
located f a r  f rom a group of three vortices is treated 
similarly. 

We shall be interested in the motion of four identical 
vortices with commensurate distances between them. 
The configuration of the four vortices a re  determined 
by five parameters (for example, the distances bet- 
ween different vortices). The integrals (1.2) and (1.5) 
make it possible to decrease the number of indepen- 
dent variables to three. We shall not write out here 
the obtained system of three equations for the relative 
motion of the vortices, since i t  is too cumbersome, 
We note only that when the type of the vortex configura- 
tion i s  changed, the signs of the different terms of 
these equations change, so  that the problem must be 
solved "piecewise." A similar circumstance takes 
place also in the simpler problem of three vortices.C41 
This suggests an abbreviated description of the sys- 
tem of four vortices with the aid of the natural phase- 
space subdivision, proposed below. 

2. SUBDIVISION OF PHASE SPACE 

The different types of configurations of a system of 
four vortices can be grouped into two classes-non- 
convex (when one of the vertices i s  inside the triangle 
made up by the remaining vortices) and convex (Fig. 

FIG. 2. Graph for transitions between different configura- 
t ions. 

lb). The boundaries between these two classes a re  
configurations of three vortices on a single straight 
line. The class of nonconvex configurations breaks up 
in turn into seven types. In fact, any one of the four 
vortices can be located inside the triangle, and the 
remaining three vortices can have two different orien- 
tations depending on how the vortices a r e  numbered 
around the triangle, e. g., counterclockwise (compare 
with the three-vortex problem).C41 The class of concave 
configurations breaks up into s ix  types that differ in the 
permutation of three vortices with pne remaining fixed. 

We note that when the vortices move the system 
cannot go over directly from one form of configuration 
to  another of the same class. Nonconvex configura- 
tions can go over directly only into convex ones, and 
vice versa. Further, each nonconvex configuration 
can go over into only one of its three conjugate convex 
configurations, wherein the central vortex crosses one 
of the sides of the triangle (Fig. lb). Each convex 
configuration can go over into one of four nonconvex 
configurations when one of the vortices turns out to be 
inside the triangle (with the orientation of the remain- 
ing three vortices unchanged). 

It i s  convenient to represent the different transitions 
between the configurations in the form of a graph (dia- 
gram). This graph i s  planar1' and i t  i s  convenient to  
place it on the surface of a cube (Fig. 2). The ver- 
tices of the cube correspond to the nonconvex configu- 
rations, and the centers of the faces correspond to the 
convex configurations. In each "step" the system 
traverses half the diagonal of the corresponding space 
of the cube. 

Thus, in the abbreviated description, the system 
can be in one of 14 states. An analysis of the behavior 
of the system reduces to a study of the sequence of 
the states and of the corresponding times. 

3. NUMERICAL EXPERIMENTS 

As the initial conditions for the numerical experi- 
ments we chose the configuration shown in Fig. la.  In 
the unperturbed states, the system rotates about the 
central vortex with a period T =  ~ I T ~ R ~ / X ,  where R i s  
the distance from the central vortex to the vertices of 
the regular triangle of the remaining vortices. The 
origin of the coordinates was placed at the center of 
the regular triangle, and the abscissa axis i s  drawn 
through one of the vertices. The unit length i s  chosen 
to be the distance R. 

It is  known (see, e.  g. ,  Ref. 8), that one of the causes 
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FIG. 3. Exponential acceleration of trajectories in a system 
of vortices. 

of the stochasticity is local instability of the motion. 
To investigate the instability we traced the time de- 
pendence of the distances between the different trajec- 
tories in an eight-dimensional phase space (the coor- 
dinates of the four vortices) with Euclidean metric. 
The initial conditions were specified by shifting the 
central vortex along the abscissa axis by an amount t 
=it ,  (c,=R.1O1", ,n=4,3,2,1). 

The system of ordinary differential equations (1.1) 
was integrated with a computer by the Runge-Kutta 
method to fourth order of accuracy. The integration 
was with constant time intervals equal to ~ / 1 6 0  (it 
was assumed here that x =  2n, corresponding to T = n). 
The integrals of motion (1.2)-(1.4) were used to  check 
the accuracy, 

The results shown in Fig. 3 indicate that in our case 
local exponential instability sets in. The circles of 
Fig. 3 mark the logarithms of the distances between 
the unperturbed trajector (c= 0) and the trajectories 
with perturbations E = (in the right-hand half of the 
plot) and t=  -t , (in the left half), and the crosses 
correspond to the distances between the trajectories 
with & =cm and t = - t, ( m =  4,3,2,1). The instabil- 
ity growth rate turned out to be of the order of unity 
(in the time-scale 2 r ~ ' / x  chosen a s  indicated above). 

To study the global properties of the system of four 
vortices over a long time, we observed the behavior 
of the trajectories with initial perturbations E = *  E,. 

We noted in which of the cells of the phase space (Sec. 
2) the trajectory was located, and how long it  stayed 
there. This procedure corresponds in fact to the meth- 
od of "symbolic dynamics" (see, e.g., Ref. 9). 

The experiment was broken up into stages, each con- 
taining 700 realizations of successive states (cell num- 
bers). For each stage we calculated the relative fre- 
quency (probability) of a trajectory landing in each 
cell, and the total time spent in it, as  well a s  the 
probability matrices of the k-step transitions. Obser- 
vation of the trajectories was carried out over 24 
stages (almost 1.7 x lo4 transitions between cells) in 
a time - 1.4 x lo4 T. The relative deviation from the 
integrals (1.2) and (1.4) during that time did not ex- 
ceed several hundredths of a percent, and the integrals 
(1.3) remained constant with even higher accuracy. 

4. STOCHASTIC PROPERTIES OF THE SYSTEM 

The first  striking result of the numerical experi- 
ments i s  the randomness of the behavior of the phase 

FIG. 4. Energy spectrum of a sequence of states of the 
system. 

trajectories and the equivalence of the different cells 
belonging to one class (nonconvex or  convex configura- 
tions). In particular, from time to time the vortex 
configuration turned out to be close to the initial un- 
stable configuration or to any one of the seven con- 
figurations obtained from the initial one by permuting 
the vortices. Constant transition of the system through 
an unstable situation i s  a known stochastization mech- 
anism.[lol Since the time-averaged results corres- 
ponding to trajectories with different initial perturba- 
tions turn out to be complicated, we present below only 
data pertaining to the case t=  t,. 

To verify that there is no periodicity, we carried out 
a spectral analysis of the sequence I, = lo-' + i,. lo-' 
( l =  1,. . . , N), where i, are  the numbers of the cells 
(from 1 to 14) and N i s  the number of successive 
states. It i s  convenient to  reckon this sequence in 
terms of the values of a time function [(t), referred to 
one second. Figure 4 shows the corresponding energy 
spectrum E( f )  calculated with the aid of a fast Fourier 
transformation for N = 2.CU]The absence of sharply 
pronounced wiggles in the center indicates that the 
trajectory i s  not quasiperiodic. Some r ise  a s  f = 0.5 
Hz is approached can be attributed to the fact that the 
oscillations executed by the system of four vortices on 
going between different configurations a re  not long- 
lasting. More accurately, if an oscillation i s  taken 
to mean at least one return to the initial state after 
two steps, then the number of steps participating in the 
oscillations amounted to 83% of the total number of 
steps. In this case the average duration of the oscilla- 
tions turned out to be 2.7 steps, and the average dura- 
tion of the step - O.9T. 

We note that one cannot expect cells belonging to two 
different classes (of convex and nonconvex configura- 
tions) to be equivalent. In fact, as  shown in Sec.. 3,  
the system executes successive transitions between 
the two classes, s o  that it belongs to each of the 
classes in half of the cases. At the same time, the 
class of nonconvex configurations breaks up into eight 
types (cells), and that of the convex ones into six. 
Thus, in a sequence of states, any particular noncon- 
vex configuration has a lower average frequency than 
a convex one. In addition, the corresponding phase 
volume can be different and it i s  natural to expect a 
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FIG. 6. Mixing in phase 
space. 

FIG. 5. Settling of the probability distribution into a station- 
ary regime. 

difference between the average times of stay of the 
trajectory in cells of different classes. 

The indices s= 6 and 8 will be used to distinguish 
between the classes of the convex and nonconvex con- 
figurations. Let N, and T, be the total number of ap- 
pearances of configurations of a given class and the 
corresponding total time. It follows from the fore- 
going that 2N6 = 2Ns= N, where i s  the total number 
of realized states. Experiment has shown that in 63% 
of the time the system stays in states with convex con- 
figuration (T$(T, + T,) = 0.63. Thus, the average time 
of stay in the system in a state with definite convex 
configuration i s  approximately 2.3 times larger than 
for a nonconvex configuration. 

We consider now, for each class, the distributions 
zc~,,,(N)= n,,$J," and q,,,(N) = 7,,,T;l, where it,,, i s  the 
number of the appearances of i-th configuration and Ti,, 

is the time of stay of the trajectory in the corresponding 
cell. To trace the variations of these distributions with 
increasing N, we introduce the quantity 

and the analogous quantity 6,,, (with zu replaced by q). 
The change from stage to stage was AN= 700, and it 
was assumed AN= 100 within the limits of the f i rs t  
stage. Figure 5 shows the quantities 

8,='/2(6,, a+6m. a ) ,  6t=L/1(6x, a+61, t )  . 
The rapid decrease of these characteristics and the 
close approach to zero indicate that distributions tend 
to become stationary. Towards the end of the experi- 
ment, the distributions a re  close to.uniform within each 
class. For nonconvex configuration the probability 
deviation from uniform distributions of 7 and n was 
only 0.03. For convex configurations, characterized 
by longer times, the equalization of the distributions 
was somewhat slower and the deviations from unifor- 
mity were 0.8 for T and 0.06 for n. 

To verify the mixing condition, we introduce the 
probability 

pl: (2m+l/,ls--s' I ) 
of the transition from the i-th configuration of class s 
to the j-th configuration of class sf after the number of 
steps indicated in the parentheses; ~ P Z  = 0, 1, 2, .  . . ; 
the term h I s - sf I reflects the fact that the transitions 
between different classes a r e  possible only after an odd 

number of steps, and within a single class only after 
an even number. The mixing condition means that a t  
large n z  the following expression should be small (com- 
pared with unity) 

The probabilities p and zc in (4.1) were calculated from 
the total aggregate of the states realized in the ex- 
periment. Figure 6 shows the function o(k), defined 
in t e rms  of (4.1) by means of the formulas 

We see that o(k) decreases quite sharply at f irst ,  and 
at k >  25 the mixing condition i s  satisfied accurate to 
several hundredths. With further increase of k, o(k) 
decreases slowly and executes small oscillations. 

Analogous calculations have shown that if the number 
of steps is large the probability of the transition satis- 
fies approximately the condition for a Markov process. 

5. CONCLUSION 

The foregoing analysis of the global stochastic prop- 
ert ies of a system of four vortices in conjunction with 
the established local exponential instability allow us to 
draw a number of general conclusions. 

First ,  two-dimensional flow of an ideal liquid i s  in 
the general case not a fully integrable system (other- 
wise, quasiperiodicity would have been observed). It 
is thus impossible in principle to use here the L, A 
pair method and the technique of the inverse problem 
of scattering theory, which a r e  successfully to inves- 
tigate fully integrable systems (see, for example, 
Appendix 13  of Ref. 6). This conclusion holds also 
for plasma flow which is two-dimensionalized in a 
strong magnetic field. 

Second, i t  i s  natural to expect stochastic properties 
for a wide class of two-dimensional flows (for exam- 
ple, if the number of discrete vortices i s  increased 
and also a continuous vortex field i s  introduced). This 
agrees with the random character of the motion of the 
visualized vortices in liquid helium,["] and also with 
the results of numerical experiments with a large num- 
ber of vortices. [12.1S1 As to three-dimensionalflows, 
i t  appears that in the general case the additional effect 
of the stretching of the vortex filaments will only en- 
hance the stochasticity. As applied to meteorology, 
one can assume that an important factor, which makes 
i t  difficult in principle to forecast the weather, is  the 
stochastic character of the interaction of the cyclones. 
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One more remark. It is easy to verify that the rela- 
tive motion of vortices i s  a Liouville motion, s o  that it 
is possible to write down a microcanonical distribution 
with respect to two invariants of the motion (1.2) and 
(1.5). The decisive parameter of this distribution in 
the case of identical vortices i s  the quantity b' intro- 
duced in Ref. 4 (the analog of the temperature). It i s  
of interest to investigate in detail in the future the 
stochastic properties of the system of four and more 
vortices so  a s  to verify, for example, the applicability 
of the microcanonical distribution in a definite range 
of values of B (the calculations performed in the pres- 
ent paper correspond to the case 0-2.4), 
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I'A graph is called planar if it can be drawn on a plane (or 
on a sphere) without self-intersections. 
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An experimental and theoretical study is reported of the kinetics of electron density (n = 10"-5x 10' 
cm-') in helium plasma cooled to cryogenic temperatures (T, 5 IWK). A realistic afterglow model is 
developed, taking into account electron-temperature relaxation and changes in the density of metastable 
states. Experiment c o n f i s  the existence of the quasistationary decay of electron density, which persists 
in a broad range of initial dicharge conditions, including the magnetic field. Comparison of experiment 
with theory has led to the elucidation of the role of hot electrons in cryogenic plasma, to a determination 
of improved values for the constants of the elementary processes, and, in particular, to a verification of 
the fact that the temperature dependence of the recombination coefficient of He: ions is of the form 
Te-'. 

PACS numbers: 52.25.Lp, 52.80.H~ 

INTRODUCTION 

When the temperature of heavy particles in helium 
plasma is reduced from T,= 300°K down to cryogenic 
values, the absolute values of plasma parameters can 
be investigated in a new range, and new quantitative 
relationships can be established between them. For 
example, in decaying plasma, the electron temperature 
T,  falls to 20-100°K, the density of metastable states 
may reach M =  1013 ~ m - ~ ,  and the ratio of IVI-particle 
and electron densities r ises to M / n  2 10' (n is  the 
electron density). There is  also a qualitative change 
in the ion composition of cryogenic plasma. The bulk 
of the ions consists of the polyatomic ions He;, where 
n 2 3 .  The recombination coefficient for these ions is 

a> cm3.sec" and exceeds the recombination co- 
efficients of He' and He',, which make up the plasma 
a t  room temperature, by a large factor. All this is 
responsible for many of the features that ar ise  both 
during the decay of cryogenic plasma and in the cryo- 
genic dc discharge.[1121 

In the final analysis, the values of the leading plasma 
parameters and the relationships between them must 
be traceable to elementary processes (and a r e  ultimate- 
ly responsible for many aspects of collective phenome- 
na). Sufficient material has now emerged from studies 
of elementary processes in cryogenic helium plasma 
to enable us to consider the description of plasma de- 
cay a s  a process of simultaneous variation in its 
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