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We consider the s-d exchange model that describes electron scattering by a magnetic impurity in a 
metal. The investigation is based on a transition to an equivalent model that admits of formulating a 
perturbation theory that is regular at low temperatures. Wilson's relation, which connects the impurity 
parts of the susceptibility and of the heat capacity, is derived. This relation is generalized to include the 
case of unequal Lande factors of the impurity and of the electrons. 

PACS numbers: 72.15.Qm 

1. INTRODUCTION 

In 1964,  ond do['] noted that the second-order correc- 
tion to the amplitude of the scattering of an electron by 
a magnetic impurity increases logarithmically a s  the 
temperature T - 0. At sufficiently low temperatures 
perturbation theory therefore ceases to hold. Kondo 
investigated scattering in the so-called s-d exchange 
model, whose Hamiltonian i s  

(the impurity spin is S= 1/2). 

It was shown by summing the principal 
terms that when the exchange interaction sign corres- 
ponds to antiferromagnetism (J>O) the effective scat- 
tering amplitude increases with decreasing temperature 
and has a pole a t  the Kondo temperature: 

where f1  is  a quantity of the order of the width of the 
conduction band." Despite considerable efforts, the 
low-temperature behavior of the s-d model remained 
unknown until Anderson, Yuval, and Iiamannc4] ob- 
tained a qualitative solution of the problem. This so- 
lution was based on the fact that a t  a definite value of 
the exchange-interaction constant J= J T ( J T =  0.97) the 
partition function of the s-d model turns out to be e- 
qual to the partition function of a simple model that has 
an exact solution and a ~ a m i l t o n i a n [ ~ '  

Here c; are  the operators for the production of free 
zero-spin fermions, and d' is the operator of fermion 
production on a local resonance leveL The mixing 
term V causes the local level to acquire a width A, 
= a v ,  which is the energy scale of the theory. Ander- 
son et u Z . [ ~ ]  assumed that the renormalized value of J 
is equal to J,. The low-temperature behavior of the 
s-d model at small  J is therefore the same a s  for the 
model given by (3), but the energy scale A, should be 
replaced by T,. As a result, they obtained in Ref. 4 
the correct statement that the susceptibility of the 
magnetic impurity in the metal, X, i s  finite a t  T = 0 and 
its order of magnitude i s  

The procedure used in Ref. 4, however, i s  not rigor- 
ous. It was assumed that the Hamiltonian (1) is  not 
altered by the renormalization, but this not the actual 
case. None the less, the estimate (4) turned out to be 
correct. This became clear after ~ i l s o n [ ~ ~ ' '  undertook 
a thorough investigation of the Kondo problem by using 
numerical methods. Besides calculating x(T) ,  Wilson 
obtained (also numerically) the relation 

where C i s  the correction to the heat capacity due to the 
presence of the magnetic impurity, and x(g,g) i s  the 
correction to the magnetic susceptibility when the 
Lande factors of the impurity a re  equal, gi=ge=g; p 
i s  the Bohr magneton. 

In the present paper we propose a model whose Ham- 
iltonian i s  a natural generalization of expression (3): 

This model will hereafter be called the resonant-level 
(RL) model. It will be shown that the partition functions 
of the RL and s-d models coincides if V i s  properly 
chosen and if 

(a particular case of this equivalence, corresponding to 
U =  0, occurs a t  J = J T ) .  The equality of the partition 
function makes it possible to use the RL model for the 
study of the low-temperature properties of the model 
at small J. 

The Hamiltonian (6) admits of an exact solution both 
a t  V =  0 and at U =  0. Perturbation theory in V (as well 
a s  its equivalent, the perturbation theory in J in the 
s-d model) does not make it possible to investigate the 
low-temperature properties of the system. The reason 
i s  that the ground state of the zeroth approximation 
chosen in this manner i s  orthogonal to the true one. 
To study the low-temperature properties it i s  neces- 
sary to consider the perturbation-theory series in U. 
Each member of this ser ies  i s  regular as  T- 0. 
Therefore, even though small J corresponds to U 
--0.48, the choice of this zeroth approximation is pre- 
ferable. 
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We derive below the Wilson relation (5) analytically 
by using the RL model. This relation can be genera- 
lized to the case when the g-factors of the electron and 
impurity a re  not equal (& ~ q , ) :  

2. EQUIVALENCE OF THE RL AND S-d MODELS 

Following Anderson and Yuval, we express the 
s-d model Hamiltonian in the form 

The real situation corresponds to J,, = J,= J. It i s  con- 
venient, however, to distinguish between the corres- 
ponding coefficients, since the Hamiltonian (9) i s  diag- 
onal a t  JL= 0 and it  i s  possible to construct a perturba- 
tion theory in terms of JL (Ref. 8). The s-d model par- 
tition function, regarded a s  a series in J,, takes the 
form 

where Z o  is  the partition function at J, = 0 and has no 
singularities connected with the Kondo problem; it will 
no longer be considered. On the other hand 

where 

P2,,-exp(2 ( 1 - + 6 ) ' &  ( - l ) v - v r ~ n  sin nT(r.-T..) 
.)re 

XTT 

and 6 =  tan-' J,,n/4 i s  the phase shift of the scattering by 
the potential J,,/4. The quantity Z, describes the ther- 
modynamics of a one-dimensional classical gas of im- 
permeable particles with alternating-sign  charge^.^^^'^' 
The cutoff factor T regularizes the theory when the dis- 
tance between particles is small; T-' i s  a quantity of the 
order of the Fermi energy. To take into account the 
magnetic field, we add to the Hamiltonian (9) a term 

The quantity P,, i s  multiplied in this case by the factor 

At q,=q, = g ,  the partition function of the s-d model i s  
a function of three arguments: 

2,-z ('/,I, 00s' 6, q$, 2-"'g@p.d), 

where 

We proceed to consider the resonant-level model. 

We add to the Harniltonian (6) the quantity 

The field h, alters the chemical potential of the fer- 
mions, and the field h ,  changes the position of the local 
leveL We shall henceforth compare the heat capacity 
and susceptibility of the RL model relative to the field 
h =  h,= h,  with the corresponding quantities in the s-d 
model: 

d  d  d2 In Z., 
C,, = - dTTzdTlnZ,,, %,=-T -- 

dh2 . 

As shown in the Appendix, the partition function Z,, of 
the RL model, regarded a s  the perturbation-theory 
ser ies  in V, takes at h = h, = h ,  the form 

Here 

and z i s  the same function, of three arguments, a s  in 
the right-hand side of (14). We note that q i  (65) has, 
compared with q&, (6  *(U)), an extra coefficient 2. The 
point i s  that in the case of the s-d model (formula (11) 
P,, is  made up of a product of two identical factors 
corresponding to electrons with different spin projec- 
tions. 

Thus, a t  

q,,=q,,, V cos d'~'"-~lJ,  cos2 6. h=2-"g@ (17) 

the partition functions of the two models coincide. 
Hence 

It will be shown below that in the resonant-level model, 
in the low-temperature limit, the following relation 
holds: 

Consequently, in the s-d model, 

It follows from (13) that the metal susceptibility due 
to the presence of the magnetic impurity depends on the 
Lande factors of the electrons and of the impurity in 
the following manner: 

This enables us to generalize the ratios (20) to the case 
of unequal Lande factors (formula (8)). 

3. ZEROTH APPROXIMATION 

In this section we derive relation (19) a t  U =  0, and 
introduce the symbols that will be needed hereafter. 
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At U= 0 the RL-model Hamiltonian i s  4. HEAT CAPACITY 

We introduce the free temperature Green's functions 
of the local level and of the fermions situated in the 
fields h: 

where 5, i s  the free-fermion energy reckoned from the 
Fermi surface. Since we a re  investigating an interac- 
tion with a local level, the thermodynamics i s  deter- 
mined only by Green's functions with equal spatial ar-  
guments: 

~ ( o ,  h,)= x ~ ~ ( o ) = - i n  sign o . ~ ( ~ - l o + h . l ) ,  (25) 
k 

where 
1, z>O, 

O c Z )  = { 0, z<o, 

and A i s  a quantity of the order  of the width of the fer- 
mion band. To describe the model (22 )  it i s  convenient 
to introduce the following two-row matrix: 

It i s  the inverse of the matrix of the Green's functions 
with equal spatial arguments 

The change of the free energy of the fermion gas due 
to the presence of the resonant level a t  U=O i s  

where on = (2n+  l ) n T ,  and G P  i s  an element of the ma- 
trix ( 2 7 ) ,  but with V replaced by XV. Thus, the part of 
the free energy connected with the resonant level i s  
equal to 

Fo=-T [ln Det G-' (o.)  -In F-'1. 

From this we get a t  low temperatures 

n d nz T 
CRro=- - T - Im In Det GR-I = -- 

3 d o  3 nA. ' 
1 d (30)  

xnLo CI - -- Im In Det GR-' 
n dh 

where G ,  is  a matrix of retarded Green's functions. 
Thus, relation (19 )  i s  satisfied in zeroth order  of per- 
turbation theory. We note that the change of the free 
energy turns out to be independent of the field h,. This 
takes place only a t  U = 0. 

It will be shown below that relation ( 1 9 )  is  satisfied 
in all orders in U. 

In the presence of interaction, the  ree en's function 
takes the form 

where the self-energy part  Z is a 2 x 2 matrix. 

To find the heat capacity it i s  convenient to use for 
the free energy an expression in the form proposed by 
Luttinger and ~ a r d [ " * ' ~ '  

where Ff{8} is  a functional whose variational derivative 
with respect to 8 i s  equal to C .  The free energy in this 
form i s  a functional that is  stationary in 'B . Just as in 
the Fermi-liquid theory, this property enables us to 
express the heat capacity a t  low temperatures in terms 
of the Green's function: 

where 

Expression (33 )  can be substantially simplifiea by de- 
termining the properties of the matrix C at small w .  
We note for this purpose that at h = 0 the functions G~~ 
and GCC a r e  odd, and the function G~~ i s  even. In addi- 
tion, on the imaginary axis of the .*, plane the functions 
G~~ and GCC are  imaginary and GCd i s  real. Similar 
properties a re  possessed also by the matrix C. In fact, 
any diagram X contains an odd number of lines. Fur- 
thermore, the diagrams CCd must of necessity contain 
an odd number of Gcd lines, while zd3 and ECC must 
contain an even number of such lines. Therefore the 
function zCd i s  even and real on the imaginary axis, 
while the functions z3%nd CCC are  odd and imaginary. 
It follows therefore that on the real  axis, at small w, 
we have 

Zed(w) =aO+alio sign o+a,ot+ . . . , 
Z", Z C c ( o )  =ipo sign o f  ~ , o + p p i o z  sign o+ 

The function Gdd i s  the only G-matrix element whose 
derivative is singular a t  small w :  

d 2 
- G d d ( o ) = - ( G d d ( o ) ) Z + - - B ( ~ )  
d io  AO 

Therefore the non-analytic terms of the type w" sign 
w in the ser ies  (35 )  can stem only from diagrams that 
have sections consisting of n+ 1 Gdd lines. Since any 
section must contain at least three lines, non-analytic 
terms appear only at n 2 2. This means that 

while the quantities CCd(0)  and 

a re  real. 
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These properties suffice to be able to express (33) 
in the form 

where 

We note that the susceptibility of the magnetic im- 
purity is finite in each order of perturbation theory. where 

6. PROOF OF WILSON'S RELATION 
Thus, the contribution of the magnetic impurity to the 
heat capacity of the metal a t  low temperatures i s  pro- 
portional to T in a l l  orders of perturbation theory in 
U. 

T o  prcjve relation (19) it remains to show that 

Before we proceed to the general proof, we make the 
5. SUSCEPTIBILITY following remark. The only element of the matrix G-' 

independent of kc i s  (G-I)" = f ', and the field kc is con- 
tained in the function S only in the cutoff factor We proceed now to the study of the susceptibility. 

The change in the number of particles in fields hd= kc 
=h ,  due to the presence of the resonant level, consists 
of two parts: 

@(A - I w + hc 1 ). At small w the functions G do not de- 
pend on h,. However, a s  shown in the Appendix, allow- 
ance for the field kc multiplies the susceptibility of the 
RL model by the quantity (1 - 26*/n).['] The reason i s  
that the diagrams in which the lines GCc form a closed 
contour diverage linearly a t  large w. When such d i a  
grams a r e  calculated, inclusion of the factor 
@(A - 1 w+ h,l) in (25) is  e s ~ e n t i a l . [ ~ '  We shall illus- 

(d/dh denotes the sum of the partial derivatives with 
respect to h, and kc). The second term describes the 
change of the number of fermions. Since the interaction 
with the local level i s  a contact interaction, n,-  ni can 
be represented in the form 

trate this circumstance using as an example first-order 
perturbation theory: 

do' 
Z,"(o)=-iuj G"(o')- 

2n ' (47) 

where 

where the amplitude t does not depend on k and can be 
expressed in terms of the function g": 

and G does not depend on kc: 

G=-in (~+hd)sign o 
o+hd+iAo sign o ' We note that, in contrast to the Anderson model,[13' the 

last term in (40) i s  not equal to zero and the "compen- 
sation theorem" does not hold here. 

Taking (41) into account, we can represent the change 
in the number of particles in the form 

Using the fact that (d/dw - d/ah,)G= 0 a t  h,= 0 , we get 

Next, differentiating Cfd with respect to kc, we have 

u 
-= i -(C(A)-C(-A))=U. 
ah. 2n Just a s  in Fermi-liquid theory,[12' the second term van- 

ishes a s  T- 0. Changing from summation over the fre- 
quencies to integration, we get 

Thus, in contrast to zeroth-order perturbation theory, 
the contribution of the field kc to the susceptibility be- 
comes essential even in first order. Allowance for 
this contribution leads to (d/dh)',fd= 0. Since ~ , d d  does 
not depend on w , we verify that relation (46) i s  satis- 
fied in first  order. and consequently 

1 d 
bL=- -- Im In Det sn-'. 

n dh 
To obtain the proof in the general case we proceed 

a s  in the derivation of the Ward identity. We write 
zd3(w)  in such a way that each line depends on the input 
frequency w .  Differentiating all lines with respect to 
the frequency and the fields I?, we obtain the identity 

Just a s  in the derivation of the formula for the heat ca- 
pacity, it is  easy to show that dCdd(0)/dh i s  rea l  and 
dCcd/dh i s  odd in w. Since the terms that a r e  not analy- 
tic in LJ appear only in the higher-order derivatives 
with respect to w, it follows that dCcd(0)/dh= 0. Bear- 
ing these properties in mind, we get for x,, 

d d do' - - - ) z ~ w =  jr*td(", o f ) i 9 = ~ ( o ~ ) - .  
(do dh 2n 

The action of the operator 8 on the Green's functions 
gab denotes differentiation (dldw -d/ldlz) of only the 
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lines that join irreducible self-energy parts in F6. 
Thus, when the operator $ i s  applied to the function 

the self-energy part 2 i s  not differentiated. 

The following formulas a re  then valid: 

where 

We note next that 

Since 

we see that Bdd i s  the only function that yields a non- 
zero result when acted upon by the operator 8 at  small  
h : 

The identity (49) thus reduces to 

where r::(w, 0) is  an antisymmetrized vertex whose a l l  
four external lines a r e  G ~ .  If the entering frequency i s  
zero, then by virtue of the antisymmetry we have 

In other words, each diagram zed corresponds to 
another diagram such that after the corresponding lines 
G4' are  differentiated their contributions cancel out if 
the entering frequency i s  equal to zero. (An example 
of two such diagrams is shown in Fig. 1.) The cause 
of this circumstance i s  that the particles have no spin 
in the model under consideration. 

We have thus proved (46). According to (38) and (45) 
this means that in the RL modelwe have C/Tx= ?/3. 
As shown in Sec. 2, this follows that the Wilson relation 
holds in the s-d modeL 

FIG. 1. 

7. CONCLUSION 

The use of the resonant- level model to study the low- 
temperature properties of a magnetic impurity in a 
metal has made i t  possible to construct a perturbation 
theory that i s  regular a t  low temperatures. In each or-  
der in U, the heat capacity is proportional to the temp- 
erature, the susceptibility i s  finite, and Wilson's re- 
lation (5) holds. The obtained behavior of the heat ca- 
pacity and of the susceptibility agrees  with Wilson's 
calculations at small J > 0. 

The resonant-level model obviates the need of the 
renormalization, proposed by Anderson, Yuval, and 
Hamann, at the point J= J,. This procedure i s  not rig- 
orous, since the Hamiltonian (1) i s  not reproduced upon 
renormalization. Therefore, when the scale T =  T, at 
which J becomes equal to J, i s  reached, the system i s  
no longer described by the Hamiltonian (3). Neglecting 
the last circumstance, the Wilson relation can be ob- 
tained by the method proposed in Ref. 4. To this end it 
i s  necessary to know the ratio of the factors g, and ge 
at  which the susceptibility i s  a universal quantity, i.e., 
a function of one argument: 

It i s  seen even from the ser ies  of the principal loga- 
rithmic terms of the expansion of the susceptibility in 
the interaction constant that the susceptibility can be 
universal only a t  gi = G. Wilson has shown by numeri- 
cal means that the susceptibility xSd(g,g) and the heat 
capacity C a re  indeed universal. This means that a t  
T= 0 the ratio C/Tx,,@,g) does not depend on J. Using 
(21), we write this ratio in the form 

and subject it to renormalization. When the scale r= T, 

a t  which (1 - 2n'b(~,))~ = $ i s  reached, the heat capacity 
C and the susceptibility xSd(g, 0) can be easily calcula- 
ted: they coincide at this point with corresponding val- 
ues of the R L  model a t  U= 0. Their ratio i s  therefore 
equal to n2~/3(gp)."' Substituting this value in (56), we 
obtain Wilson's relation. 

We note that the susceptibility xSd(g, 0) is not a uni - 
versa1 quantity and therefore i ts  ratio to the heat capac- 
ity depends on J: 

if J is small, this ratio i s  close to 2n2/3. However, if 
we calculate it at J= J,, the answer is half as much. 
This i s  apparently the cause of the erroneous opinionc6' 
that the theory of Anderson, Yuval, and Hamman yields 
r2/3  for the ratio ( g C c ) 2 ~ / ~ ~ , d .  

Relation (5) was obtained phenomenologically by 
Nozieres , [I4] who combined Wilson's qualitative re  - 
sults with Fermi-liquid considerations. In addition, 
~amada[l ' ]  obtained this relation in a study of pertur- 
bation theory in Anderson's model in the limit of large 
Coulomb repulsion, which corresponds to J - 0. 
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In our study of the thermodynamics of the s -d model Fourier transform is 
we did not consider the potential scattering of the elec- 
trons by the impurities. It can be shown that allowance F(0)  

G-u(o)= i+i/,(l$(o) . 
for this interaction does not alter the result of (5). 
We note that there a re  grounds for assuming that the The solution of (A.6) yields 
result remains in force also i f  the magnetic field dif- (2'-t') (t-2) *In 

fers from zero. q r ( ~ ,  x' ;  t ,  t l )=GA(z-2 ' )  (2-t') (t-2') 1 ' 

In conclusion, th? authors thank A. I. Larkin and 
D. E. Khmel'nitskii for useful discussions of the re - 
sults. 

APPENDIX 

We consider the perturbation-theory in V for the 
partition function of the RL model: 

where 

(A.2) 
The operators d' and d change H -  to  H' in succession 
and vice versa. The local-level potential acting on the 
fermions then changes instantaneously from - ~ / 2  to 
+ ~ / 2 .  A similar situation ar ises  in the s-d model 
when the partition function is expanded in powers of 
J,, where Anderson and ~ u v a l ~ ~ ]  used a method used to 
determine the singularities in the absorption (or emis- 
sion) spectrum of an x-ray photon in a metal.c161 Using 
this method, let us find the correlator that determines 
the second order of the expansion of Z,, in terms of 
v : 

We note that Nozieres and De ~ o m i n i c i s ~ ' ~ '  calculated 
analogous quantities for the case when the localized 
potential was switched on (or off) in the interval (t,tl). 
The function F, differs from these quantities in that 
here we consider the case of switching a localized po- 
tential. 

Following Ref. 16, we represent F, in the form 

F2(t-2') =-iL(tf- t )  exp [C(t-tr)+ihd(t-t') 1. (A.4) 

Here eC is the contribution from the closed loops, and 

L(t'- t )-  l imvA(2,2';  t ,  t ' ) ,  
4' 

(A.5) 
"-.I 

where cp,(x,xf; f , t f )  is the Green's function of a fermion 
located in a potential XU in the interval (t', t ) ,  and in a 
potential - U / 2  at all  other instants of time. The func- 
tion p, satisfies the Dyson equation 

rp,(z, 2'; t, t ' )  -G-v,(z-z') +U ( h+ - :)[G-( u,, z - z " ) ~ ~ ( z " , z ;  t ,  t ' )  dz". 

(A.6) 
where G,l,2 is the Green's function of the fermions s i t -  
uated in the field of the static potential -U /2. Its 

where 

We thus obtain a t  A = $ 

The quantity C can be obtained from the function cp: 

ac( t - t ' )  
I 

-=- u J lirn q A ( z ,  z';,  t, ti)&. 
ab ,=-=' 

(A.10) 

Taking (A.8) into account, we get 

As a result we get for the function F ,  

Just a s  in the derivation of formulas (10) and (11) for 
the s-d model,c8*91 formula (A.12) is generalized in 
the next higher orders of perturbation theory in V at 
T # 0 a s  follows : 

The partition function of the RL model is therefore 
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