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The potential relief of the semiconductor-insulator interface, due to the inhomogeneity of the charge in 
the insulator, is investigated in MIS structures. Assuming no correlation between the positions of the 
charged centers and taking into account charge-density fluctuations of all scales, the mean squared 
fluctuations of the surface potential are determined as functions of the character of the location of the 
built-in charge in the interior of the insulator and of the electron density. The effective density of the 
surface electronic states due to the potential fluctuations is obtained, as well as the temperature 
dependence of the surface conductivity of the MIS structure. 

PACS numbers: 73.40.Qv, 73.20. -r, 73.25. +i 

In the overwhelming majority of cases, the thres- 
hold voltages of the characteristics of MIS (metal- 
insulator-semiconductor) structures and of devices 
on their basis a r e  shifted a s  a result of the presence 
of a certain fixed charge in the insulator layer. This 
'built-in" charge causes a corresponding bending of 
the bands in the surface region of the semiconductor 
in the absence of an external bias. I ts  magnitude i s  
characterized by the so- called flat-band voltage, i.e., 
the voltage that must be applied to the metallic elec- 
trode of the structure to compensate for the action of 
the built-in charge on the semiconductor. I t  i s  clear 
beforehand that the density of the built-in charge is not 
uniform over the area  of the MIS structure. One of the 
causes of the inhomogeneity is the imperfection of the 
methods used to prepare the MIS structure. However, 
even at  the most perfect technology, there remain stat- 
istical fluctuations due to the discrete character of the 
elementary charge. The inhomogeneity of the built-in 
charge, causing corresponding fluctuations of the sur- 
face potential of the semiconductor, can lead generally 
speaking to much more  substantial changes of the 
capacitive and current characteristics of the MIS struc- 
tures than a simple additive shift along the voltage 
axis. In fact, consider by way of example an MIS 
structure a t  T = 0, in which the average surface pot- 
ential corresponds to depletion of the majority ca r r i e r s  
from the surface layer (see Fig. 1). The Fermi  level 
on the surface l ies in this case much lower than the 
average position of the bottom of the conduction band. 
In the homogeneous case the surface concentration of 
the ca r r i e r s  at  such a bending of the bands would be 
zero. However, because of the inhomogeneity of the 
built-in charge, the position of the edge of the band 
fluctuates, and the bands cross  the Fe rmi  level in 
individual sections of the surface. In these sections, a 
certain electronic charge is accumulated, s o  that the 

average electron density becomes finite. I t  is clear 
that with increasing bending of the bands the fluctua- 
tion amplitude needed fo r  the formation of the electron 
"drop" decreases, the probability of such a crossing 
increases, and the average electron density increases. 
The actual situation is somewhat more  complicated, 
since the amplitude of the fluctuations is, on account 
of screening, itself dependent on the electron density, 
whose value must be determined in self-consistent 
fashion. The electrons, which accumulate in the min- 
ima of the potential relief, partially screen the semi- 
conductor volume, and this decreases the total-voltage 
fraction across  the space-charge layer, and leads 
therefore to an increase of the capacitance of the MIS 
structure,  similar  to what occurs when the surface 
states a r e  filled.c11 Thus, one of the experimental 
manifestations of the fluctuations of the built-in charge 
may be deformation of the C-V characteristics of the 
MIS structure.  

Another manifestation of the fluctuations of the built- 
in charge is a characteristic dependence of the surface 
conductivity on the temperature and on the bias voltage. 
In fact, when fluctuations a r e  present the surface 
electrons a r e  located mainly a t  minima of the surface 
relief. Therefore the flow of current in the system 
requires the surmounting of potential barr iers ,  and 

FIG. 1. 
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this leads to an activation dependence of the conductivity 
on the temperature. 

The foregoing qualitative arguments concerning the 
role of charge fluctuations a r e  similar to those used 
in Refs. 2 and 3, devoted to fluctuations in the interior 
of strongly doped semiconductors. Our problem how- 
ever, has a number of important distinguishing feat- 
ures. First ,  in contrast to the three-dimensional case, 
the mean squared fluctuation of the potential does not 
become infinite even in the absence of electrons. This 
circumstance is brought about by the screening of the 
fluctuations of the built-in charge by a charge of opp- 
osite sign induced in the metallic electrode of the MIS 
structure. This screens effectively the fluctuations 
with scales exceeding the insulator thickness, and the 
main contribution to the mean squared potential fluct- 
uation is made by charge inhomogeneities of smaller 
scale. Other differences a re  due to the quasi-two-dim- 
ensional nature of our system. 

The effect of random inhomogeneities of the built-in 
charge on the physical characteristics of MIS were con- 
sidered also earlier.c65@s*1 There, however, the 
analysis was restricted to large-scale fluctuations with 
dimensions greatly exceeding the characteristic lengths 
of the problem [the thickness of the insulator and the 
semiconductor space- charge regions (SCR)], and left 
in fact unanswered the main question, the connection 
between the parameters of the fluctuation relief of the 
surface potential and the value of the 'built-in charge" 
and the character of i t s  disposition in the interior of 
the insulator. This is in fact the subject of the present 
paper. 

A unique feature in our case is some distance between 
the 'built-in" charge and the semiconductor-insulator 
interface whose potential relief we a r e  investigating. 
The situation is made complicated by the fact that we 
have no advance data on the distribution of the built-in 
charge over the insulator thickness since the exper- 
imentally observed quantity--the flat-band voltage VF 
-is only integrally connected with the density of the 
built-in charge even in the simplest case when its den- 
sity does not depend on the transverse coordinates: 

where x and d a r e  the dielectric constant and the thick- 
ness of the insulator. We consider therefore two hypo- 
thetical limiting situations: uniform distribution of the 
average density of the charged centers over the insul- 
ator thickness, and the case when the charged centers 
a r e  concentrated in a plane a t  some distance A <d from 
the interface. If it turns out that the behavior of the 
experimentally observed quantities differ sufficiently 
in these cases, then the obtained regularities can turn 
out to be useful for the explanation of the true position 
of the built-in charge in real MIS structures. 

Another feature of the considered MIS structure is 
that by varying the voltage on i ts  field electrode i t  is 
possible to vary in a wide range the concentration of 
the mobile carr iers  on the interface. It is therefore 
a l l  the more important to ascertain how the fluctuation 

relief varies a s  the carr iers  accumulate in the inver- 
sion layer, and also how the fluctuations affect the 
shape of the volt-capacitance characteristics of the 
structure. Naturally, we shall also investigate the 
dependences of the system conductivity on the temper- 
ature and on the voltage across the structure. 

FORMULATION OF PROBLEM 

Consider an MIS structure to whose field electrode 
is applied a depleting voltage V relative to the super- 
conducting substrate (for the sake of argument, p-type) 
occupying the half-space z < 0.  The arrangement of the 
charge centers in a plane parallel to the interface corr- 
esponds to a density 

where r is the two-dimensional radius vector in the 
interface plane, and a *  ( r )  and o-(r) a r e  random func- 
tions. Assuming the location of the impurity centers 
t d b e  uncorrelated, we have 

where ( o )  is the average charge density and u=(u+) 
+ (6) is the total density of charged centers of both 
polarities. 

The surface potential of the MIS structure is deter- 
mined by the combined action of the built-in charge, 
the inversion-layer charge, the charges induced on the 
metallic electrode, and the ionized acceptors in the 
depleted region of the substrate. Of importance to us 
is that this dependence is nonlocal," and we can 
write for the surface potential an integral equation, 
using the Green's function of the corresponding electro- 
static problem. The Green's function satisfying the 
boundary conditions on the electrode and on the space- 
charge region boundary of the semiconductor, with 
account taken of the difference between the dielectric 
constants of the substrate material and the insulator, is 
quite complicated and unwieldy, but if the doping of the 
substrate is not strong, s o  that the specific capacitance 
of the insulator greatly exceeds the capacitance of the 
space-charge region (or, in other words, the space- 
charge region is much thicker than the insulator, the 
inhomogeneity of the thickness of the depletion region 
can be neglected. Then 

where eu[cp] is the charge of the inversion layer, the 
dimension of which in the z direction we neglect. The 
last  term in the curly bracket in (3) takes into account 
the charge induced on the electrode. We note that no 
allowance is made here for the possible enrichment of 
the surface by majority carr iers ,  a procedure justified 
under the condition ( P )' >> ( 6V2) which we shall here- 
after assume to be satisfied. In writing down (3) we 
have also assumed for simplicity that the dielectric 
constants of the insulator and semiconductor a re  equal. 
It will be shown below that this simplification does not 
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influence the gist of the results. The electron density 
contained in (3) has an essentially nonlinear depend- 
ence on the surface potential and increases strongly 
when the potential approaches (6, - p) /e ,  where c, 
is the width of the forbidden band and p is the Fermi 
level in the interior of the semiconductor. 

We consider case a situation when the influence of 
the inversion-layer charge on the surface-potential 
relief can be neglected. This situation corresponds to 
small values of the bias V on the structure. The corr- 
esponding inequality will be given below. For this 
case, putting u,=O in (3), we easily obtain with the 
aid of (1) and (2) the mean squared fluctuation of the 
surface potential: 

e2 
<6v2) - 2z07J r d r [  ( r ' + ~ ~ ) - ~ -  (r2+ (2d-I.)')-*I2 

x -  " 

As seen from this expression, in an MIS structure, 
unlike in three-dimensional systems, the mean squared 
fluctuation of the potential remains finite even i f  there 
a r e  no electrons a t  all. This is due to the screening of 
the large-scale fluctuations by the charges induced on 
the field electrode of the structure. We note also that 
the amplitude of the fluctuations of the surface potential 
diverges logarithmically when the charged centers 
a r e  located directly on the interface with the semicon- 
ductor. 

ELECTRON SCREENING OF SURFACE-POTENTIAL 
FLUCTUATIONS. SURFACE STATES 

With increasing voltage applied to the structure, the 
electron concentration in the inversion layer increases. 
The electrons, now located a t  the minima of the pot- 
ential relief, screen the fluctuations of the surface 
potential. With increasing electron density, the scale 
of the screened field of the fluctuations of the built-in 
charge decreases continuously. In fact, consider the 
inhomogeneities of the built-in charge with some def- 
inite scale R, and let  the characteristic fluctuations of 
the charge density in these fluctuations be of the order 
of U " ~ / R .  If the average electron density a, exceeds 
this value, a negligible spatial redistribution of the 
electrons suffices to compensate for this inhomogeneity 
of the built-in charge. For fluctuations having a scale 
R << a ll2/oe all  the electrons a r e  at the minima of the 
potential, and the electron charge density i s  much less  
than the excess charge of the fluctuations. The potent- 
ial of such small-scale fluctuations is therefore in fact 
unscreened. Consequently, a t  a given average electron 
density a,, when calculating the amplitude of the pot- 
ential fluctuations, i t  i s  necessary to take into account 
only the fluctuations of the built-in charge with scale 
less than o lI2/ue, i.e., substitute this quantity a s  the 
upper limit of integration in (4), which additively takes 
into account the contributions of fluctuations of all  
scales.2) It turns out that a t  low concentrations 
oe << a1I2/d the presence of the electrons has practically 
no effect on the amplitude of the potential fluctuations, 
and this amplitude is given a s  before by expression (4). 
This result should have been expected, for a t  such low 

concentrations the electrons smooth out the inhomogen- 
eities of a built-in charge with a scale greatly exceed- 
ing the thickness of the insulator, and even without this 
smoothing the inhomogeneities a re  well screened by the 
charges induced on the electrode. If the inverse ineq- 
uality holds, we have 

i.e., the square of the amplitude of the fluctuations of 
the potential decreases logarithmically with increasing 
average concentration of the electrons. 

At small X, however, i t  must be recognized that the 
energy of the electron differs, on account of the quantum 
correction necessitated by the localization of i t s  trans- 
verse motion, from the potential energy at the interface 
and consequently does not become infinite a s  X - 0 .  We 
estimate a typical value of the distance z,  of the elec- 
tron from the surface by minimizing the expression for 
the total energy of the electron: 

where the role of potential energy is now taken by the 
dependence of the average depth of the fluctuation min- 
imum on the distance into the interior of the semicon- 
ductor. We obtain z, = (a2/o)1'4 a t  X << ( U ~ / U ) ' / ~ ,  where 
a =B2x/me2 is the Bohr radius, and 2,s (aX/o lr2)lI3 if 
the inverse condition is  satisfied. In the latter case the 
localization energy can be disregarded. At small A,  
the average depth of the minimum of the electron 
energy i s  equal to 

To find the conduction activation energy, a s  well a s  
the connection between the average electron concentra- 
tion and the average surface potential, we must deter- 
mine the dependence of the position of the Fermi level 
on the surface on the average surface concentration of 
the electrons. We consider to this end the spatial dis- 
tribution of the electrons in fluctuations with critical 
radius R,=U lh/ae and introduce in succession, just a s  
in Refs. 3 and 7, fluctuations of scale that decreases 
continuously compared with R,, assuming that the 
charged-center concentration is a>>a-'. Since the ex- 
cess charge concentration for fluctuations of scale 
R <<R, is a 1 I 2 / ~  >> oe, the electrons will occupy only a 
small fraction of "bins" of this dimension, in which 
the potential is successively decreased by the fluct- 
uations of all  scales larger than R. This "crumbling" 
process is limited by quantum effects, namely by the 
circumstance that a t  sufficiently small fluctuations the 
number of quantum levels in the corresponding potent- 
ial  well i s  of the order of the excess charge in it. From 
this condition we get the limiting dimension of the elec- 
tron "drops", by equating the number of states RZkk, 
to the excess charge Ralr2 ,  and the Fermi energy 

t i  e' -- -- Ro" 
oHln"- 

3112 x 

to the characteristic value of the potential energy of the 
electron in the fluctuation with dimension R We obtain 
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R =  a. We have assumed here a two-dimensional state 
density, since a t  x < (a2/o)1/4 the "quantum" of energy of 
transverse motion turns out to be of the order of the 
depth of the well. In this case, a potential minimum of 
critical radius R, contains on the average R,/a electron 
drops distributed with a density ~ , ( u a ~ ) - ' ~ ~ ,  while each 
drop contains aulf2>> 1 electrons. With increasing 
electron density, the concentration of the drops increas- 
es while the number of electrons in each drop re- 
mains the same. Nor does the position of the Fermi 
level change relative to the bottom of the potential 
minima: 

~ z ~ - ' e ' a ~ l n " ~ ( a ' a ) ' .  

At ue << u112/s this energy is small compared with the 
total depth of the potential we11 (A2<< (6cp2)), and the 
Fermi energy should be of the order of the mean 
squared amplitude of the fluctuations, i.e., 

where y is a coefficient of the order of unity. There- 
fore equating the position of the Fermi level in the 
semiconductor volume and on the surface, we obtain 
the average bending of the bands ( cp), corresponding 
to a definite value of the average electron concentra- 
tion a, 

e' 0% 
(9) = ep-1-1 -O"x In* - 

x a.a" ' 

If the distance from the built-in charge and the inter- 
face exceeds the Bohr radius, X >> a ,  a condition cor- 
responding to (9) yields a drop dimension R =  A and a 
Fermi energy 

Then 

At the same time, formulas (10) and (12) yield the 
average electron charge on the surface a s  a function 
of the average band bending. Its value greatly exceeds 
the charge of the inversion layer in a homogeneous MIS 
structure a t  the same value of the surface potential. 
The additional voltage drop on the insulator, due to this 
charge, deforms the C-V characteristics of the MIS 
structure compared with the ideal ones, precisely in 
the same manner a s  on account of the surface states 
in the forbidden band of a semiconductor. It is quite 
probable that in some energy band the surface-state 
density N,, determined from C-V measurements is 
governed precisely by these fluctuations of ,the surface 
potential. The state density corresponding to the 
fluctuations is obtained by differentiating ue from (10) 
and (12) with respect to energy. At X >>a we obtain 

do. a'" 2e Nss(E)=-=-- E' 
dE, A y'ez6cpo' 

where 6cpi = 2 r n ~ e ~ / ~ ~ ,  and c is the energy reckoned 
from the conduction band into the interior of the for- 
bidden band. At h <<a i t  is necessary to replace A in 
(13) by (a?' /~) ' /~.  Attention is called to the fact that acc- 
ording to (13) N,,  has a maximum q y  = X  /Xe2 a t  
c =ye(6~; /2 ) ' /~ ,  and this corresponds to a total concen- 
tration U , = U ~ ~ ~ / X ,  when the critical radius R, becomes 
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of the order of the drop dimension X and the drops 
begin to merge with one another. In this region, the 
fluctuation amplitude depends so  strongly on the elec- 
tron density that the derivative 2 ~ , / ~ ( 6 c p ~ ) ~ / ~  decreases 
with decreasing (6cp2). It must be noted, however, that 
one can speak with full certainty of a maximum of N, 
only if X >> a,  for when X <<a the energy of the maximum 
of N, is of the same order as our uncertainty in the 
determination of the Fermi level A. 

Expression (13) for the effective density of the sur- 
face states due to the fluctuations is valid only near the 
conduction band, when c2<e26cp; ln(d/X), and a, > u  lf2/d, 
i.e., if the fluctuation amplitude depends substantially 
on the electron density. At lower electron concentra- 
tion, as we already know, the amplitude of the fluct- 
uations is practically independent of ue and the elec- 
trons a re  located only in surface sections that a re  
quite far from one another and in which the depth of 
the potential minima greatly exceeds the average 
depth. Let, for  example, in some such section the 
potential ecp produced by the impurities turn out to be 
less  than the Fermi level. Inasmuch as at low elec- 
tron concentration the characteristic length over which 
the potential varies is equal to the insulator thickness, 
the area of this section is of the order d2. Consequent- 
ly, to raise here the potential to the Fermi level it is 
necessary to have a compensating electron charge 
e'2?Ld(e6q+E, - (E,)). In our proDlem (ua2 >> I ) ,  the 
fluctuation potential is due mainly to Gaussian impurity- 
charge fluctuations that contain many particles. The 
potential distribution function is therefore also Gauss- 
ian, with a variance (6@), determined by expression 
(4). The average electron concentration is then 

Differentiating with respect to E, and again putting 
(I32 - E, = c , we obtain 

N~~ = 4 - ( ~ { 2 }  e-d (69')" ' 

where O is the e r r o r  function. The region of validity 
of this expression is c2 << (6q2), 

Figure 2 (curve 1) shows in units of x/e2d and 
e2ulf2Ix the energy dependence of the effective state 
density N, ,, corresponding to localization of the 
built-in charge in a plane X = 0.ld. By way of estimate 
we put3' u =  1012 ~ m ' ~ ,  d = cm, y = 1, and?L=8; 
the characteristic energy is then e 2 u 1 1 2 / ~  =2X lo-' eV 
and N:: = 2 x1013 ~ m ' ~  eT1 .  

We turn now to the investigation of a situation when 

FIG. 2. 
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the built-in charge is "smeared" out in the interior of 
the insulator. At a low electron concentration 
ue < ullz/d the mean squared fluctuation of the potential 
can be easily obtained by averaging (4) over X: 

If the concentration of the electrons is high, and we 
calculate the mean squared fluctuation of a surface 
potential with critical scale R, smaller than the insul- 
ator thickness d,  we must, limiting in (4) the region 
of integration with respect to Y, res t r ic t  to the 
same value R, also the region of averaging over 
X(O < h YR,), since the contribution made to the surface 
potential by the small- scale charge fluctuations located 
farther than R, from the interface a re  effectively aver- 
aged out. The dependence of the mean squared ampli- 
tude of the potential on the fluctuation radius turns out 
then to be the same a s  in the three-dimensional case: 

where u/d is the exchange density of the charged cen- 
ters.  We obtain the critical radius by equating the 
electron charge ~$2: to the excess charge ud-l~:)'k 
in the volume R:, whence R, = u/du;and 

Thus, for a "smeared" built-in charge the amplitude 
of the fluctuations decreases at ue > ul/z/d in inverse 
proportion to ue, a s  against the logarithmic depend- 
ence in the case of a charge localized in a plane. Jus t  
a s  before, to determine the position of the Fermi level 
we consider in succession fluctuations with ever increas- 
ing scale compared with R,. The dimension of the 
electron drops, in which the number of quantum lev- 
e ls  i s  of the order of the excess charge, turns out to 
be of the order of the Bohr radius a ,  and the corres- 
ponding Fermi energy is (e2/ x )(ua/d)l 12 = cO(~a3/d) ' l2.  
These estimates a r e  valid when the drop contains many 
levels, i.e., when the condition (u/d)d>> 1 is satis- 
fied, a condition that cannot be regarded a s  realistic 
enough in the case, e.g., of Si-SiO, structures. In the 
opposite case, the "crumbling" procedure must be 
stopped with the dimension (u/d)-'I2, which corres- 
ponds to the average distance between the charged 
centers. In this case the electrons that screen the 
potential of a fluctuation of critical radius R, will 
individually be located on the interface near certain 
positive centers, in whose vicinity the potential 
energy i s  successively decreased by fluctuations with 
scales R, >R > (u/d)-'I3. 

Since such a center i s  located on the average at a 
distance (d/u)'I3 >> a away from the boundary, the quan- 
tum correction to the electron energy is small compar- 
ed with the Coulomb correction, and the Fermi level 
can be regarded a s  passing directly over the bottom of 
the well. Consequently (Ec ) -E ,  = y ( 6 ~ q l / ~ a t  a given 

a,, where (6V2) is determined by expression (18). Diff- 
erentiating ue from (18) with respect to energy, we ob- 
tain the effective state density 

This formula i s  valid a t  E <e2o ' l2 /x  . It is clear that 
a t  high energies N , , ( c )  is determined by formula (15) 
with variance (16). The form of N, ,  (c) for a "smeared" 
built-in cnsrge is shown in Fig. 2 (curve 2). 

It remains for us only to consider the situation that 
a r i ses  at low density of the built-in charge ua2 << 1, 
concentrated in a plane close to the interface, X << a 
(we put henceforth X=O). We note first  that if the 
condition ua2 << 1 is satisfied the wave functions of the 
bound states, which undoubtedly exist on positive cen- 
t e r s ,  do not overlap in practice, and their binding 
energy c0(c0=e2/8 X. a in the simplest case without 
allowance for the anisotropy of the effective mass) 
greatly exceeds the characteristic energy of the fluct- 
uations. It is these states which a r e  f i rs t  filled with 
electrons a s  the voltage on the structure increases. 

The small-scale fluctuations, i.e., the presence of 
another center (positive o r  negative) near the consid- 
ered positive center, a t  a distance R much less  than 
the average u - ' /~  but larger than a ,  leads to a shift of 
the binding energy by an  amount *e2/x R. At low elec- 
tron density, 0, <<@, the states filled a r e  those with 
energy lowered because of the proximity to the other 
positive center. The probability of an approach that 
ensures an energy shift c - co =e2/xR i s  given by 

e' de 
(a+) kxR dR= (o+)'n -- - -- Nss ( e )  de. 

x' ( E - E ~ ) '  

At a given value of the Fermi  level, al l  the states with 
lower energy will be filled. Therefore, integrating (2) 
up to E, =c6 - p - e ( v ) ,  we obtain the electron con- 
centration corresponding to the given value of the aver- 
age surface potential (CP ): 

Expressions (20) and (21) a re  valid a t  ue <<a*, while 
E, - p -e(cp) - c, >>e2u1I2/ 7L , i.e., for deep fluctua- 
tions that can be regarded, with enough justification, a s  
paired. The multi-electron character of the problem 
prevents us from tracing the state density in the immed- 
iate vicinity of the level E,. At u - U, <<a*, however, 
we can in exactly the same way find the shape of the 
oppositely located "trail" due to the interaction with 
the close repelling centers: 

It is clear that the integral number of states in this 
peak is equal to a*. We note that in the considered two- 
dimensional system, owing to the high probability of 
the mutual approach of neighboring atoms, the fluct- 
uation broadening of the bound state whose wings a re  
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described by (20) and (22) turns out to be larger than 
in three-dimensional systems.c31 We note also that 
the depth of the level co need not necessarily be deter- 
mined by a hydrogenlike expression, i.e., the level 
itself may, fo r  a variety of reasons, be also "deep", 
but our expressions (20) and (22) for the state-density 
"tails" due to the Coulomb interaction of the neighbor- 
ing atoms will remain in force. 

After the bound states on the positive centers a r e  
filled, further increase of the electron density takes 
place against the background of the potential relief 
produced exclusively by negatively charged repelling 
centers. The minima of the potential energy corres- 
pond then to rarefactions in the spatial distribution of 
the repelling centers. To obtain the measured fluct- 
uation of the potential in this case, i t  is necessary to 
replace in expression (5) o by o- and X by (a-)-'I2, 
since shorter-wave components of (4) correspond to 
the square of the potential of an individual atom and not 
to potential-relief fluctuations due to fluctuations in 
the relative positions of the atoms. Then 

e2 o- 
<6q2>=2n -a- h-, 

x2 a. 

and 

These expressions a re  valid if oe << a-, for when ue - o- 
the actual scale R, of the fluctuations is of the order of 
the average distance between the repelling centers. 
For  such non-Gaussian fluctuations that contain on the 
average one center , the employed concept of nonlinear 
screening and the corresponding expression for R, 
= d./'/o,, becomes meaningless. Expression (23) is 
incorrect also deep enough in the forbidden band a t  

but is less  than c, .  It is necessary here to use formula 
(17) with the corresponding value of the mean squared 
fluctuation of the potential. It must be emphasized that 
the main singularity of the considered situation with 
X = 0 and oa2 << 1 is the peak of the density in the depth 
of the band, a peak due to the bound state so. 

Let us summarize briefly our results. The main con- 
clusion of our investigation is that the fluctuation relief 
of the surface potential in MIS structure is essentially 
small-scale. In fact, i t s  mean squared amplitude is 
close to the potential of an individual impurity over a 
length corresponding to the average distance between 
the impurity atoms, and depends very weakly (logari- 
thmically) on the fluctuation scale. This behavior is 
due to the two-dimensional character of our system, 
where the mean squared fluctuations of the charge 
increase with the fluctuation scale more slowly than in 
the three-dimensional case. Therefore the mean squared 
fluctuation of the potential responds weakly to the 
character of the distribution of the built-in charge in 
the interior of the insulator and is practically indep- 

endent of the electron density all the way to the limit- 
ing concentratims that correspond (at small a) to an 
electron for each impurity atom. Since fluctuations of 
such small scale a re  not Gaussian, our expressions, 
obtained by starting with the "large scale" premises, 
a r e  not valid for this region. Where our results a re  
correct enough, i.e., a t  small oe, the amplitude of the 
fluctuations varies exceedingly weakly. The only ex- 
ception is the case when X >> a and oX2 >> 1, when the po- 
tential of fluctuations with R <A increases steeply with 
the radius, the quantum effects a re  small, and the 
actual fluctuations with R - A  contain a sufficiently large 
number of particles. It is only here that i t  is possible 
to trace correctly the dependence of (6q2) on the elec- 
tron density in almost the entire range of variation of 
the fluctuation amplitude with change of the electron 
concentration. 

SURFACE CONDUCTIVITY 

The conductivity of ca r r i e r s  situated in a random 
potential field has been sufficiently well investigatedc7] 
and i t  is not particularly difficult to apply these res- 
ults to our case. It is known that the conductivity is 
determined by two competing mechanisms-activation 
hopping of the electrons from one minimum of the pot- 
ential to another, and tunneling of the ca r r i e r s  between 
these minima. In the former case the electron should 
acquire from the thermostat (the crystal lattice) an 
additional energy E ,  - E, -(6q2)1/2, where E ,  is the 
"percolation level"-the average energy of the saddle 
points that separate the minima of the potential; there- 
fore the probability of such a process is proportional to 
e~p{-(6q')'/~T] (here T is the temperature in energy 
units). The tunneling probability depends substantially 
also on the scale of the potential relief exp{-Z'R, 
x (m2(6@2)1/4. Comparing the argument of the expon- 
ential, we estimate the temperature a t  which the trans- 
ition from the activation conductivity to the tunneling 
conductivity takes place: 

for a built-in charge localized in the plane X,  and 

for the case of a "smeared" charge. At T >  To the sur- 
face conductivity is of the activation type with a char- 
acteristic energy of order (6@)'/2, and a t  lower tem- 
peratures the conductivity is of the tunnel type. Howev- 
e r ,  even a t  T < To  the conductivity can depend exponen- 
tially on the temperature, but with a much lower activ- 
ation energy. The point is that when the conditions 
oa2>> 1 and uX2>> 1 a r e  satisfied the electrons, as we 
have seen, a r e  localized in the form of "quantum 
drops" in minima with scale R,. In these drops the 
distance between levels, near the Fermi  level, is of 
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the order of 

for example, for the case X>>a. Recognizing that the 
energy position of the bottom of these drops is random, 
we can conclude that the energy shift between the upp- 
e r  occupied level in one of the drops and a lower free 
level in another drop belonging to another R, minimum 
is of the order A'. Therefore a t  T <A1 the tunnel con- 
ductivity i s  proportional to expi-A'/T]. At very low 
temperatures, however, it may turn out that i t  is 
easier for the electron to tunnel through a distance 
somewhat larger than between nearest drops of neigh- 
boring R, minimum, and find thereby a drop with a 
more suitable energy of the lower free level. The 
increase of the tunneling path R decreases the trans- 
ition probability by a factor e ~ ~ { - f i - ~ ~ ( r n ~ ( 6 @ ~ ) ) " ~ } .  On 
the other hand, the electron can reach in this case 
n =R'/R,x drops and choose from among them the drop 
with a smallest energy difference on the order of 
A1/n. By determining the maximum of the expression 

we obtain a conductivity with a temperature dependence 

exp{- (T. /T)  '"1, (27) 

which is sometimes called, just a s  the exd-Tc/T)'l4} 
dependence, Mott' s law. Here 

this temperature decreases with increasing electron 
density. The region of applicability of this expression 
is 

It must be stated that by now there a re  in the literature 
several reports of experimental observation of a sur- 
face-conductivity temperature dependence similar to 
(17) (see e.g., Ref. 8). The surface conductivity i s  
measured on MIS-structure transistors a t  low voltages 
between the source and the drain. Under such a quasi- 
equilibrium situation the chemical potential in the 
bulk of the semiconductor is practically the same as 
on the surface. In MIS devices of the SCR type one 
encounters also another situation, wherein nonequil- 
ibrium surface charge with some initial distribution 
flows down either under another electrode with a large 
potential, or  into the drain junction. The macroscopic 
tangential surface electric field due to the electrostat- 
ic-repulsion forces is then given by E =grad 
(4ne -'doe}. The surface conductivity by which the 
electric field must be multiplied to obtain the current 
is either proportional to a, if ue exceeds the integral 
surface-state density oo due to the fluctuations (in the 

situations considered by us a,- {o, U ' / ~ / A ,  ( ~ / d ) ~ / ' ,  
~ / ( o a ~ ) ~ / ~ ) ,  o r  is proportional to the quantity 

a t  oe<oo, when the fluctuations a re  not screens. The 
current is then substituted in the continuity equation. 
It turns out that the final charge-flow stage a, <a, is 
described by a linear diffusion equation with an effect- 
ive diffusion coefficient 

Here D is the ordinary diffusion coefficient. At a known 
electrode geometry we can easily calculate the losses 
due to the fact that the charge does not manage to flow 
from under one electrode to another during the timing 
pulse, and by measuring these losses at various tem- 
peratures and frequency, we can determine the char- 
acteristic amplitude of the fluctuations and the integral 
density of states due to the fluctuations. 

The authors a r e  indebted to the participants of the 
seminar of the theoretical division of the Physicotech- 
nical Institute of the USSR Academy of Sciences, 
particularly to B. I. Shklovskii and A. L. Efros, for a 
useful discussion. 

')The customarily employed local relation between the surface 
potential and the charge density, in terms of the specific 
capacitances, is valid only when the characteristic dimen- 
sion of the inhomogeneities is much larger than the thick- 
nesses of the dielectric and of the space-charge region. 

2 ) ~ h e  arguments used by us concerning the character of the 
nonlinear ebctronic screening were first advanced by Shk- 
lovskir and ~ f r o s [ ~ *  31 as  applied to three-dimensional sys- 
tems. 

3 ) ~ s  we have seen, the main contribution to the amplitude of 
the potential fluctuations is  made by small-scale fluctuations 
of the built-in charge with dimension smaller than d .  Anal- 
ysis shows that for such small-scale fluctuations allowance 
for the difference between the dielectric constants of the 
semiconductor and of the insulator makes it  necessary to 
assume x in all expression to be equal to the effective dielec- 
tric constant (x1+x2)/2. 
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