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The forces produced by conduction electrons in metals located in external fields are considered by a 
unified approach. The body forces which the electron exert on the lattice as a whole, and the electron 
"wind" forces acting on the defects, are found. Criteria are obtained which can be used to assess the 
relative magnitude of the forces created by electrons in metals. The causes of the discrepancies of the 
results of previous researches are found. 

PACS numbers: 71.90. +q 

If a metal  is located in  external field-electric o r  
magnetic-under the action of mechanical  stresses, 
then various types of f o r c e s  arise in i t ,  due to the fact  
that t h e  conduction e lec t rons  t r a n s f e r  to the  lattice the 
action of the external f ie lds  and s t r a i n s  that they ex- 
perience. T h e s e  f o r c e s  can  be  divided into two essen-  
tially different groups;  body forces ,  which a c t  on the 
lattice as a whole, and forces  that ac t  on the lattice 
defects - t h e  "electron wind" forces.  T h e  forces of 

the f i r s t  group are important in the phenomena of in- 
teraction of a c u r r e n t  with elastic and  plast ic  defor- 
mations. The  forces  of the second group produce 
motion of the defects  in the lattice: electron t r a n s f e r ,  
attraction of ions by electrons,  accelerat ion of dislo- 
cations by electrons,  and s o  on. 

A significant number of works  have been devoted to 
the analysis  of body  force^[^-^^ a n d  electron wind 
 force^['^-'^^; however, the situation at the presen t  t ime  
i s  unsatisfactory i n  two respects .  F i r s t ,  the express -  

ions  f o r  the body forces ,  obtained in previous re- 
s e a r c h e ~ , ~ ~ - ~ '  differ significantly among themse lves  (a  
c r i t i ca l  ana lys i s  of s o m e  of these  r e s e a r c h e s  i s  con- 
tained in Ref. 81, but even the express ions  f o r  the  body 
f o r c e s  obtained in the la tes t ,  m o s t  complete re- 
s e a r c h e ~ [ ~ * ~ ~  d o  not reduce to one another. Second, there  
is a n  essent ial  difference in  the  methods of calculation 
of body f o r c e s  and electron wind forces.  T h e  methods 
used f o r  the calculation of the f o r c e s  i n  t h e  volurne1517*81 
cannot be used for  obtaining the  f o r c e s  acting on the  
defects.  Thus  t h e r e  is no s ingle  approach to the f o r c e  
problem. T h e  a i m  of the p resen t  work i s  to  consider  
the  f o r c e s  c rea ted  by e lec t rons  in  m e t a l s  within the 
f ramework  of common approach. T h e  derivat ion of 
the body f o r c e s  and the  e lec t ron  wind f o r c e s  based on 
the u s e  of quantum equations of motion of the electrons,  
wri t ten down i n  the f o r m  of Newton7 s equations (the 
quantum theorems  of Ehrenfest  f o r  motion of e lec t rons  
in  a periodic  f ie ld of the la t t ice  and f o r  the  electron-  
quasipart ic le  i n  field external  relat ive t o  the periodic 
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potential, i.e., in the fields of the defects and external 
forces). This approach i s  based on Refs. 14 and 18. 
Such an analysis enables us to establish the reasons 
for the divergence of the previous  paper^[^*^] on bo* 
forces. 

pendent Schrminger equation for the electron in a 
periodic potential of the lattice in the presence of ex- 
ternal fields. 

In addition, the motion of the electron i s  determined 
by the Ehrenfest equation for  the electron-quasiparticle: 

<hk)=(F). (6) We first  consider the body forces. As has been 
pointed out, the results of the last two researches 
devoted to body have an essential difference. 
According to these works, the body forces exerted by 
the electrons on the metallic lattice can be written 
down in the following form: 

k i s  the wave vector of the electron, and (F) a re  forces 
external relative to the periodic potential of the lattice. 
The external fields a re ,  a s  a rule, quasiclassical and 
change slowly over distances of the order of the elec- 
tron wavelength, It i s  impossible to say this for fields 
produced by lattice defects, but Eq. (6) is  valid also 
for motion of the electron in the fields of the.impuri- 
ties.[l8] 

Here, according to Kontorovich, From Eqs. (4) and ( 6 ) ,  we find the force acting from 
the lattice on the electron: 

<F,.)=(~)-(AL).  (7) -=- ad:' ax, ax, a l Aikf (k) d ~ k ,  

whereas Pekar and ~ s e k v a v a , ~ ~ '  Thus, since in the general case p #I&, the forces of 
interaction of the electrons with an ideal lattice exist 
in the presence of external fields. The need for 
accounting for  these forces in the kinetic analysis was 
f i r s t  shown in Ref. 8, where these forces wer'e obtained . 

in the scalar effective mass  approximation. Here m, and e a r e  the actual mass  and charge of the 
electron, j is the current density, H i s  the intensity 
of the magnetic field, f(k) i s  the nonequilibrium dis- 
tribution function of the electrons, A,, i s  the Akhiezer 
tensor. no] 

The physical nature of these forces i s  connected with 
the difference between the conduction electrons (quasi- 
particles) and free electrons. In the presence of ex- 
ternal forces, the electron does not interact on the 
average with the ideal lattice (( fi )= 0 and (Fd= 0). 
The electron described by Bloch wave function is, on 
the average, not accelerated by the periodic field of 
the lattice. In external fields, the electron no longer 
has a Bloch wave function, becomes coupled with the 
lattice, and forces appear which a r e  exerted by the 
lattice on the electron and by the electron on the lattice. 
In the quasiclassical approximation, i t  is not difficult 
to find these forces for electrons with an arbitrary 
dispersion law. In this approximation, Eq. (4) i s  of 
the form 

It has been shown in Ref. 9 that, in the free electron 
approximation, A,,= - mouiv,, i.e., 

but for arbitrary dispersion law of the electrons, (2) 
and (3) do not agree with one another, since A,, * , 

# m&,u, inthegeneral case. Since a very specialdis- 
persion law was chosen in Ref. 8 (the approximation 
of a scalar effective mass),  we can then assume that 
the difference in the results of this research and that 
of ~ o n t o r o v i c h ~ ~ ~  i s  associated with the approximate 
character of the dispersion law in Ref. 8. Therefore, 
i n  considering the forces acting on the lattice in what 
follows, we reject the limitation on the dependence of 
the energy of the electron on the quasimomentum. r: i s  the energy of the electron a s  a function of k. It 

follows from (8) ,with account of (9) that (i = x ,  y , z )  
1. LATTICE DRAG BY THE CONDUCTION ELECTRONS 

1. The motion of the electron inan ideal lattice in the 
presence of external fields can, a s  i s  well known, be 
described by the Ehrenfest equation: 

(p>=(F)+(Fpe), (4) 
We get from (10) 

f i =  m,ir i s  the electron momentum operator, m, i s  the 
actual mass of the electron, v is  the electron velocity 
operator, (F,) is  the force acting on the electron 
from the periodic potential of the lattice - V,: 

The force acting from the electron on the lattice, 
F ~ ~ ' = - F ~ ~ ) .  Summing over all the conduction elec- 
trons, we find the total force 

(F) a re  the external forces. The brackets mean aver- 
aging over the exact wave functions of the electron, 
which a re  determined by the solution of the time de- 

f(k) i s  the distribution of the electrons over the external 
fields. 
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The force F:.' is a "collisionfree" force, acting on 
an ideal lattice, regardless of whether electron scat- 
tering takes place in the lattice. In the effective-mass 
approximation, it follows from (12) that 

2, The electrons accelerated by the fields a r e  
scattered in the lattice. The momenta transferred to 
the lattice by the electrons in the scattering processes 
create the "collisionJ' force. An electron that goes over 
in the scattering process from the state 1 k) to !k t )  
transfers to the lattice as a whole, a momentum 
Apkk, equal to the difference of the average momenta 
in the initial and final states of the electron:r18' 

The resulting momentum transferred to  the lattice from 
the entire electron subsystem per unit time i s  equal to 
the force F,,I"l: 

(af/at),,, L the total collision integral from all the 
electron scattering processes in the lattice. The colli- 
sion integral i s  determined by the kinetic equation 

f (r , ,  r, t) i s  the nonequilibrium electron distribution 
function, which depends on E, r, t ;  F i s  the external 
force acting on the electron, u,, i s  the deformation 
tensor. 

If the metal i s  located in electric and magnetic fields, 
the external force acting on the electron i s  equal to 

E and H a r e  the electric and magnetic field intensities. 

Substituting (15) in (14) and (16) in (15), we find 

where j is the current density; the term 

does not make a contribution to the force, since the 
integral - of v(af,,/ae) A,, is equal to zero. Integrating by 
parts in the secoxd term,- and GkGgitTnto account that 

we write down (17) in the following form: 

here 

is the reciprocal-effective-mass tensor. 
Summing (12) and (19), we obtain 

(20) 
Since 

(n i s  the electron density in the conduction band of the 
metal), we have 

At the same time, a force Z,eNE "' is exerted by the 
external field on the ion core of the lattice, where 
Z,eN i s  the ionic charge density of the lattice. The 
condition of electric neutrality 

i s  satisfied in the metal with high accuracy. The total 
force acting on the lattice is 

This expression i s  in complete accord with Eq. (3). 

The expression (19) does not contain forces due to the 
inertia of the electrons in the lattice experiencing 
acceleration. The acceleration of the lattice 2, makes 
a contribution to the force equal to mfiu,. This is 
equivalentto replacement in the equation of motion 
F, = pE, of the density of the lattice p, by p= p,, where 
p, is the density of the metal. The corresponding 
correction i s  S 10'. 

Thus the difference in the results of Pekar and 
TsekvavaC8] and ~ o n t o r o v i c h ~ ~ ~  is not connected with 
the scalar effective mass  approximation in Ref. 8, 
but it holds true also for an arbitrary dispersion law, 
i.e., it has a fundamental character. We shall show 
that the difference i s  due to the fact that the forces of 
dragging of the lattice by the electrons given in Ref. 8 
do not include the interactions of the electrons with the 
lattice deformations. When the lattice is deformed, : 

the electron energy in the lattice changes and becomes 

a function of the lattice deformation r, r: (k, r ,u,J, 
where u,, is the deformation tensor. The dependence 
of the energy of the electrons on the deformation i s  
the reason for the appearance of the deformation 
force. [L5."121 

We now consider the change in the energy of the elec- 
tron upon homogeneous (quasi-homogeneous) deforma- 
tion of the lattice, due to the change in the selfconsis- 
tent potential of the lattice V,,, by an amount 6V,,, = 
L,,u,,. Here the energy of the electron changes by an 
amount[20' 

where L,,(k) i s  a symmetric tensor of second rank, 
dependent on the quasi-momentum k; L ,, = L,,. 

The microscopic theory of the tensor L,, i s  contained 
in Ref. 19. Since the tensor L,, determines the change 
in the self-consistent potential V,,, it differs from the 
tensor A,,, and in the free-electron approximation it 
is of course equal to zero. I£ the change in the energy 
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of the electron,due to the deformations, i s  of the form 
(25), then, according to Skobov and KanerL7' the force 
F,, corresponds to such an energy change: 

We note that the connection between the electron de- 
formation force F ,  and the mechanical s t r ess  in the 
lattice can be found in the following way. The elastic 
energy of the lattice, without account of the non- 
equilibrium electron subsystem, is  equal to 

1 9 el =I du - (p , l iz+o!~)~u, , ) ;  
2 (27) 

u i s  the displacement vector, a,, is  the tensor of the 
external mechanical stresses. The conduction electrons 
change the density of the elastic energy by an amount 

6~;~'' =utkJ Ldaf (k)dtk .  (28) 

The integral L , , f d ~ ,  i s  equivalent to the additional 
electromechanical s t ress  of the lattice u k ) :  

The body force due to the s t ress  a,, is  equal to 

Taking into account the force F,,, we write down the 
total force acting on the lattice in the form 

(31) 
This expression agrees with the result of ~ o n t o r v i c h [ ~ ~  
if 

.\,L=~,4,-m,,~,o,. (32) 

According to Ref. 20, the relation (32) i s  satisfied; thus 
the results of the given research a re  in agreement with 
the results of Kontorovich, and the reason for the 
difference in his results from the results of Pekar and 
~ s e k v a v a ~ ~ ~  i s  the absence in the latter of the defor- 
mation force (26). Thus, the result of Ref. 8 is  shown 
to be incomplete, since it does not contain the force 
of coupling of the electrons with the lattice upon defor- 
mation of the periodic potential. Along with this, the 
author uses the same kinetic approach to the calculation 
of the forces, a s  in Ref. 8, assuming it  to be more 
general, and agrees with the fact that the force should 
be calculated before the thermodynamic function (see 
Ref. 8, footnote 2). The derivation of Eq. (3 1) was 
connected with the detailed account of the forces acting 
on the electrons and the lattice, in particular with 
explicit account of the internal forces (12) acting be- 
tween the electrons and the periodic potential of the 
lattice. We shall show that the final result can be ob- 
tained in another way, without detailed account of all 
the forces. 

We introduce the mean momentum2' of the conduction 
electrons per unit volume, P,: 

The momentum density of the lattice P,, i s  equal to 

u i s  the displacement vector. We consider the physi- 
cally small volume V and write dawn the equation of 
motion of this volume: 

S(V) i s  the surface bounding the volume V. The integral 
over the surface S(V) i s  equal to the change in the mean 
momentum in the volume due to the flux of electrons 
across  the surface S(V); C F ,  is the sum of the exter- 
nal forces acting on the volume V. 

Since the metal i s  electrically neutral, the sum of the 
electromagnetic forces  i s  equal to c'l j x H. To these - -  
forces we must add the mechanical f o r c e s -  

$ oc*f&. 

Thus, 

Transforming the surface integrals to volume integrals 
and taking (33) and (36) into account, we obtain the 
equation of motion of the lattice in the form 

By considering (30), we obtain 

i.e., Eq. (31). 

The tensor L, ,  for the free electrons is equal to zero, 
i.e., in this approximation, the deformation force (26) 
i s  equal to zero and the expressions (2) and (3) a re  
identical. This i s  natural, since the interaction be- 
tween the electrons and the field of the lattice dis- 
appears in this approximation. We note that although 
the integrals (3) and (26) have the same structure and 
can be combined into one, a s  i s  seen from the consider- 
ation of the undeformed lattice, they correspond to 
forces which have a different physical nature. The in- 
tegral (3) corresponds to a force connected with the 
transfer of a mean momentum mov, while the force 
(26) i s  connected only with the deformation of the 
periodic potential of the lattice. 

The total force exerted by the conduction electrons 
on the lattice consists of three basic terms, each 
having a different physical character. We denote them 
by Fj, F ., and %and estimate the relation of these 
forces, setting j=  joeiwt, where w i s  the frequency of 
the external field: 

I F,IFlr ! =o/o-. (39) 

where w,=e~/m,c  i s  the cyclotron frequency of the 
electrons in the metal. Sometimes the force 
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i s  omitted in the expressions for the total force. As 
follows from (39), this happens only when w << o,. 

For the estimate of the force F,, it is necessary to 
know the gradient of the nonequilibrium distribution 
function. When the gradient 8f1/8x, is determined by . 

the diffuse scattering of the electrons at the surface of 
the metal, [I4' then 8fl/8x,-f,/l( l is the free path length 
of the electrons in the metal). In this case 

emo F/ -- 
CT 

(i.-jo), 

where 7 is the relaxation time of the electrons in the 
metal, f, is the current at the surface of the metal, 
f, i s  the current in the interior, c i s  the coefficient of 
specular reflection of electrons from the surf ace. 
Then 

FJFl-wre. (40) 

If the distribution function i s  deformed by the sound 
wave, then 8fl/8x - f1/k and 

where X i s  the wavelength of the sound, V, i s  the Fermi 
velocity of the electron 

2. ELECTRON WIND FORCES ACTING ON THE 
TAfTICTDEFECTS 

The scattering of the conduction electrons by the 
lattice defects-impurities or diffusing atoms (ions, 
dislocations and so  on-produces the electron wind 
forces, which generate motion of the defects. These 
forces can also be found from the equations of motion 
of the electrons. The motion of the electron-quasipart- 
icle in the field of the impurity center i s  described by 
an equation similar to the Ehrenfest equation[201: 

Vi(r - R,) is the potential of interaction of the electron 
with the defect, r and Ri a re  the coordinates of the 
electron and the defect. Here the potential of the 
lattice is absent, but the mean momentum rng is re- 
placed by the quasimomentum &. The Eq. (42) enables 
us to separate the interaction of the electron with the 
impurity center from its interaction with the periodic 
potential of the lattice. The electron-quasiparticle in 
Eq. (42) i s  "free" from interaction with the lattice. By 
averaging the value of the force (42) over all the free 
electrons we can find the total force acting on the de- 
fect. Direct calculation of the average value ( 8Vi/ 
aR,) turns out to be complicated It is simpler to com- 
pute the change in the quasimomentum Mr. In the tran- 
sition of the electron from the state lk) to Ikl), the 
momentum transferred by the electron to the scattering 
center is equal to (with reverse sign) the change in the 
quasimomentum of the e l e ~ t r o n ~ ~ ~ * ~ ~ ~  

b, is the reciprocal lattice vector. We note that the 
change in the average momentum of the electron in the 
scattering, m,(v, - v,,),, is not equal to the momentum 

Ap,,. transferred to the defect by the electron. 

The expression (43) for the transferred momentum is 
rigorous for the free ion, not connected with the lat- 
tice. This approximation is well satsfied for a dif- 
fusing ion, which completes the "jump" from one equil- 
ibrium position to another, i.e., in processes of elec- 
tron transfer and other phenomena connected with 
motion of the defects in the lattice.[I4' The normal ion 
connected with the lattice cannot always be regarded as 
free in the process of scattering of the electron by it. 
Considering the heavy ion as  a classical particle, we 
can neglect its coupling with the lattice if the average 
energy transferred to the ion by the scattered electron 
6,, is significantly greater than the change in the poten- 
tial energy of the ion hi during the time of scattering 
rei - sec, i.e., 

7 ,  is the period of oscillation of the ion in the lattice. 
This criterion is satisfied in metals as a rule.3) 

Summing the change in the momentum transferred to 
the scattering center per unit time, we obtain the elec- 
tron wind force 

1 
F .. -- - N,, $ \x I ( k  - k' - ?nbg) w k f  ( k )  [I - f ( k t ) ]  dr.dr.., (45) 

kk ba 

where wig, i s  the probability of scattering of the elec- 
tron from stat: k into kt in one second with transfer of 
momentum Ap,';, to the defect, f(k) i s  the nonequilib- 
rium distribution function of the electrons, and N * is 
the concentration of defects. 

Summation over the reciprocal lattice vector b, is 
connected with the fact that from the viewpoint of 
momentum transfer the scattering of the electron in 
the transition I k )  - I kl) i s  a multi-valued process, in 
which momenta wp$ are  transferred with different 
probability w:;. We write 

where f,(k) is the nonequilibrium addition to the equilib- 
rium distribution function f,(k). 

In the linear approximation of fl(k), the expression 
for Fei can be transformed into the following form: 

If we neglect the umklapp processes, i. e., if we assume 
that w z  = 0 if be# 0, then it is not difficult to transform 
(45) to the form 

where (~f/at):~, i s  the collision integral, which i s  con- 
nected with the scattering of the electrons by defects: 

For specific Fermi surfaces (electron and hole) in the 
relaxation time approximation, the well-known ex- 
pression for the electron (hole) wind force acting on 
the impurity center is obtained from (48) (Ref.14): 
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n,(nd is the concentration of electrons (holes), I (I,) 
and 6,,(6,,) a r e  the free path lengths and the scattering 
cross  sections of the electrons (holes) by the impurity 
center. 

The dependence of the electron wind force on the 
geometry of the Fermi  surface can be represented 
graphically if we limit ourselves to weak scattering of 
electrons at small angles. Then, in the quasiclassical 
approximation, the momentum transferred by the elec- 
tron to the defect can be written down in the following 
form: 

where 

i s  the effective mass tensor. Using (52), we write 
out the expression for the electron wind force in the 
following form 

This expression graphically illustrates the dependence 
of the force F,, on the curvature of the Fermi surface: 
the portions of the Fermi  surface with positive curva- 
ture (electron) and the portions with negative curvature 
(hole) make contributions of opposing sign to the elec- 
tron wind force. Using the effective mass approxima- 
tion, we establish the connection between the electron 
wind forces and the forces acting on the lattice. We 
note that the electrons-quasiparticles, in processes of 
collision with defects, do not interact with the lattice, 
which follows directly from (42); therefore, using the 
relation (43) and summing the transferred momentum 
from all the_ electrons, we obtain the total electron 
wind force Fei acting on all  the defects and equal to 
the "collision" force acting on the lattice. 

In the effective mass approximation, this force is 
equal to 

Substituting (15) in (54), we write down 

We now find the "collisionless" force of interaction of 
the electrons with the lattice. It follows from (4) in the 
effective mass approximation that 

F, is the force acting from the lattice on the electron. 
Using (56), we write down the force acting from the 
electron on the lattice in the following form: 

j(k) is  the current generated by the electron located in 
the state k. 

Summing over all the electrons, we write the total 

expression for the "collisionless" force in the form 

Summing (55) and (58), we obtain the total force acting 
from the electrons on the lattice: 

Summing (59) and the force acting on the ion "frame" 
of the lattice Z,eNE and taking into account the con- 
dition of electrical neutrality, we find the total force 
in the form 

This expression differs from (3) by the substitution of 
m* for m ,  and i s  in agreement with (2) if A,,= m *v,v,. 

We now show that this relation for A,, is satisfied in 
the effective mass approximation. The lattice deforma- 
tion leads to the result that the electron goes from the 
state with wave vector k to the state k' with a different 
energy c(kl). The change in energy brought about by 
the deformation can be written in the form 

p is  the quasimomentum, 6p i s  the change in the 
quasimomentum due to the deformation and is equal 
toC211 

p,'=pa-u,rpr (62) 

Substituting (63) in (61), we write 

We note that when the "collision" force (54) i s  calcula- 
ted from Eq. (42), then we do not have to introduce the 
deformation force (26), since the interaction with the 
lattice is  already taken into account in Eq. (54) by the 
replacement of the mean momentum by the quasi- 
momentum. The term 

has the physical meaning of the diffusion of the quasi- 
momentum and, in accord with (65) and (32), also 
contains the interaction of the electrons with the lattice 
and the diffusion transfer of the mean momentum. 

The author thanks I. M. Lifshitz, S. I. Pekar, 
M. I. Kaganov, L. P. ~ i t a e v s k i r  and M. A. Krivoglaz 
for useful discussions and criticism of the research. 

I)We have omitted the force connected with external mechanical 
deformations, -uik. 

'We recall that an electron in the periodic field of the lattice 
does not have a definite value of the real momentum, but 
its average momentum is a definite quantity. 

"The author thanks I. M.  Lifshitz who called his attention to 
the criterion of the "quasi-free" ion in the lattice. 
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Phonon-mediated exchange interaction of impurity centers in 
crystals 

M. F. Deigen, N. I. Kashirina, and L. A. Suslin 
Semiconductor Institute, Ukrainian Academy of Sciences 
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The interaction of impurity centers via the phonon field in ionic and atomic crystals is calculated with 
account taken of the permutation symmetry. The latter leads to the appearance of exchange terms in the 
effective-interaction operator. Estimates show that the proposed interaction is comparable in order of 
magnitude with the Coulomb exchange. 

PACS numbers: 61.70.Rj, 63.20.Mt 

1. Consider exchange interaction of two impurity The second-order perturbation-theory correction to 
centers via the crystal-lattice oscillations. The coup- the system energy can be represented in the form 
ling of the centers with the lattice is effected by the 
usual electron-phonon interaction.'' The dependence ~e*=(irtl,?)-'(DH*D,~), (2) 
of the energy of the indirect interaction on the spin 

where 
operator is the result of allowance for the permutation 
symmetry. It is assumed for simplicity that the im- D,, - '(~~-E~)-~(il~ll)(ll~,lj). 
purity centers have spin-$. 

(3) 
I 

The initial Harniltonian is of the form The upper sign in (2) pertains to the singlet state, and 
the lower to the triplet state. 

I^I--fIo+H,, (1) 
Denoting the difference A&+ - A& - by 24,,,, we 

where & includes the Hamiltonian of the individual can write, accurate to terms eel: (see, e.g., Ref. 2) 
centers and of the phonon system, while fi, is the op- that part of (2) which depends on the total spin of the 
erator of the interaction of the f irst  and second centers system, in the form 
with the lattice vibration-the perturbation operator. - 
The orthonormalized zeroth-approximation wave H,~,,~ = - ~ J + , , ~ s , s ~ ,  Jw, =D2,-21t2D,t. (4) 

functions are chosen in the form 
Here i, and 8, are respectively the operators of the 

[2(l*It2)l-5(]i)*lj)), Ii)=a(l)b(Z)lO), Ij)=a(Z)b(l)lO>, electron spins of the f irst  and second centers. The 
indirect-exchange operator (4) is outwardly similar 

where a(1) and b(2) are the wave functions of the im- to the Heisenberg Coulomb-exchange operator. Of 
purity centers, (0> is the wave function of the ground course, these interactions are quite different in 
state of the phonon system, and I, is the overlap in- character. Since the electron-phonon interactions with 
tegral. the acoustic and optical lattice vibrations are different, 
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