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The forces produced by conduction electrons in metals located in external fields are considered by a
unified approach. The body forces which the electron exert on the lattice as a whole, and the electron
“wind” forces acting on the defects, are found. Criteria are obtained which can be used to assess the
relative magnitude of the forces created by electrons in metals. The causes of the discrepancies of the

results of previous researches are found.

PACS numbers: 71.90.+q

If a metal is located in external field—electric or
magnetic—under the action of mechanical stresses,
then various types of forces arise in it, due to the fact
that the conduction electrons transfer to the lattice the
action of the external fields and strains that they ex-
perience. These forces can be divided into two essen-
tially different groups; body forces, which act on the
lattice as a whole, and forces that act on the lattice
defects — the “electron wind” forces. The forces of
the first group are important in the phenomena of in-
teraction of a current with elastic and plastic defor-
mations. The forces of the second group produce
motion of the defects in the lattice: electron transfer,
attraction of ions by electrons, acceleration of dislo-
cations by electrons, and so on.

A significant number of works have been devoted to
the analysis of body forces!®! and electron wind
forcest°1”; however, the situation at the present time
is unsatlsfactory in two respects. First, the express-
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ions for the body forces, obtained in previous re-
searches,™ differ significantly among themselves (a
critical analysis of some of these researches is con-
tained in Ref. 8), but even the expressions for the body
forces obtained in the latest, most complete re-
searches®?) do not reduce to one another. Second, there
is an essential difference in the methods of calculation
of body forces and electron wind forces. The methods
used for the calculation of the forces in the volume!s: %8?
cannot be used for obtaining the forces acting on the
defects. Thus there is no single approach to the force
problem. The aim of the present work is to consider
the forces created by electrons in metals within the
framework of common approach. The derivation of

the body forces and the electron wind forces based on
the use of quantum equations of motion of the electrons,
written down in the form of Newton’ s equations (the
quantum theorems of Ehrenfest for motion of electrons
in a periodic field of the lattice and for the electron-
quasiparticle in field external relative to the periodic
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potential, i.e., in the fields of the defects and external
forces). This approach is based on Refs. 14 and 18.
Such an analysis enables us to establish the reasons
for the divergence of the previous papers® ! on body
forces.

We first consider the body forces. As has been
pointed out, the results of the last two researches
devoted to body forces!® ! have an essential difference.
According to these works, the body forces exerted by
the electrons on the metallic lattice can be written
down in the following form:

i)
FO=_ """ 4+ " [j + —_—.
. 7 + IJXH]P 9z, (1)

Here, according to Kontorovich, (¥
g
oz,

whereas Pekar and Tsekvava,(®

ad
- .( Anf (K) d1a, (2)

P

0z,

- EZ- [ mvant () d. ®)

Here m, and e are the actual mass and charge of the
electron, j is the current density, H is the intensity
of the magnetic field, f(k) is the nonequilibrium dis-
tribution function of the electrons, A, is the Akhiezer
tensor, 110}

It has been shown in Ref. 9 that, in the free electron
approximation, A;,= -mu,v,, i.e.,

O /0 zampl /02,

but for arbitrary dispersion law of the electrons, (2)
and (3) do not agree with one another, since A;,# .

# mg v, inthegeneral case. Since a very specialdis-
persion law was chosen in Ref. 8 (the approximation
of a scalar effective mass), we can then assume that
the difference in the results of this research and that
of Kontorovich!®! is associated with the approximate
character of the dispersion law in Ref. 8. Therefore,
in considering the forces acting on the lattice in what
follows, we reject the limitation on the dependence of
the energy of the electron on the quasimomentum.

1. LATTICE DRAG BY THE CONDUCTION ELECTRONS

1. The motion of the electron inan ideal lattice in the
presence of external fields can, as is well known, be
described by the Ehrenfest equation:

Ppr=CF>+<F}., _ (4)
p=myD is the electron momentum operator, m, is the
actual mass of the electron, v is the electron velocity

operator, (F,,) is the force acting on the electron
from the periodic potential of the lattice - V.

(Fp.>==(aV,/or>, (5)
(F) are the external forces. The brackets mean aver-

aging over the exact wave functions of the electron,
which are determined by the solution of the time de-
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pendent Schrddinger equation for the electron in a
periodic potential of the lattice in the presence of ex-
ternal fields.

In addition, the motion of the electron is determined
by the Ehrenfest equationfor the electron-quasiparticle:

ChKY=CF>. (6)

k is the wave vector of the electron, and (F) are forces
external relative to the periodic potential of the lattice.
The external fields are, as a rule,quasiclassical and
change slowly over distances of the order of the elec-
tron wavelength. It is impossible to say this for fields
produced by lattice defects, but Eq. (6) is valid also
for motion of the electron in the fields of the impuri-
ties.[18)

From Egs. (4) and (6), we find the force acting from
the lattice on the electron:

(Fyo> =(p>—<AKD. )]

Thus, since in the general case p #7k, the forces of
interaction of the electrons with an ideal lattice exist

in the presence of external fields. The need for
accounting for these forces in the kinetic analysis was
first shown in Ref. 8, where these forces were obtained .
in the scalar effective mass approximation.

The physical nature of these forces is connected with
the difference between the conduction electrons (quasi-
particles) and free electrons. In the presence of ex-
ternal forces, the electron does not interact on the
average with the ideal lattice (( p )=0 and (F,,)=0).
The electron described by Bloch wave function is, on
the average, not accelerated by the periodic field of
the lattice. In external fields, the electron no longer
has a Bloch wave function, becomes coupled with the
lattice, and forces appear which are exerted by the
lattice on the electron and by the electron on the lattice.
In the quasiclassical approximation, it is not difficult
to find these forces for electrons with an arbitrary
dispersion law. In this approximation, Eq. (4) is of
the form

modv/dt=F ,+F, (8)
v=h-1Ve (k); )

= is the energy of the electron as a function of k. It
follows from (8),with account of (9) that (i=x, y, 2)

dv'? { . m, 0%
=Fy)+F=— ), 10
Mg T W ok ok (10)
We get from (10)
G Mo 0% .
) =— Fo _Fo, (11)
Fy h ok.ok,

The force acting from the electron on the lattice,

Fi’=_F/. Summing over all the conduction elec-
trons, we find the total force

i ; . d%
Py =Y Fo= {1 { w I
! - !f( N n: okok,

F(:)} dug (12)

f(k) is the distribution of the electrons over the external
fields.
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The force FJ is a “collisionfree” force, acting on
an ideal lattice, regardless of whether electron scat-
tering takes place in the lattice. In the effective-mass
approximation, it follows from (12) that

F3 =—(m/m"—1)F, ' (13)

2. The electrons accelerated by the fields are
scattered in the lattice. The momenta transferred to
the lattice by the electrons in the scattering processes
create the “collision” force. An electron that goes over
in the scattering process from the state |k) to |k’)
transfers to the lattice as a whole, a momentum
Apy,. equal to the difference of the average momenta
in the initial and final states of the electron;{®!

Apurr=m,h~ (Ve (k) ~ Ve (K')).

The resulting momentum transferred to the lattice from
the entire electron subsystem per unit time is equal to
the force F, ,1%;

E = ;(f mev (-gti)wldn; (14)

(8f/8t) . is the total collision integral from all the

electron scattering processes in the lattice. The colli- -

sion integral is determined by the kinetic equation

oy _o9 F O A 15
(az)wl at 3 IARAMEAS FELLEE (15)
f(é, r,t) is the nonequilibriﬁm electron distribution
function, which depends on €, r, ¢; F is the external

force acting on the electron, u,, is the deformation
tensor.

If the metal is located in electric and magnetic fields,
the external force acting on the electron is equal to

F=eE+c'[vXH]; (16)
E and H are the electric and magnetic field intensities.
Substituting (15) in (14) and (16) in (15), we find

m, 9j*9

PO _ 22

F /]
e ot mom(—;‘— fo) dn-—-a—h! movyfdrs, )

where j is the current density; the term
a
a—ejA(ldu

does not make a contribution to the force, since the
integral of v(afo/ar) Ay, is equal to zero. Integrating by

parts in the second term, and taking it into account that

) =dj -
Z'EEF divyFa=0, (18)
we write down (17) in the following form:
‘ o 0f
AL j f(k)Z‘—F"’dt.— fmaomnalan; (19)
here
1 1 d%

ml’s‘ = ? ak‘ak.

is the reciprocal-effective-mass tensor.
Summing (12) and (19), we obtain
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FOap® +F£;= _ mo 0] +§ f(k)F“’dn—’—“f movnf (k) drx.
(20)
Since
(100 FOdsymenE®-+e- (], - (21)

(n is the electron density in the conduction band of the
metal), we have
M 3]

e

FO=-20 4, E“’+——-[iﬂ]‘ --——j’ moofKdn.  (22)
At the same time, a force Z,eNE ¥ is exerted by the
external field on the ion core of the lattice, where
ZeN is the ionic charge density of the lattice. The
condition of electric neutrality

en+Z.eN=0 23)

is satisfied in the metal with high accuracy. The total
force acting on the lattice is

F— MaﬁlT _[ij]‘-———j' mevuf (k) dry. (24)

ThlS expression is in complete accord with Eq. (3).

The expression (19) does not contain forces due to the
inertia of the electrons in the lattice experiencing
acceleration. The acceleration of the lattice #; makes
a contribution to the force equal to mnu;. This is
equivalentto replacement in the equation of motion
F,=pii, of the density of the lattice p, by p=p,, where
P, is the density of the metal. The corresponding
correction is s 10™,

Thus the difference in the results of Pekar and
Tsekvaval® and Kontorovich!®! is not connected with
the scalar effective mass approximation in Ref. 8,
but it holds true also for an arbitrary dispersion law,
i.e., it has a fundamental character. We shall show
that the difference is due to the fact that the forces of
dragging of the lattice by the electrons given in Ref. 8
do not include the interactions of the electrons with the
lattice deformations. When the lattice is deformed,
the electron energy in the lattice changes and becomes
a function of the lattice deformation s=¢ (k,r,u,,),
where u,, is the deformation tensor. The dependence
of the energy of the electrons on the deformation is
the reason for the appearance of the deformation
force. 357 12]

We now consider the change in the energy of the elec-
tron upon homogeneous (quasi-homogeneous) deforma-
tion of the lattice, due to the change in the selfconsis-
tent potential of the lattice V,,, by an amount 6V, =
Lu;,. Here the energy of the electron changes by an
amount®’

de=Liua, (25)

where L, (k) is a symmetric tensor of second rank,
dependent on the quasi-momentum k; L, =L,,.

The microscopic theory of the tensor L, is contained
in Ref. 19. Since the tensor L, determines the change .
in the self-consistent potential V,,,, it differs from the
tensor A, and in the free-electron approximation it
is of course equal to zero. If the change in the energy
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of the electron, due to the deformations, is of the form
(25), then, according to Skobov and Kaner!” the force
F 4,4 corresponds to such an energy change:

3
For=ar Lot dr.. (26)

We note that the connection between the electron de-
formation force F4, and the mechanical stress in the
lattice can be found in the following way. The elastic
energy of the lattice, without account of the non-
equilibrium electron subsystem, is equal to

z, =I dvzi— (pui*+0i wa); 27)

u is the displacement vector, o, is the tensor of the
external mechanical stresses. The conduction electrons
‘change the density of the elastic energy by an amount

8F =ua[ Luf(k)dv. ‘ (28)
The integral [ L,,fdr, is equivalent to the additional

electromechanical stress of the lattice o¢’:
(')

= (29)

The body force due to the stress o,, is equal to A
00 (70.':0) [

def = ’E = ‘71.';" + a_I;.j‘ L-'A.f(k) d‘l’k. (30)

Taking into account the force F,,, We write down the
total force acting on the lattice in the form

F"’———ﬁ 57 30,‘:)
e Ot

1 9
— [+ —— [ (La—mww,) f(k) dry +
c EN

(31)

This expression agrees with the result of Kontorvich!®
if

\u=Lo—m.uv,. (32)
According to Ref. 20, the relation (32) is satisfied; thus
the results of the given research are in agreement with
the results of Kontorovich,  and the reason for the
difference in his results from the results of Pekar and
Tsekvaval® is the absence in the latter of the defor-
mation force (26). Thus, the result of Ref. 8 is shown
to be incomplete, since it does not contain the force
of coupling of the electrons with the lattice upon defor-
mation of the periodic potential. Along with this, the
author uses the same kinetic approach to the calculation
of the forces, as in Ref. 8, assuming it to be more
general, and agrees with the fact that the force should
be calculated before the thermodynamic function (see
Ref. 8, footnote 2). The derivation of Eq. (31) was
connected with the detailed account of the forces acting
on the electrons and the lattice, in particular with
explicit account of the internal forces (12) acting be-
tween the electrons and the periodic potential of the
lattice. We shall show that the final result can be ob-
tained in another way, without detailed account of all
the forces.

We introduce the mean momentum?’ of the conduction .

electrons per unit volume, P,:
m,
P,= [movi(k)dra=—Fj. (33)
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The momentum density of the lattice P, is equal to
P, =or; ' (34)

u is the displacement vector. We consider the physi-
cally small volume V and write down the equation of
motion of this volume:

jdV{ ap? ap‘ } (ﬁ v, v./dS.—ZF(” (35)

S(V) is the surface bounding the volume V. The integral
over the surface S(V) is equal to the change in the mean
momentum in the volume due to the flux of electrons
across the surface S(V); T F, is the sum of the exter-
nal forces acting on the volume V.

Since the metal is electrically neutral, the sum of the
electromagnetlc forces is equal to ¢™ jx H. To these

forces we must add the mechanical forces

@ 0udS,.

8(V)

Thus, )
)N =‘7 [ 14V +  audSi. (36)

8(V)
Transforming the surface integrals to volume integrals
and taking (33) and (36) into account, we obtain the
equation of motion of the lattice in the form
doa  m, 0j"

. . d
pi; = B—x, PRrTE +—_ [ixH], _-3—.;:5 mev v\ fdti. (37)

By considering (30), we obtain

a0 m,0f®

1 a
=20 _Tdl % + 2 o
pis oz, PRNFY; P [ixH], Er j (La—mevw,) f(k) dx,

(38)
i.e., Eq. (31).

The tensor L, for the free electrons is equal to zero,
i.e., in this approximation, the deformation force (26)
is equal to zero and the expressions (2) and (3) are
identical. This is natural, since the interaction be-
tween the electrons and the field of the lattice dis-
appears in this approximation. We note that although
the integrals (3) and (26) have the same structure and
can be combined into one, as is seen from the consider-
ation of the undeformed lattice, they correspond to
forces which have a different physical nature. The in-
tegral (3) corresponds to a force connected with the
transfer of a mean momentum m,v, while the force
(26) is connected only with the deformation of the
periodic potential of the lattice.

The total force exerted by the conduction electrons
on the lattice consists of three basic terms, each
having a different physical character. We denote them
by F,, F ,, and ¥, and estimate the relation of these
forces, setting j=je'**, where w is the frequency of
the external field:

|Fi{Fu!=0]o., (39)

where w_ =eH/mc is the cyclotron frequency of the
electrons in the metal. Sometimes the force

F=_m%

! e Jt
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is omitted in the expressions for the total force. As
follows from (39), this happens only when w << W,

For the estimate of the force Fj, it is necessary to
know the gradient of the nonequilibrium distribution
function. When the gradient 3f, /8x, is determined by :- .
the diffuse scattering of the electrons at the surface of
the metal, 4] then of,/8x,~f,/I(1 is the free path length
of the electrons in the metal). In this case

Fy ~22 ),
where 7 is the relaxation time of the electrons in the
metal, f, is the current at the surface of the metal,
fo is the current in the interior, ¢ is the coefficient of
specular reflection of electrons from the surface.
Then

FyJF ~ore. (40)

If the distribution function is deformed by the sound
wave, then 8f,/8x~f,/A and

Fy
— ~ @cte"t, (41)

where ) is the wavelength of the sound, V,is the Fermi
velocity of the electron.

2. ELECTRON WIND FORCES ACTING ON THE
LATTICE DEFECTS |

The scattering of the conduction electrons by the
lattice defects—impurities or diffusing atoms (ions,
dislocations and so on—produces the electron wind
forces, which generate motion of the defects. These
forces can also be found from the equations of motion
of the electrons. The motion of the electron-quasipart-
icle in the field of the impurity center is described by
an equation similar to the Ehrenfest equation!®?:

Ry =(F, >=— <19-VL(%-§-‘1-> =—(F.o= < o7 >; (42)
V(r-R,) is the potential of interaction of the electron
with the defect, r and R; are the coordinates of the
electron and the defect. Here the potential of the
lattice is absent, but the mean momentum m v is re-
placed by the quasimomentum #k. The Eq. (42) enables
us to separate the interaction of the electron with the
impurity center from its interaction with the periodic
potential of the lattice. The electron-quasiparticle in
Eq. (42) is “free” from interaction with the lattice. By
averaging the value of the force (42) over all the free
electrons we can find the total force acting on the de-
fect. Direct calculation of the average value {8V ;/
9R,) turns out to be complicated. It is simpler to com-
pute the change in the quasimomentum 7k. In the tran-
sition of the electron from the state |k)to |k’), the
momentum transferred by the electron to the scattering
center is equal to (with reverse sign) the change in the
quasimomentum of the electront!3:2°
Apyy. =h(k—k'~2nby); (43)

b, is the reciprocal lattice vector. We note that the
change in the average momentum of the electron in the
scattering, my(v, - v,.),, is not equal to the momentum
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Ap,,. transferred to the defect by the electron.

The expression (43) for the transferred momentum is
rigorous for the free ion, not connected with the lat-
tice. This approximation is well satsfied for a dif-
fusing ion, which completes the “jump” from one equil-
ibrium position toanother, i.e., in processes of elec-
tron transfer and other phenomena connected with
motion of the defects in the lattice.!'¥ The normal ion
connected with the lattice cannot always be regarded as
free in the process of scattering of the electron by it.
Considering the heavy ion as a classical particle, we
can neglect its coupling with the lattice if the average
energy transferred to the ion by the scattered electron
6, is significantly greater than the change in the poten-
tial energy of the ion 6u; during the time of scattering
7,,~107 sec, i.e.,

88, > bu~TTyi i 5 (44)

7, is the period of oscillation of the ion in the lattice.
This criterion is satisfied in metals as a rule.®’

Summing the change in the momentum transferred to
the scattering center per unit time, we obtain the elec-
tron wind force

F,; _—SSZM\ K — 2nbg) wikf (k) [1 — £ (K')] dredric, (45)

where wjg. is the probability of scattering of the elec-
tron from statga k into k’ in one second with transfer of
momentum Ap,f, to the defect, f(k) is the nonequilib-
rium distribution function of the electrons, and N* is
the concentration of defects.

Summation over the reciprocal lattice vector b, is
connected with the fact that from the viewpoint of
momentum transfer the scattering of the electron in
the transition !k)-— |k’) is a multi-valued process, in
which momenta wpw are transferred with different

probability w”. We write
1K) =fo(k) +/i (), (46)

where fl(k) is the nonequilibrium addition to the equilib-
rium distribution function £ (k).

In the linear approximation of f,(k), the expression
for F_; can be transformed into the following form:

= SSZA (k) % (k — k' — Zaby) wtﬁ.d‘rkd‘rk, .

Kk* b.|

(am)

If we neglect the umklapp processes, i.e., if weassume
that wu. =0if b,#0, then it is not dlfﬂcult to transform
(45) to the form

Fu=—3 J.h ( )coldTh

where (Bf/ﬂt)col is the collision integral, which is con-
nected with the scattering of the electrons by defects:

(Bt) .f{"’*-f(k)li~f(k>l —wisf (k) [1=f(K) )} drw.

For specific Fermi surfaces (electron and hole) in the
relaxation time approximation, the well-known ex-
pression for the electron (hole) wind force acting on
the impurity center is obtained from (48) (Ref.14):

(48)

(49)
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F.=—|e|nlo.;, (50)
Fu= I e | naliOniy (51)

n,(n, is the concentration of electrons (holes), I (I,)
and 8,,(5,,) are the free path lengths and the scattering
cross sections of the electrons (holes) by the impurity
center.

The dependence of the electron wind force on the
geometry of the Fermi surface can be represented
graphically if we limit ourselves to weak scattering of
electrons at small angles. Then, in the quasiclassical
approximation, the momentum transferred by the elec-
tron to the defect can be written down in the following
form:

d%e
ak, ok,

Aokt =h (kok) =1 ) @—v)=ma vy, (52)

where
.1 d'e \7!

Tt "?ﬂ‘(ak.ak, )
is the effective mass tensor. Using (52), we write
out the expression for the electron wind force in the
following form

o 1 A
F. =N jlmu vy (a—t)c dti.

ol

(53)

This expression graphically illustrates the dependence
of the force F,; on the curvature of the Fermi surface:
the portions of the Fermi surface with positive curva-
ture (electron) and the portions with negative curvature
(hole) make contributions of opposing sign to the elec-
tron wind force. Using the effective mass approxima-
tion, we establish the connection between the electron
wind forces and the forces acting on the lattice. We
note that the electrons-quasiparticles, in processes of
collision with defects, do not interact with the lattice,
which follows directly from (42); therefore, using the
relation (43) and summing the transferred momentum
from all the electrons, we obtain the total electron
wind force F,; acting on all the defects and equal to
the “collision” force acting on the lattice.

In the effective mass approximation, this force is
equal to

E (54)

= o[ 0f
o =Fei=— jm v (ﬂ-)mldt..
Substituting (15) in (54), we write down

o m' 01'(1')

ol e gt

+enE® +% (ixH], —a_i.[ mevons (k) dv. (55)

We now find the “collisionless” force of interaction of
the electrons with the lattice. It follows from (4) in the
effective mass approximation that
dv v

my—-=m E+Fp,, (56)
F,, is the force acting from the lattice on the electron.
Using (56), we write down the force acting from the
electron on the lattice in the following form:
M.;t_ (e‘.)=_(m"__m_)__g;j(k); (57)
j(k) is the current generated by the electron located in
the state k.

F,,=—F,=—

Summing over all the electrons, we write the total
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expression for the “collisionless” force in the form

__ (me=m) 9j
nocol” e '5{ (58)
Summing (55) and (58), we obtain the total force acting

from the electrons on the lattice:

m, a]-(i)

b, 1
" ——+enE“’+T[jXH],-—;Th-Im'uiv,f(k)dr,. (59)

F, =
P at

Summing (59) and the force acting on the ion “frame”
of the lattice Z,eNE and taking into account the con-
dition of electrical neutrality, we find the total force
in the form .

m, 9j*”

1 d
Fidm— +1_[ij]‘_.__-§ m*vv,f (k) d.
e c 0z

at 1 (60)

This expression differs from (3) by the substitution of
m* for m, and is in agreement with (2) if A, =m*v w,.

We now show that this relation for A, is satisfied in
the effective mass approximation. The lattice deforma-
tion leads to the result that the electron goes from the
state with wave vector % to the state 2’ with a different
energy £(k’). The change in energy brought about by
the deformation can be written in the form

Se (uin) = ﬁa—ﬁpi (ar); (61)
ap:

p is the quasimomentum, &p is the change in the
quasimomentum due to the deformation and is equal
t0[21]

pi'=Pi—UuhP.x (62)
or

Gpi=—ufnpu='—uinm‘b'k- (63)
Substituting (63) in (61), we write

58=.\1uum=—m'vivuum (64)
or

Ap=—m'vivs ’ (65)

We note that when the “collision” force (54) is calcula-
ted from Eq. (42), then we do not have to introduce the
deformation force (26), since the interaction with the
lattice is already taken into account in Eq. (54) by the
replacement of the mean momentum by the quasi-
momentum. The term

a
j m'u.-v,.-—f—dr.
oz,

has the physical meaning of the diffusion of the quasi-
momentum and, in accord with (65) and (32), also
contains the interaction of the electrons with the lattice
and the diffusion transfer of the mean momentum.

The author thanks I. M. Lifshitz, S. I. Pekar,
M. L. Kaganov, L. P. Pitaevskil and M. A. Krivoglaz
for useful discussions and criticism of the research.

1)We have omitted the force connected with external mechanical
deformations, —u;;.

2WWe recall that an electron in the periodic field of the lattice
does not have a definite value of the real momentum, but
its average momentum is a definite quantity.

3)The author thanks I. M. Lifshitz who called his attention to
the criterion of the “quasi-free” ion in the lattice.
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Phonon-mediated exchange interaction of impurity centers in

crystals
M. F. Deigen, N. |. Kashirina, and L. A. Suslin

Semiconductor Institute, Ukrainian Academy of Sciences
(Submitted 26 October 1977)
Zh. Eksp. Teor. Fiz. 75, 149-152 (July 1978)

The interaction of impurity centers via the phonon field in ionic and atomic crystals is calculated with
account taken of the permutation symmetry. The latter leads to the appearance of exchange terms in the
effective-interaction operator. Estimates show that the proposed interaction is comparable in order of

magnitude with the Coulomb exchange.

PACS numbers: 61.70.Rj, 63.20.Mt

1. Consider exchange interaction of two impurity
centers via the crystal-lattice oscillations. The coup-
ling of the centers with the lattice is effected by the
usual electron-phonon interaction.?’ The dependence
of the energy of the indirect interaction on the spin
operator is the result of allowance for the permutation
symmetry. It is assumed for simplicity that the im-
purity centers have spin-3.

The initial Hamiltonian is of the form
H=H,+H,, (1)

where fio includes the Hamiltonian of the individual
centers and of the phonon system, while fil is the op-
erator of the interaction of the first and second centers
with the lattice vibration—the perturbation operator.
The orthonormalized zeroth-approximation wave
functions are chosen in the form

[200=13) ]%([D%]>), |D=a(1)b(2)[0>, [j>=a(2)b(1)]0,

where a(l) and b(2) are the wave functions of the im-
purity centers, [0> is the wave function of the ground
state of the phonon system, and I, is the overlap in-
tegral.
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The second-order perturbation-theory correction to
the system energy can be represented in the form

=(1=1*)~*(DuxDy), (2)
where

D, = Z (Es—E,) ~GIH, DA, ). (3)
1

The upper sign in (2) pertains to the singlet state, and
the lower to the triplet state.

Denoting the difference Ag+ — Ae — by 2J, ,, we
can write, accurate to terms «J? (see, e.g., Ref. 2)
that part of (2) which depends on the total spin of the
system, in the form

Hoou==20,8:8:,  Jyou=D—=21°D. 4
Here §1 and §, are respectively the operators of the
electron spins of the first and second centers. The
indirect-exchange operator (4) is outwardly similar

to the Heisenberg Coulomb-exchange operator. Of
course, these interactions are quite different in
character. Since the electron-phonon interactions with
the acoustic and optical lattice vibrations are different,
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