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A new mechanism is proposed for the appearance of strongly forbidden M I-transition amplitudes and 
corrections to the g factor in a heavy atom with a single outer electron. Expressions are obtained for 
these quantities in the case of an outer s or p electron. Numerical computations are carried out for 
cesium and thallium. 

PACS numbers: 31.30. - i, 32.70. - n 

1. INTRODUCTION 

The question of the causes of the deviation of the g 
factor of an atom with one outer electron from the g 
factor of the free electron was actively discussed many 
years ago at the time of the first  measurements of the 
anomalous magneitc moment of the electron.['-31 The 
strongly forbidden M1 transitions in the heavy atoms 
have of late attracted attention in connection with the 
ongoing search for parity nonconservation in these 
atoms as a result of the weak interaction of the elec- 
tron with the n u c l e ~ s . ~ ~ " ~ ~  

The g-factor anomalies of the alkali atoms have been 
measured in a number of e ~ ~ e r i m e n t s . ~ " " ~ ~  If in the 
light atoms the corrections to the g factor is almost 
constant, in the heavy atoms it changes i ts  sign and in- 
creases rapidly with 2. Hence we can conclude that 
the corrections to the g factor in the heavy and light 
atoms are  due to different mechanisms. It is well 
known that. to explain this anomaly in the light atoms, 
it is sufficient to take only the relativistic effects into 
a c ~ o u n t . [ ' ~ * ' ~ ~  As regards the heavy atoms, however, 
it was proposed long ago that here a large contribution 
is made by the mixing of the configurations jointly with 
the spin-orbit i n t e r a c t i ~ n . ~ ' ~ ]  It was natural to assume 
that the latter effect is important for the strongly for- 
bidden M I  transitions in the heavy atoms.t5w61 Specifi- 
cally, in Refs. 5, 6, and 16, the topic of discussion is 
the corrections arising in fourth-order perturbation 
theory: second order in the Coulomb mixing of the con- 
figurations and second order in the spin-orbit inter- 
action. The corresponding quantitative computations 
were, however, not carried out. Therefore, the de- 

ations and second-order in the spin-orbit interaction. 
We compute the g factors of the 6sl12 state of cesium 
and the 6p1,, and 6p,,, states of thallium, a s  well a s  
the amplitudes of the M 1  transitions 6sl/,-7sll, in 
cesium and 6p11,- 7p1/,, 8pl/,, '3p,/, in thallium, taking 
into account, along with the configuration mixing, the 
normal relativistic corrections. We do not consider 
the corrections due to the hyperfine interaction, since 
their computation is trivial and, besides, they can be 
experimentally separated out. 

2. THE g FACTOR OF CESIUM 

To elucidate the cause of the appearance of the g-fac- 
tor anomaly of cesium, it is convenient to represent the 
correction due to configuration mixing in the following 
form: 

'l,6g=(I, J:='/r ILr+2S,-2J, I I, J,='I,)=-(I, I.='lzI L, II, J.='/r). (1) 

In the LS-coupling approximation there is in the cesium 
atom an outer 6s electron above the filled shells, i.e., 
the ground state is 2Sl/,. In order for  the matrix ele- 
ment ( L d  to be different from zero, it is necessary for 
the admixture into the 2SlI, state of states with L #0 to 
be taken into account simultaneously in the b r a  ( J ,  J, 
= $ I and in the ket (J, J,= i). It is clear that for this 
purpose it is necessary, firstly, to open the closed 
shells and, secondly, to take into account the spin- 
orbit interaction, which changes L .  In Refs. 16, 5, and 
6 it is assumed that the opening of the shells occurs on- 
ly a s  a result of the residual Coulomb interaction. It 
is from this assumption that the fourth-order perturba- 
tion theory arose. 

cisive argument in favor of this mechanism was the 
The main point of the present paper is the observa- 

fact that all the remaining attempts to explain the ob- tion that to the opening of the shells leads the off-diag- 
served effects, say in cesium, turned out to be un- onal spin-orbit interaction alone, i.e., after the switch- 
tenable. Yet when we carried out the corresponding ing on of the spin-orbit interaction, the wave function of 
computation for  cesium, we surprisingly found its  re- a closed shell is no longer an eigenfunction of the oper- 
sult to be roughly 100 times smaller than the experi- ator i with L,= 0.') But, of course, the average value 
mental result. This discrepancy for cesium is also (5p61i 1 5p6) = 0. In order for the matrix element of L ,  
noted in Neuffer and Commins's paper,c171 with which in the formula (1) to be nonzero, it is necessary that 
we became acquainted after the of the the angular momentum of the excitations of the closed 
present investigation. shells be correlated with the spin of the outer electron 

In the present paper we propose a new mechanism for into account once. Thus, the effect arises even in 
the phenomena under discussion. They can arise not third-order perturbation theory: second-order in the 
in fourth-order, but in third-order, perturbation theo- spin-orbit interaction and first-order in the Coulomb 
ry: first-order in the Coulomb mixing of the configur- interaction. 
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Thus far we have carried out the discussion in terms 
of the LS scheme, treating the spin-orbit interaction 
as  a perturbation. However, the computation looks 
significantly simpler in the jj scheme with the use of 
relativistic radial wave functions, where the effect 
formally arises in first-order perturbation theory. In 
this case in the matrix element (1) it is sufficient to 
take into account in the ket or bra the admixture by the 
exchange Coulomb interaction of the states with an ex- 
cited inner-shell electron. The corresponding correc- 
tion to the g factor is equal to 

where n, 1, j ,  and j, respectively denote the principle 
quantum number, the orbital quantum number, the to- 
tal angular momentum of the electron. The states 
InljjA lie beneath the 6s state, while the states In'lj'j,) 
lie above it (naturally, the continuous spectrum should 
be included here). 

The matrix element (n'lj 'j, I L,+ 2 ~ ,  I nljjh for n # n' 
is equal to zero if j = j', but is nonzero in first order 
in the spin-orbit interaction for jt=;=21 - j'lsl (the fact 
that it is not too much suppressed in heavy atoms was 
earlier discovered by means of a numerical computa- 
tion by Neuffer and ComminsclS1): 

where a (n'lj; nlj) is  the overlap integral of the corres- 
ponding radial wave functions. In first order in the 
spin-orbit interaction a (n'l5 nZj) s -a(n'lj; nl?). From 
this it is very easy to verify that (2) is, in fact, a 
quantity that is of second order in the spin-orbit in- 
teraction. The thus found correction to the g factor of 
the ground state of cesium is equal to 

a (nU; n'117. (4) 
nn'lj 

Here G' is  the exchange Coulomb integral. It should be 
noted_that in the formula (4) the dependence of the G' on 
j and j (i.e., on the spin-orbit interaction) is not of 
less importance than the dependence on their energy 
denominator. A numerical computation in the effective- 
potential approximation (see the Appendix) on the basis 
of the formula (4) yields 6g=3.66 X 

Let us consider the other mechanisms that contribute 
to the correction to the g factor. These are, first, 
the relativistic corrections to the magnetic-moment 
operator of the outer electron; second, the magnetic in- 
teraction of the outer electron with the inner-shell elec- 
trons; and, finally, the above-mentioned contribution, 
connected with configuration mixing, of fourth-order 
perturbation theory. The relativistic wave function of 
the outer electron has the form 

With the aid of the Dirac equation, the exact relativis- 
tic expression for the magnetic-moment operator of 
the outer electron can be reduced to a form in which 
the small corrections (-a2) are explicitly separated 

out (we set ti= c = 1): 

Here E is the energy, V ( r )  is the effective potential, 
u = (-1)*+'/2"(j + i). A numerical computation for 
cesium (x = -1) on the basis of this formula yields 
6gr, = -0.38 X 

A correction to the g factor, due to the magnetic 
interaction of the outer electron with the inner-shell 
electzons, arises in the Coulomb gauge (divA = 0) from 
the diamagnetic term e2A2/2m2c2 in the Hamiltonian. 
In the present case A = A,+ A,, where A,, A, are the 
vector potentials of the external field and the outer elec- 
tron. The corresponding correction to the magnetic 
moment can be reduced to the form 

(7) 
w , = s  Jn (TI) r?4nr? drl, W2=0,, j-4nri7 -n(rl) dr. 

0 r r1 

Here n(r1) is the core-electron density and a, is the 
Bohr radius. The matrix element in (7) is evaluated, 
using the wave functions of the outer electron. In cesi- 
um ( x  = -1) the numerical computation based on this 
formula yields 6gd,,= -0.12 X The same result 
can be obtained on the basis of the Breit Hamiltonian 
for the interaction of two electronsc201 after making the 
substitution p- p - eA/c in it. 

Besides the direct magnetic interaction, the exchange 
magnetic intereaction, as  well a s  the exchange spin- 
orbit 'interaction, contributes to the correction to the 
g factor. The computation of their contribution for 
cesium yields (Ry =me4/2B2): 

a1 
6<xch- Z G ' ( ~ S ,  nl; 68, nl)<l.iO-'. 

1 

Here the summation is performed over the closed 
subshells. Thus, as  was to be expected, the exchange 
magnetic interaction is significantly weaker than the 
direct interaction (7). 

The contribution to the g factor of the relativistic 
corrections and the direct magnetic interaction has 
been computed b e f ~ r e . ~ ~ * " l ' ~  Our numerical results 
agree with the results given in these papers. 

The estimation of the above-mentioned contribution 
of fourth-order perturbation theory in the case when 
the closed shells are opened by the Coulomb interaction 
with the outer electron shows that 6g4 5 Let us 
note that there arises in the formal computation of the 
fourth-order multipole order (it is precisely such a 
correction, with the difference between the Coulomb 
integrals for the PI/,- and p,/,-electrons neglected, 
that has been considered beforet16*5~61 "). It is clear, 
however, that this term need not be taken into account, 
since the FO integrkls they are matrix elements of the 
centrally symmetric self-consistent field, which has 
already been taken into account in the wave functions 
in the solution of the Dirac equation. It is not difficult 
to verify by means of a direct calculation that the in- 
dicated correction is already contained in the formula 
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Adding all the calculated contributions, we obtain 
6g=6ga+6g,+6g, =3.2.10-'. (8') 

Allowing for the fact that our computation of the Cou- 
lomb integrals in one and the same-for all the elec- 
trons-effective potential constitutes a very rough 
approximation, the agreement with the experimental 
value of 6g= 2.18 X (Ref. 11) i s  quite satisfactory. 

3. THE AMPLITUDE OF THE STRONGLY FORBIDDEN 
el +7s1 

The amplitude of the M1 transition 6s1/, - 7s1/,, 

M , = ( J ,  J , = ' h  1 A?, I I ,  J ,= ' / z>  . 
can be computed in exactly the same way as the cor- 
rection to the g factor.3' The contribution due to the 
mixing of the configurations is equal to (cf. (4)): 

2 1 ( 1 +  1)  G' (6s. nlj; 7.9. n'lj) + G' ( i s ,  nij; Gs, n 3 [ j )  
M a = T ~ ~ B ~  - 

nneti Enlj - En,,? 
X a (nlj; n'lj) = - 0.76 . 10-*) p, 1. . (9) 

The relativistic correction to the amplitude of the 
l(n1j) - 2(n'lj) M1 transition of the outer electron has 
the form (cf. (6)): 

where k = c ,  - E l  (tZ=c= 1). The second term in the 
curly brackets arose from the expansion of the expo- 
nential function in the photon wave function. For  the 
6slII; 7s, , transition in cesium (n = -l), Mr., = 0.010 
x 10 1 p  ( The contribution of the magnetic correc- 
tions is computed with the aid of the formula 
(7), and is equal to Ma,,= 0.03 x lom4 1 p ,  1 .  

The M,,, and M,,, estimates are  in accord with the 
results of Refs. 5, 6, 17, 21, and 22. All the remain- 
ing contributions to the M1 amplitude, as well a s  to the 
g-factor anomaly, are  small. The total amplitude is 
equal to 

(6s, j.='l11 9 , 1 7 s ,  j , = ' / , ) = ~ ~ f , + M , ~  +M,,=-0.63 10-'1 p,1; (11) 
the experimental value (see Ref. 7) of Me = -(0.424 
k 0.034) x 1 p ,  1 .  

Let us note that our calculation reproduces the ratio 
~ , / 6 g  virtually exactly. 

4. THE g FACTORS OF THE 6p1 ,, and 6p, I, STATES 
AND THE AMPLITUDES OF THE STRONGLY 
FORBIDDEN MI TRANSITIONS 6pl ,, +7p1 /,, 8pl /,, 
9p, ,, IN THALLIUM 

In thallium, for the corrections to the g factor of the 
ground state and for  the matrix elements of the M1 
transitions 6Pl12 - vzpl/,, the third-order mechanism, 
which was dominant in cesium, does not "work," since, 
as  is easy to verify, the Coulomb interaction does not 
lead to the t r an~ i t ionp ,~ , ,  lj-fill,, 1;. 

The contribution to 6g of the relativistic corrections 
to the magnetic-moment operator of the 6p1,, electron 

is computed from the formula (6) with x = 1 (the effec- 
tive potential used by us is described in the Appendix): 
6grel = -1.07 X This number coincides with the 
number obtained in Ref. 19. The computation from the 
formula (7) of the magnetic interaction of the outer 
electron with the inner-shell electrons yields bg,,, 
= -1.23 X lom4. Notice that the formula (7) does not 
agree with the analogous expression obtained in Ref. 
19. However, numerically, this discrepancy does not 
turn out to be very important. The calculation of the 
contribution of the exchange magnetic and spin-orbit 
interactions in thallium turns out to be significantly 
more tedious than the calculation in cesium. Its 
numerical value is equal to 6g,,,= 0.19 x As for 
the correction of fourth-order perturbation theory, in 
this case it turns out to be l e ss  than 2 x The 
total correction to the g factor of the 6p1/, state is 

6g=6gmk +6gd,, f 6goXc,=-2.1. lo-'. (12) 
The quantity 6g computed by us is in good agreement 
with the experimental value 6g= -2.012(18) X (Ref. 
23), and numerically close to the result of the calcula- 
tion in Ref. 19. 

The amplitude of the M I  transition 6p1/, - 7p1,, is 
also due largely to the relativistic and diamagnetic 
corrections, the contribution of which is computed 
from the formulas (6) and (7): M,,, = 0.172 X 1 p ,  1 ; 
Mafa= 0.170 x 1 pB 1; M,*= -0.18 X 1 pB I. HOW- 
ever, here an appreciable role is played by the con- 
figuration-mixing effects arising in fourth-order per- 
turbation theory, In this case the contribution of the 
6s6p1 - nsmp excitations apparently predominates. 
With allowance for the above-indicated uncertainty 
in the magnitude of the Coulomb integrals, we obtained 
for it the estimate M4= -(0.1- 0.5) x ( p, I. Thus, 
the calculated value of the transition amplitude is close 
to 

Al,=M,,  +A$k + A ~ x ~ + M , = 2 . 9 . 1 0 - ' i  bl. (13) 

This value of Me differs in sign from both the experi- 
mental value, M,= (-2.11 k0.30) x lom5 ( p ,  (,Csl and the 
earlier computed value, M,= (-3.2 * 1) x I p ,  1 .c193 

I t  is possible that the difference in sign is connected 
with the inconsistency of the definitions of the magnetic 
moment (for our definition of Me, see  the footnote, 3, 
to the formula (9)). Unfortunately, we were not able 
to establish unequivocally the sign with which Me is de- 
fined in Refs. 8 and 19. 

A similar computation for the amplitudes of the M1 
transitions 6pl12 - 8pl12, 9p1/, yields 

fiIz(6p,;+8p,1,) =1.8.IO-'l bl, M,(~P~+~P~I.)=~.~.~O-'(P~I. (14) 
As for the correction to the g factor of the 6p3,, state, 
the contribution made to it by the third-order mechan- 
ism considered in Sec. 2 is equal to 

According to the numerical computations, 6g,= 2.6 
X The relativistic and magnetic corrections are 
computed from the formulas (6) and (7) with x =  -2: 
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6gd +bg,=-0.63~10-'-0.38~10-'=-1.01~10-1. 

Generally, our calculations overestimate the Coulomb 
integrals for the electron excitations from a closed 
subshell by a factor of 1.5 - 2.5 (see the calculation 
of 6g in cesium in the present paper and the calculation 
of the hyperfine structure of thallium, lead, and bis- 
muth in Ref. 24). Therefore, the various contributions 
to 6g substantially cancel each other out. In this 
situation we can only give the estimate 

6 g a .  lo-'. (16) 

We do not know the experimental value of this quantity. 

APPENDIX 

For all the computations in cesium we used the ef- 
fective potential 

Actually, this i s  the Tietz potentialc253 truncated at 
large distances. For r< p, this potential is well ap- 
proximated by the Thomas-Fermi potential. The po- 
tential (A.1) reproduces the experimental energies and 
the fine structure of all the states (including the inner- 
shell ones) with an e r ror  not worse than a few percent. 

In thallium we used the potential proposed in Ref. 19: 

2=81, d--3.877%, q-2.5937~~-'. 

The e r ror  in the energy and fine-structure fits here is 
also not worse than a few percent. 

l'V. G. Zelevinskii has drawn our attentian to the fact that 
this circumstance leads to the appearance of a paramagnetic 
correction, - (za),[d3 to the diamagnetic susceptibility of an 
inert gas. The magnitude of this correction can easily be 
computed with the aid of the formula (3). 
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opportunity to note that an error in the preprint of his work 
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acquainted with M. and C. Bouchiat's paper.u1 

$)We define kK in inch a way that $-- IpB I ( 2 , + 2 5 ~  in the 
nonrelativistic limit. All the radial wave functions used by 
us are positive in the 7- 0 limit. 
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