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Suff~ciently strong pumping of electrons and holes by an external source can cause population inversion. 
At a nonzero dipole moment Cornspo~ding to interband transition and at coinciding extrema of the 
wnduction and valence bands, phaton instability takes place at a frequency 0 = pe-ph, where and p,, 
are the Fermi quasilevels of the electrons and holes. Simultaneous Bose condensation of electron-hole 
pairs and photons corresponds to a transition of the system to the lasing regime. However, a state with 
one photon condensate at a frequency fl, with small electron and photon damping, turns out to be 
unstable. The system can go over into a state with several photon condensates, corresponding to 
multimode lasimg. The paper deals with a three-mode lasing regime. The separation between the modes 
turns out to be of the order of the energy gap 2A,, in the electron spectrum, and the amplitude of the 
sideband modes is much less than the amplitude of the fundamental mode. The possibility of transition of 
the system into a regime with five and more modes is qualitatively considered. 

PACS numbus: 42.55.P~ 

1. There a re  presently several theoretical models phase degeneracy, in contrast to the equilibrium 
that describe the processes leading to instability of the casec5', when the phase of the static charge-density 
single-frequency regime in semiconductor lasers  (in wave (CDW) of the ions becomes fixed on account of the 
particular, multimode lasing, mode switching, and au- realignment of the crystal structure. 
tomodulation phenomena). These models can be subdi- 
videdc" into stationary, i.e., those admitting of stable 
excitations of many modes, and nonstationary, in which 
multimode generation i s  connected with radiation pul- 
sations. Different processes that contribute to multi- 
mode generation depend on the radiation intensity and 
come into play at different excesses above the lasing 
threshold. In strong fields (at an intensity = 1 0 6 ~ / c m Z )  
the energy spectrum of the electrons of the semicon- 
ductor acquires a gap, the state density past the edge 
of the gap i s  increased, and, a s  shown by ~ l e s i n [ ~ '  this 
makes it possible for a second, third, etc. mode to be 
excited in the laser. In Elesin's model, stable multi- 
mode generation i s  possible a t  frequencies w such that - 

[ w - 511>2~,, where 51 i s  the frequency of the fundamen- 
tal mode and 24, i s  the value of the gap in the spectrum. 
Other multimode generation mechanisms, connected 
with the inhomogeneous broadening of the gain band, the 
spatial inhomgeneity of the inversion of the nonlinear 
absorption, etc., were analyzed inc1]. In contrast toC2', 
these mechanisms a re  characterized by a lower radi- 
ation intensity and by a smaller excess above the lasing 
threshold, at which the single-mode regime becomes, 
unstable, and also by a large interval between the dif- 
ferent modes. 

It was shown earliefi3' that in the absence of electron 
and photon damping the single-mode gene ration regime 
of a semiconductor laser  i s  characterized by the ap- 
pearance of an instability due to the presence of the gap 
in the electron spectrum, but via a mechanism that i s  
different from that considered inc2]. If the damping i s  
less than a certain value (seec4]), introduction of one 
photon Bose condensate (i.e., one generated mode) does 
not make the system stable. The cause of this behavior 
is that under nonequilibrium conditions the Bose con- 
densation of photons at one frequency 51 does not lift the 

In this paper we investigate the previously consid- 
eredcS1 instability due to the transition of the system to 
the multimode generation regime. New modes can ap- 
pear at frequencies w such that [ w - 52 1 < 2A0 (in con- 
t ras t  toCZ1). The onset of new modes at these frequen- 
cies was observed experimentaily by many workers 
(see, e.g.,[']). For  simplicity we consider a regime 
with the minimum number of modes (three, inasmuch 
a s  the modes appear in our model in pairs on the two 
sides of the fundamental mode). The generalization to 
the case of five and more modes entails considerable 
computational difficulties, but does not change the re- 
sults qualitatively. 

2. The dispersion equation for the photons in the 
presence of one photon Bose condensate, obtained inc3', 
is given by 

Here 51,= ck - 51; C,, and Czo a r e  polarization operators 
whose explicit form is given inc3'. Equation (1) was 
solved for e << 2A0 and it was shown that Im c f 0 for all 
kf k,; the fact that the imaginary part of the spectrum 
is double-valued attests to instability of a system with 
one photon condensate a t  the frequency 51. However, 
Eq. (1) can be solved also for the case e%2AO. We neg- 
lect in this case the dependence of C,, and C,, on the 
wave vector k. As shown inc3', allowance for the de- 
pendence of C,, and Czo on k leads to the appearance of 
the terms v,(k- k,) and (k - kO)'/2m. At ~ e c = c [ k -  k,[ 
= 2A ,, and Ime << Rer, however, these terms reduce to 
2A ,v,/c and 4A ,2/2rncz, respectively, which we neglect 
since u, << c and A , << mc2. 

For  the quantities C,, and C,, contained in (1) we can 
obtain several useful relations. We write down explic- 
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We introduce the notation 

with the aid of which we can conveniently write 

(Zzo-Z,I-8t.) -2WN(O) IeZ/4, (Z,o+Z,,+Qk,) =2MSN ( 0 )  1 ( A , ' - ~ ~ / 4 ) .  

(4 
M = e~,,(2n/w,~)'/~ i s  the electron-photon interaction 
constant and N(0) is the'state density on the Fermi  level. 
At e < 2A0 the integral (3) can be calculated in explicit 
form: 

I-4arctg[e/(4AO1-e2) ' h ] / e  (46,'-ez) *. (5) 

Using relations (4) and (5), we reduce (1) to the form 

ez-2c(k-k,) ~ + C ' ( ~ - ~ ~ ) ~ - - M ' N I  (0)Pez(4Ao'-e8)/4 (6) 

or, substituting (51, to the form 

e=c (k-ko) *2iWN (0)  arctg[e/ (4Aoz-e2) "I. (7) 

In the limit [e  I<< 2A, we easily obtain from (7) the 
results ofc3]: 

where b = M4N2(0)/Ai. 

We consider Eq. (7) a t  Re6 = C I S  - ko1*2Ao and Ime 
<< Ree. It is then easy to show that, accurate to terms 
proportional to b3I4, we have 

I Im e 1 ==nbSAc (9) 

To find the wave vector k, at  which Ime reaches a maxi- 
mum, it i s  necessary to take into account terms of 
higher order in b112. Simple calculations yield: 

Using (9) and (lo), we can obtain the important relation: 

2Ao-elk,-kol =2'(Im e )" /x"'~:  . (11) 

It will be shown in Sec. 3 that this relation enables us to 
obtain the solution of the self-consistency equation for  
the order parameters that describe the appearance of 
the sideband radiation modes and the corresponding 
CDW of the electrons. The presence of three order 
parameters in the system corresponds to formation of 
photon Bose condensates at the frequencies &2 and S2 
i c ( k ,  - k, [. But the system of three Bose condensate 
will also apparantly be unstable in the absence of damp- 

ing, i.e., two more sideband modes well produced, etc. 
We confine ourselves to allowance for the first  pair of 
sideband modes. This is correct, str ict ly speaking, a t  
dampings y such that b ~ , <  Y < b112~, .  But since b << 1, 
i t  follows that the higher-order modes will make a 
small  contribution even a t  lower values of the damping, 
proportional to bn/ (n is the number of the mode), in 
the expression for the amplitudes of the fundamental and 
f i rs t  two sideband modes, s o  that our results remain in 
force in this case. 

3. We write the Hamiltonian of the investigated in the 
usual form 

Here e(p) =p2/2m + ~ , / 2 ,  M, = e ~ , , ( 2 n / w ~ ) ' ~ ~ ;  wk = ck; a,, 
and a,, a r e  the electron-annihilation operators in the 
conduction and valence band, and c, i s  the photon-anni- 
hilation operator. We do not take into account in (12) 
the Coulomb interaction of the electrons and holes, of 
the density-density type, which renormalizes the inter- 
action constant but does not al ter  qualitatively the re- 
sults; 

Usually in the investigation of the single-mode regime 
the Hamiltonian (12) is subjected to the unitary trans- 
f ~ r m a t i o n " ~  

which makes i t  possible to eliminate subsequently the 
explicit dependence on the time. For the multimode 
case, the transformation (13) does not eliminate the ex- 
plicit time dependence. It i s  nevertheless convenient to 
change over with the aid of (13) to a representation in 
which the photon frequency is reckoned from the fre- 
quency SZ of the fundamental mode. The Hamiltonian 
(12) takes in this case the form 

z ( p )  =e ( p )  -Q/2, Qk=ok-Q, k=li.,k,+Ak. 

To investigate the system (14) we shall need the follow- 
ing Green's functions, which a re  introduced in the usual 
manner: 

+ 
G.(P, P', t ,  t ')---i(Ta.,(t)a.,~(t') ), 

G..(p, p', t, t') - - i ( ~ a , . , ( t ) a ~ ~  (t') >. 
The determination of the Green's functions (15) in the 
case of several radiation modes leads to  an infinite cou- 
pled system of equations. Besides the anomalous func- 
tions that correspond to the appearance of CDW with 
wave vectors k, and k,iAk, there appear anomalous 
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functions corresponding to CDW with wave vectors k, 
imAk, m >  1. We assume that all the modes except the 
fundamental one and two sideband modes a re  sup- 
pressed. Then at b << 1 it  suffices to determine the 
Green's functions with k, and k, 5 Ak and neglect all 
others. The system of equations turns out to be closed 
and to admit of an analytic solutions. 

We seek the Green's functions in the form 

~ . ( p ,  p, t ,  t') -GAP, t-t'), G.. (P ,  p+k0; t ,  t') -G=(P, P + ~ o ,  t-t'),  
G..(p+Ak, p+k,, t, t') =G.,-(p+Ak, p+k,, t - t1 )exp[ - iX( t+ t f ) /2 ] ,  

G., (p-Ak, p+ko, t ,  t') -G..+(p-Ak, p+ko, t-t') e x p [ i 2 ( t + t f ) / 2 ] ,  
G.(p+ko+Ak, p+k,, t ,  t') -G,-(p+k,+Ak, p+ko, t-t')exp[-iZ(t+1')/2]. 
G. (p+ko-Ak, p+ko, t ,  1') =G,+(p+t -Ak ,  p+ko, t - t f )exp[iZ(t+t ' ) /2] .  

(16) 
We recognize furthermore that 

The system of equations for the Fourier components of 
the functions (15) can be written, with (16) and (17) tak- 
en into account, in the form 

We have neglected here the dependence of the matrix 
elements Mko,,, of the interaction on Ak, and have set  
them equal to 

To find the electron spectrum we write out in explicit 
form the function G,(w): 

We assume furthermore that the order parameters 
A,, A+, and A- a re  real, and furthermore that A+=  A- 

= A; equating next to zero the denominator of the func- 
tion G,(w) and solving the dispersion equation a t  A << Ao, 
we can obtain three groups of roots corresponding to the 
different branches of the electron spectrum: 

The last  equation for w, i s  valid for all 5 except those 
located near the point 5' = (C2 - &02)1/2. At 5 = t r  We have 

We note that allowance for the anomalous Green's 
functions that describe CDW with momenta k, i mAk, m 
> 1  adds to w,, w,, and w, corrections proportional to 

(A/C)~("'-". Besides the roots (20) there appear also 
2(m - 1) groups of roots, but these make a small  contri- 
bution compared with w, and w,,, when the self-consis- 
tency equations a re  solved. It can also be demonstrated 
that, in accordance with the rule for going around the 
poles of the Green's function, that when the self-consis- 
tency equation for A i s  solved we can take w, in the 
form (20) also at [ s t f ,  and the resultant e r r o r  is pro- 
portional to (A/C)'. 

To find the order parameter A we write out explicitly, 
For example, G,(w): 

where 

q(o)  -02-E=-A 0 r 

Dct (0 )  = (02-oI1) ( ~ ' - o : ~ )  (0'-0, ' ) .  

Substituting (22) in the self-consistency equation for A, 
taking (11) into account, and performing cumbersome 
calculations we obtain, accurate to terms (Ah) ' ,  

We estimated the distance between modes and the am- 
plitudes of the sideband modes under the assumption 
that b << 1. In real  lasers  usually b 2 1, although in 
principle the parameter b can also be small. It i s  seen 
from (10) that the distance between modes decreasing 
with increasing b, and the amplitude of the sideband 
modes increases. At b 2 1 the distance between modes 
can become much smaller than 2A,, a s  is in fact ob- 
served in experiment.[8' A quantitative analysis of the 
system at b 2 1 i s  mathematically quite complicated, for 
in this case A/C cannot be regarded a s  a small para- 
meter and the system (18) can not be used. 

In the derivation of the system (18) we have assumed 
that all the higher harmonics (k = k,, i m Ak) a r e  sup- 
pressed by damping. If this condition i s  not satisfied, 
then the system (18) must, strictly speaking, be sup- 
plemented also by equations for the anomalous functions 
corresponding to CDW with wave vectors k,* m e .  It 
can be shown, however, that the contribution of the m- 
th harmonic to the basic system (18) results in a cor- 
rection of order bm, i.e., our results remain valid a t  b 
<< 1, with the indicated accuracy. .The higher harmonics 
of order m can be completely disregarded of the damp- 
ing in the system i s  ym > b m ' 2 ~ o  (here A," b m / ' ~ ,  i s  the 
amplitude of the m-th harmonic). 

The three-mode regime considered by us i s  station- 
ary. However, an investigation of the limits and con- 
ditions of i ts  stability is fraught with considerable math- 
ematical difficulties even a t  b << 1. It appears that such 
a regime will be unstable, a t  least a t  small values of 
the damping. New modes can appear at a distance s2A 
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from the f i rs t  sideband mode. Since the ratio %,/A i s  
by no means small, i t  i s  quite probable the amplitude of 
the new mode will be of the same order a s  that of the 
first  sideband mode. In the case b 2 1 we can expect an 
entire group of modes to appear, with small  distances 
between the modes and with amplitudes of comparable 
magnitude. 

Let us discuss in greater detail the criterion for the 
appearance of the laser  mode, y/A0< 1. For  simplicity 
we confine ourselves to the single-mode regime. By y 
is customarily meant the summary damping due to re- 
combination and to electron-electron and electron-pho- 
non coll isions~7'  We shall show that the criterion indi- 
cated above is a necessary but generally speaking not a 
sufficient condition for the onset of generation. 

It i s  known that the presence of instability of the pho- 
ton subsystem to Bose condensation in a state with fre- 
quency 51 can be revealed by the appearance of the im- 
aginary pole iA, in the photon Green's function. In ex- 
actly the same manner, the presence of instability of 
the electron-hole subsystem to Bose condensation of ex- 
citons i s  attested by the appearance of an imaginary 
pole in the electron Green's function. 

Assume that the criterion y/Ao < 1 i s  satisfied and 
that the damping in the electron Green's function i s  neg- 
ligibly small (here A, = exp(-qo/M 'N (0)). In the pho- 
ton Green's function we take into account the damping 
due to the losses in the resonator: 

Here Y, = Q/Q, Q i s  the figure of merit of the reson- 
ator, 

nrl(ko, o )  -iM2N (0) j G," (e, P) G.O(e-a, p-ka)de dp, (26) 

Gz(r, p) and G34, p) a re  the Green's functions in the 
absence of electron-hole pairing (the Coulomb interac- 
tion that can lead to electron-hole pairing will be disre- 
garded for simplicity). The equation for the pole (25) is 
easily obtained after calculating (26): 

From this we obtain readily 

of the Green's function reverses sign and the photon 
system remains stable, i.e., no lasing occurs in this 
case. 

In the presence of Coulomb interaction and damping 
in the electron Green's function y < A,,,(A,,,, = 9 
x exp(- l/gN(0)) andg i s  the Coulomb-interaction constant), 
Bose condensation of the excitons can se t  in. In the pho- 
ton Green's function a t  y,,, > M 'N (O)n/2, however, the 
pole remains a s  before in the lower half-plane. Thus, 
the presence of an exciton Bose condensate does not 
lead, generally speaking to the appearance of a photon 
Bose condensate. The reason i s  that the excitons can 
condense into a state with zero  momentum, but the pho- 
tons can condense in the single-mode regime only into 
a state with momentum k,. At yr, > M  'N(O)n/2 the pho- 
ton mode with momentum k, is suppressed, and the ex- 
citon Bose condensate with zero momentum i s  con- 
served. 

In real  l a se r s  at A -  (10" - 1013)sec" there should be 
satisfied the relation 

at which cpzn/2. The condition (29) is a s  a rule satis- 
fied, so  that the indicated possible existence of an exci- 
ton condensate in a nonequilibrium system without the 
appearance of a photon condensate can be realized only 
by a special choice of the laser  parameters. 

The authors thank V. F. Elesin for useful remarks 
and discussions. 
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