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The decrease in the intensity of an electromagnetic wave as a result of SMBS in an expanding 
inhomogeneous laser plasma is investigated. It is shown that the SMBS depends strongly on the 
gasdynamics of the plasma corona and decreases with decreasing rate of plasma expansion and with 
decreasing inhomogeneity scale. 
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INTRODUCTION 

The penetration of light into dense plasma layers, 
where it is absorbed, can be hindered by scattering in 
the rarefied plasma corona. One of the important non- 
linear processes of scattering of high-power laser rad- 
iation is stimulated Mandel'shtam-Brillouin scattering 
(SMBS) (see e.g. ,C1'41) 

We investigate here the decrease of the intensity (at- 
tenuation) of a pump wave by SMBS in an expanding in- 
homogeneous laser plasma. It is shown that the SMBS 
depends strongly on the gasdynamics of the plasma cor- 
ona and decreases with increasing plasma expansion 
rate. The incident-flux energy rate below which the at-  
tenuation due to SMBS can be neglected is determined. 

It is shown in Sec. 1 that in the case of SMBS in a 
moving plasma the frequencies of the scattered waves 

where u is the plasma velocity, s = ( z ~ , / m , ) " ~  is the 
speed of sound, T, is the electron temperature, mi and 
z a re  the mass and charge of the plasma ions, E,, 
w,, and $ are  respectively the amplitude, frequency, 
and wave vector of the pump wave, v, = e~,/mw,, w,, 
is the Langmuir frequency of the ions, sin20, = [no(k 
* k,)P/(k* k,)', n,, = E,/E, is the polarization vector, w, 
= (4re2~/m)' / '  is the plasma frequency, and N is the 
electron density. In Eq. (1.1) we have neglected dissi- 
pative effects and omitted terms that determine the 
perturbations of the longitudinal field. 

Decay instabilities correspond t o t  he approximation 
with weak parametric coupling of the waves, when Eq. 
(1) can be solved by perturbation theory in the pump- 
wave a m p l i t ~ d e . ~ ~ ]  In the zeroth approximation (w 
= w"'), putting v, = 0 in (1.1), we obtain the dispersion 
law for the acoustic waves in the moving plasma: 

can be not only lower (Stokes scattering) but also higher o'"-ku=f ks. 
(anti-Stokes scattering) than the frequency of the inci- 

(1.2) 

dent light. In Sec. 2 we use the dispersion equation to The pump wave is most effectively coupled with 
determine the gains of the scattered waves for super- acoustic waves for which the denominator of one of the 
sonic motion of the inhomogeneous plasma. In Sec. 3 terms in the right-hand side of (1.1) is small. We shall 
we obtain an equation that determines the change of the therefore assume in the zeroth approximation that the 
pump -wave intensity with changing coordinate. This following relations a re  satisfied: 
equation is solved numerically and treated analytically 
in Sec. 4. The main conclusions and consequences of ( O ( O ) * ~ ~ )  z=op2+~2(kf  ko) (1.3) 
the calculation a re  formulated in the conclusion. 

1. INITIAL PROBLEM 

It will be shown in this section that in the case of 
SMBS in a moving plasma the frequency of the scattered 
radiation can be both lower (Stokes scattering) and 
higher (anti-Stokes scattering) of the frequency of the 
incident radiation. 

The dispersion equation for the spectrum of the coup- 
led density perturbations and electromagnetic field in 
a moving plasma through which a linearly polarized 
monochromatic pump wave passes can be obtained from 
the equations of plasma hydrodynamics in a high-fre- 
quency field.c51 It takes the form 

sin' 0- (a-ku) '-kgs'- - 
( a - ~ ~ ) ~ - a ~ ~ - c ' ( k - k ~ ) ~  

sir? 0, 1 (1.1) 

these being the dispersion laws for the scattered waves 
with frequencies wt= wok w'O' and wave vectors k t =  k, 
* k. When the dispersion law w: = w:+ k:c2 of the pump 
wave is taken into account and quantities of order wCO)/ 
w, a re  neglected, relations (1.3) take the form k2 
k2kekO=0.  

In first-order approximation (w= wCo'+ a'"), if rela- 
tion (1.2) and one of the equalities in (1.3) a re  satisfied, 
we get from (1.1) 

where the plus and minus signs correspond to the signs 
in (1.3). The initial perturbations increase with time 
i f  (w"')' is negative. Let us see  when this is possible. 

Let the dispersion law for the Stokes scatteredwave 
be satisfied ( a t =  w, - w"', k2= 2k *k,). Then (wC1))'< 0 
i f  the plus sign is used in (1.2) and w(O) = ks + k ~ u .  
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If the dispersion law for the antistokes scattered 
wave (wl= w,+ w'O',k2= 2k *ko is satisfied, then increas- 
ing initial perturbations correspond to a minus sign in 
formula (1.2) and w'O'= -ks + k - u .  From the condition 
w'O'> 0 it follows then that the anti-Stokes scattering is 
possible only in the case of supersonic motion of the 
plasma (u > s).  

The conclusion that the plasma motion gives rise to 
antiatokes scattering can be explained with simple 
physical arguments. Let the plasma move counter to 
the pump wave. For an observer in the coordinate 
frame of the plasma, the only growing waves a re  
Stokes scattered waves of frequency a'= 51, - 51, where 
54, is the frequency of the wave incident on the plasma 
and is the frequency of the sound wave. We consider 
for simplicity backward scattering, when S1= 2k,,s. In 
the laboratory frame, the frequencies of the incident 
and scattered waves a re  respectively w,= 51, -k# and 
w'= Q1+k&. Substituting these relations in the expres- 
sion for a', we obtain wl= wo+ 2k0(u -s) .  We see 
therefore that at u > s  the frequency of the scattered 
radiation in the laboratory frame is larger than the 
frequency of the incident radiation. 

The same conclusions can be obtained by regarding 
the wave that determines the anti-Stokes scattering a s  
a wave with negative en erg^>^*^] 

2. THE AMPLIFICATION COEFFICIENTS 

In an inhomogeneous laser plasma, one of the main 
obstacles to the growth of the initial perturbations and 
to the stabilization of the SMBS is the violation of the 
decay conditions for the wave vectors.c819J The growing 
waves interact therefore with the pump wave in abound- 
ed region of space, and it is there that they a re  ampli- 
fied (drift instability). If the plasma properties vary 
little in the wave resonant -interaction region, then the 
gain can be obtained from the dispersion equation. As 
is customary in nonlinear optics,"01 the dispersion 
equation must be solved for k (boundary-value problem), 
and not with respect to w a s  in Sec. 1. 

The first and second terms in the right-hand side of 
(1.1) determine the Stokes and anti-Stokes scattering, 
respectively. When the signs of the frequency and of 
the wave vector k a re  simultaneously reversed, the 
second term goes over into the first. We can therefore 
seek for the dispersion equation a single solution that 
i s  valid for both Stokes and anti-Stokes scattering, if 
it is assumed that the latter corresponds to negative w. 

We use again perturbation theory and obtain from 
(1.1) in the zeroth approximation (k= k(") 

where u and k, are  slow functions of the coordinates. 

Consider a plasma that is inhomogeneous only in the 
x direction, which coincides with the expansion direc - 
tion (u= {u(x),u, O)), and a pump wave propagating coun- 
t e r  to the plasma motion (k,= {-k,(x), 0,O)). To simpli- 
fy the calculations we assume a constant plasma tem- 

perature (the temperature changes little because of the 
high electronic thermal conductivity in the laser-plasma 
corona). Then relation (2.1) takes the form 

where we have omitted the superscript (0) of k,. 

In an inhomogeneous plasma relations (2.2) deter- 
mine the longitudinal component of the wave vector of 
the sound wave kio' and, implicitly, the point x ,  at  
which a sound wave of frequency w and transverse 
wave-vector projection k, interacts resonantly with the 
pump wave. It follows from (2.2), in particular, t h d  

where q=  (1 - ki/kt(x))"2. The plus and minus signs 
in (2.3) correspond to  two different sound wave with the 
same value of k,, from which the scattering i s  either 
forward o r  backward. 

We consider now the solution of the dispersion equa- 
tion in first-order approximation. Owing to the plasma 
inhomogeneity and the interaction with the pump wave, 
the longitudinal component of the wave vector of the 
resonant sound wave changes. A correction should be 
found only for that component (k,, = k,l0'+k,). Substitut- 
ing in (1.1) relations (2.2) and expanding all the coor- 
dinate-dependent quantities in series about the point x,, 
we obtain the following equation for the determination 
of k,: 

where 

k,,==li:", k=(kL2+kl,')", L.=u(duldz)-I,  LN=-N(dN1dz)-I,  
Az=z-I,, sin' 0=[n, (k-k,) ]'/ (k-k,)'. 

It should be noted that the terms proportional to kt 
in the square brackets of (2.4) must be taken into ac- 
count if the coefficients of the corresponding terms 
linear in k, a re  small. These coefficients a re  deter- 
mined by the x-projections of the group velocities of 
the sound and scattered waves. In fact, 

If any of the quantities in (2.5) vanishes, then the cor- 
responding wave has a turning point in the interaction 
region. In this case the geometric-optics approximation 
is generally speaking not valid. However, as was il- 
lustrated with stimulated Raman scattering as an ex- 
ample, the difference between the results of the exact 
calculationc111 and the calculation in the geometric -op- 
tics approximationc121 reduces to a numerical coeffic- 
ient of the order of unity. This justifies the use of Eq. 
(2.4) in those cases when the terms linear in k, in the 
square brackets a re  small and it is necessary to take 
into account terms proportional to kt. 
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Hydrodynamic calculations show that a t  a sufficiently 
high intensity of the pump wave the laser-plasma co- 
rona expands at supersonic velocity. We confine our- 
selves to just this case. Then, according to (2.5), v,  
# 0 and there a r e  no turning points o r  the sound waves 
in the interaction region. 

If the point x ,  is close to a turning point for the scat- 
tered wave, s o  that the inequality 

is satisfied, the Eq. (2.4) takes the form 

where M = u / s  is the Mach number. To find the gain, 
the region of variation of & was broken up into two 
parts. The first  term of the second square bracket of 
(2.7) was assumed small in the first  part, and the sec- 
ond term was assumed small in the other part. The 
solution of Eq. (2.7) in these two regions was used to 
determine the local gain Imk,(&), and integration over 
& yielded the total gain 

nk&n~=' sin' 0 
'xi= 

nd1fu,lsin8l/vr.) a 

12vI.)(2'l?~-i) +~%'?LIL, ,~~(IOJ~.C) ~L'~?\I- i) 1 ' .  (2.8) 

Here v;,= ~ , / m .  

If an inequality inverse to (2.6) is satisfied, neither 
of the growing waves has turning points in the interac- 
tion region. Equation (2.4) is then quadratic and it fol- 
lows from its solution that only the backscattered wave, 
corresponding in (2.3) to k,, = -k,(l + q ) ,  is amplified. 
The amplification is in a region of half -width Ax, about 
the point x,, where 

The total gain is in this case 

Expression (2.10) coincides with the gain obtained inc" 
by solving the system of equations for the amplitudes 
of coupled waves (see also CS1). According to the inequal- 
ity inverse to (2.6), formula (2.10) is valid if 

We note that in our analysis the only waves that a re  
amplified a re  those with like signs of the projections 
of the group velocities on the x axis (co-moving waves). 
~ n , " ~ ' ~  where the solution of the equations for the amp- 
litudes of the unstable waves with sources was investi- 
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gated, it was shown that a similar gain is obtained also 
for waves with oppositely directed group-velocity pro- 
jections (opposing waves). 

3. EQUATION FOR PUMP WAVE 

An equation for the dependence of the pump-wave en- 
ergy flux density q, on the coordinate can be derived 
from the law of conservation of the total energy flux of 
the interacting waves: 

where q,,, and q ,_w,k,k, a r e  the longitudinal components 
of the energy fluxes of the waves into which the pump 
wave breaks up. In the stationary state these fluxes 
statisfy the following relations: 

dq.,, awe,, dq.-m,k-b a ~ " - - . ~ - ~ .  --- -= 
& a t '  dt. at ' 

where W,,, i s  the density of the energy released by the 
pump wave in the form of waves of frequencies w and 
wave vectors k. Since the number of produced quanta 
is equal to the number of decaying quanta (N, , ,  
- -N,,,o,k,o-~,o,,o), - it follows that w,,,/w,,,, ,,-, ,= w/ 
(w, - w) and the energy fluxes of the produced waves a re  
connected by the relation 

which i s  the consequence of the well-known Manley- 
 owe''^' relations. Using this relation and recognizing 
that the longitudinal component k of the wave vector i s  
expressed from the dispersion equation in terms of w 
and k, (see (2.3)), we rewrite (3.1) in the form 

where the spectral density of the energy flux q,, k, is 
connected with the spectral density of the energy U,,,,. 
For longitudinal waves, this connection i s  given by 

It was shown in Sec. 2 that a wave with specified val- 
ues of w and k, interacts with the pump wave in a small 
vicinity of the point x, and that its energy in the inter- 
action region increases exponentially. Therefore 

where xl=xo+ Ax, is the boundary through which the 
wave enters the interaction region, and U?iL i s  the 
spectral density of the energy of the non-amplified 
waves; we shall assume this energy to be determined 
by the thermal-fluctuation level u:;,= [~,/(2n)~](8k,, /  
8w). Using the relations given above, we write down the 
equation for the pump wave in the form 
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This equation was obtained earlierclal from the general 
relations of nonlinear electrodynamics. 

At each point x , the pump wave interacts (at a fixed 
value of k,) with sound waves from a narrow frequency 
interval, and i t  is possible to change over from inte- 
gration with respect to w to integration over the inter- 
action region.c121 As a result we get 

where x is the total gain. 

In the moving-plasma case of interest to us,  the low- 
frequency dielectric constant is of the form t = ( k ~ ~ , ) - ~  
- wLi2(w - k ' ~ ) ' ~ .  Calculating dw/dx with the aid of this 
expression and introducing a polar coordinate frame in 
wave-vector space in the plane perpendicular to the 
pump-wave propagation direction we obtain from (3.3) 
a t M > l  

where go = -c W, W =  Ei/8n is the pump-wave energy 
density, cp is the angle reckoned from the direction of 
the polarization vector no. The quantity in different 
regions of variation of y and q is  determined by for- 
mulas (2.8) and (2.10), with ~ i n ~ 0 = s i n ~ ( p + ~ ~ c o s ~ ( p .  
Formula (2.8), as  follows from (2.11) is valid at q< qO, 
and formula (2.10) at q >  qO. Accordingly, the integral 
in (3.4) can be written in the form 

In the first term, after elementary integration with r e -  
spect to 17 by the known methods, [I4' we can easily esti-  
mate the integral with respect to cp if we take account 
of the fact that the main contribution i s  made by the re-  
gion v -a/2. In the second term, the main contribution 
is  made by the region 17 2 q0 and (p - n/2, and the integral 
can also be estimated if the following inequalities a re  
assumed to hold: 

As a result, Eq. (3.4) is transformed into 

where 

002 5'- 
nitE' n2roc , y = = -  e' 

C 4!. 2 
,, q r, = -=2.8.1Cl-" cm, 

rr~c' rr T,o,- 

is the critical electron density, and 

The first and second terms in the curly bracket of (3.6) 
stem respectively from the integration region q<  q, 
(which corresponds to scattering at angles close to 90") 
and from the integration region 112 qo (backscattering). 

4. SOLUTION OF THE EQUATION FOR THE PUMP 

WAVE 

We have assumed s o  far that the hydrodynamic char- 
acteristics of the plasma (the Mach number M and the 
particle density N) depend only on the coordinates, and 
that the plasma expansion is stationary. Equation (3.6), 
however, can also be used for nonstationary expansion 
i f  the quantities M and N vary little during the time 
when the slower sound wave traverse the region of reso- 
nant interaction and the pattern of spatial amplification 
of the waves is established. This condition can be writ- 
ten in the form 

where Ax,,,, is the maximum width of the interaction 
region. When the condition (4.1) is satisfied, the quan- 
tities M and N need not be connected by the flux-con- 
servation law. 

We consider by way of example the following hydro- 
dynamic functions: 

M=UIS=.M,+M, ( x / x . - I ) ,  N = N ,  e rp  (-yz9), (4.2) 

where M ,  is the Mach number a t  the point x, where the 
density is equal to the critical value1' Nc,No is the 
electron density at x = 0; the quantities y and Ml are  
certain constants which, like the quantities M, and N o ,  
can vary slowly with time. Expression (4.2) corres- 
ponds to one of the simplest models of spherical ex- 
pansion of a laser plasma at constant temperature and 
to a linear variation of the velocity with coordi- 
nate.C15e161 

Since the concentration (4.2) does not vanish with in- 
creasing coordinate, it is necessary to specify in some 
manner the point x =xb at which the intensity of the in- 
cident wave can be regarded as constant. We have 
chosen by way of example a point a t  which the density 
equals O.OlN,. 

Equation (3.6) was solved with a computer 
using the following parameters: T, = lo3 eY, (v,J 
c)' = 2  .lod, ko = 6 -lo4 cm-I (neodymium laser)  (Nd 
Nc)=5,xc=2*10-2cm,xb =4*10~2cm,(x, -xc=200 pm. 
The results of the calculation for two values of the in- 
cident-wave energy flux q0(6 x loi4 and 3 x loL4 w/cm2) 
and for two laws governing the variation of the Mach 
number a r e  shown in Fig. 1. It is seen that up to a 
definite value of the coordinate the intensity of the pump 
wave remains unchanged, and subsequently decreases 
as the critical density is approached. The attenuation 
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I-, ton pm 

FIG. 1. Pumpwave energy flux density go, plasma concentra- 
tion N/N,, and Mach number M =u/s  as functions of the coor- 
dinate [ =xodc.  Plots 1 and 3 correspond to the line M' , 
while plots 2 and 4 to the line M". The dashed lines are the 
results of calculations by the approximate formulas (4.4) and 
(4.5). 

of the pump wave s t a r t s  in the denser plasma and is 
smaller the faster the plasma flow and the lower the 
intensity of the incident wave. It is seen from the fig- 
ure  that independently of the intensity of the incident 
wave a t  given functions M and N, the same energy flux 
reaches the critical density. 

Calculations were made also for a flu 3 x 1014 W/ 
cm2, when the plasma concentration decreased from the 
critical value by a factor of one hundred over a length 
of 50 Fm. In this case the SMBS has practically no ef- 
fect on the wave propagation. 

At the employed parameters, which are  typical of 
many experiments with laser plasma, the quantities in 
(3.6) satisfy the conditions Q < 1 and Q < 1/20. The prin- 
cipal term is then the second one in the curly bracket 
of (3.6), and we can write the approximate equation 

Just a s  in the studies of stimulated Raman scatter- 
in&121171, we can construct an approximate analytic so- 
lution of (4.3). The reason is that the pre-exponential 
factors in (4.3) a r e  much less than unity and to obtain 
an appreciable decrease of the function y over a scale 
on the order of 5, the argument of the exponential must 
be large enough. This means that the function y is e 
to i ts  limiting value yo up to the coordinate 5, at which 
(dy/d[)- yo/[,. This yields 

where 5, = w&,/c and it is assumed that 5, - 5, in the 
logarithm S. At 5 <  5, the function y begins to decrease, 
and with i t  also the argument of the exponential in (4.3), 
and this slows down the decrease of y. As a result y 
takes on a value corresponding to the condition (dy/dS) 
=yo/Sc, O r  

The dashed lines in the figure show the solution obtained 
from formulas (4.4) and (4.5). 

If it turns out that 5, S 5,, then all  the radiation 
reaches the critical density, and the attenuation of the 
pump wave by the SMBS can be neglected. From the 
condition 5, = 5, we obtain the value of yo starting with 
which the pump-wave attenuation due to the SMBS comes 
into play: 

where yo= 0.1 is assumed under the logarithm sign. It 
is seen from (4.6) that the energy flux density that 
reaches the critical density without appreciable change 
is larger the faster the plasma flow and the larger the 
density gradient. 

We must dwell on the conditions under which the re-  
sults a r e  applicable. 

1. We have assumed that the dimension of the wave 
interaction region is much less than the plasma-in- 
homogeneity scale. Since the main contribution to Eq. 
(3.6) comes from the gain (2.10) at q> 1 and (p-n/2, i t  
follows from (2.9) that Ax ,,, = (V,/~~,,)(L,L,/M)"~, 
and Axo,,,< LN can be represented in the form 

For the functions (4.2), the inequality (4.7) is trans- 
formed into y < sM,5,/5 ln(N0/N,) and i s  satisfied in the 
examples considered by us. 

2. The fact that the plasma flow is quasistationary 
implies satisfaction of the conditions (4.1), which can 
be rewritten with the aid of the expression given above 
for Ax,,,, in the form 

3. In the derivation of the gains and in the estimate 
of the integrals of Eq. (3.4) it.was assumed that inequal- 
ities (2.11) and (3.5) a re  valid. It is easy to verify that 
in our calculation the inequality (2.11) and the first in- 
equality of (3.5) held, but the second inequality of (3.5) 
was violated a s  the critical density was approached (at  
5/5 ,s  1.1 o r  N / N , ~  1.5). Our results in the vicinity of 
the critical density must therefore be regarded only a s  
estimates. 

CONCLUSION 

It follows from the foregoing analysis that the spec- 
t ra l  composition and the intensity of the SMBS depend 
substantially on the dynamics of the laser  plasma. 
Thus, in supersonic expansion the spectrum of the scat-  
tered radiation broaden in the blue direction (anti- 
Stokes scattering). The distribution of the intensity 
over the spectrum is determined by the coordinate de- 
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pendences of the density and of the velocity of the plas- 
ma. 

')we note that the quantity M, determines the plasma velocity 
a t  the point x,, but not the velocity of the point x, itself. 

Another factor very sensitive to the laser-plasma 
dynamics is the SMBS -induced exhaustion of the pump 
wave. This follows from the fact that small changes 
of the argument of the exponential in (4.3) affect strong- 
ly the character of the penetration of the pump wave 
into the plasma. According to the definition (3.7), this 
exponent is directly proportional to the intensity of the 
wave and to the plasma-inhomogeneity scale is inverse- 
ly proportional to the plasma velocity. With increasing 
inhomogeneity scale we therefore have an increased 
scattering intensity, in qualitative agreement with the 
ideas concerning the influence of the contrast. Con- 
versely, with increasing plasma expansion velocity, 
the scattering intensity decreases and i t  can be stated 
that the plasma motion suppresses the SMBS. This 
conclusion agrees with the results of a numerical solu- 
tion of the gasdynamics equations.c181 The physical 
cause of the suppression of the SMBS is that the acous- 
tic waves drift together with the plasma and pass more 
rapidly through the region of the resonant interaction in 
the inhomogeneous plasma, and consequently have a 
smaller growth. 

It should be noted that our analysis is not quite con- 
sistent, since we did not take into account the fact that 
the plasma hydrodynamic characteristics (the density 
and the expansion velocity) a re  themselves dependent 
on the incident-wave intensity. A consistent allowance 
for this dependence is possible i f  the equations hydro- 
dynamics and the equation for the pump waves are  solv- 
ed simultaneously. 

We are  grateful to V. P. Silin and R. R. Ramazash- 
vili for a number of useful remarks. 
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Experimental investigation of the emission of a mercury 
plasma near the photorecombination thresholds at high 
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The spectra of the line and continuous emission of a mercury plasma were investigated in the frequency 
interval (0.4-1.25)~ 10'' sec-I at electron densities 5 x 1015 and 4X 10'' cm-'. At high charged-particle 
densities it was observed that the spectral lines vanish near the photorecombination thresholds, but the 
thresholds themselves are hardly displaced. In a less dense plasma, in the near-threshold regions of the 
spectrum, a coalescence of the spectral lines was observed in accordance with the Inglis-Teller model, 
leading to an apparent shift of the photorecombination thresholds towards lower frequencies. 

PACS numbers: 52.25.P~ 

A well known density effect in a plasma is the co- trum into a continuum it is customary to use the as- 
alescence of the higher terms of the spectral series sumption that the oscillator-strength density df/dE is 
near the photorecombination (photoionization) thres- not perturbed.12p31 It was shownr4] that on going to a non- 

To describe the transition of the line spec- ideal plasma a qualitatively new effect may appear, 
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