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The problem of the behavior of the field of an electromagnetic wave in an inhomogeneous anisotropic 
medium near the singularity =O is solved generally in the case when the characteristic wavelength is 
much smaller than the size of the inhomogeneity. The solution is valid for any means of exciting the wave, 
and also does not depend on the type of resonance under consideration, which is determined by the 
specific nature of spatial dispersion or by collisions. Cases are considered of applying the theory developed 
in the present paper for investigating different plasma resonanca arising in an inhomogeneous plasma near 
a singularity. 

PACS numbers: 52.35.Hr 

1. INTRODUCTION. INITIAL EQUATIONS of ionic Langmuir waves.[61 In exactly the same manner 

The problem of the behavior of the field of a wave 
near a singularity in a one-dimensionally inhomogen- 
eous (along the x axis) medium has been studied by 
many  author^.^'-^^ A rigorous mathematical solution 
within the framework of a theory linear in the field has 
been obtained by Pilya and Fedorovc4' by means of in- 
vestigating a differential equation of the fourth order 
with a small coefficient of the highest order derivative. 
In their discussion a magnetoactive plasma was con- 
sidered and it was assumed that near the singularity 
the wave was propagated at a small angle with respect 
to the x axis: 

(k, lies in the v ,  z plane), while the "thermal" addition 
to the dielectric permittivity tensor cyj(x) for a cold 
plasma arising a s  a result of spatial dispersion has the 
form 

However, it is  well known that conditions (1.1)-(1.2) 
by no means exhaust all possible cases of the behvior 
of the wave near the singularity at x =  0 (for convenience 
we place the singularity at the origin, so that e:,(O) = 0). 
In particular, (1.1) may not hold if the incident wave is 
formed outside the plasma with the aid of a special de- 
lay system a s  a result of which the component k, of the 
propagation vector k directed along the surface of the 
plasma turns out to be much bigger than w/c, and may 
attain the characteristic values of k, near x =  0. More- 
over we note that (1.1) does not hold if the source of 
the wave is situated inside the plasma itself a s  i s  the 
case when the oscillations a re  excited by an electron 
beam. 

In its turn the dependence of the permittivity tensor 
on k i s  determined by specific properties of the plasma 
and by the nature of the observed resonance a t  x =  0, 
and even under conditions of weak spatial dispersion 
this dependence is not always described by formula 
(1.2). For example, in a nonisothermal isotropic 
plasma with T,>> T i  the relation (1.2) does not hold if 
the singularity a t  x =  0 is associated with the excitation 

(1.2) does not apply to a plasma whose electrons move 
with respect to the ions, and also for a plasma with 
beams. 

All these specific cases in which conditions (1.1), (1.2) 
do not hold indicate that it would be useful to solve the 
problem formulated above in a more general form than 
was done in Ref. 3 ,  4. In the present paper a method 
of solution i s  presented which does not depend on the 
specific form of the permittivity and on the relation 
between the components kx and k,. It is  essential only 
that the plasma (we shall speak of a plasma, although 
in principle the main results of the paper a re  valid for 
an  arbitrary medium) i s  assumed to be weakly inhomo- 
geneous, i.e., specifically that near the singularity the 
following inequalities hold 

Here r ,  is the Debye radius, a is a characteristic 
length of the inhomogeneity over which the parameters 
of the plasma a re  altered. We assume that the wave 
frequency is given, i.e., the time dependence i s  of the 
form e'iwt.  The material equation can be written in 
the form 

If k >> w / c ,  then the wave i s  an electrostatic one E,(r)  
= -acp(r)/ax,, where the potential satisfies the Maxwell 
equation 

2. FORMAL SOLUTION OF EQ. (1.5) 

Firs t  of all we note that in the zero order approxima- 
tion with respect to (k,a)-' and ra-' the kernel e ,(x0, 
r - r ' )  i s  known. For  a given value of x, this is simply 
the kernel for the permittivity of a homogeneous plasma 
with the parameters of the initial inhomogeneous plasma 
in the plane x=xo. We represent iij in the form of a 
sum of two terms: 
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i , , (x ,  r-r') =e,:(x) 6 ( r - r ' )+e , / (x ,  r-r'), 

where c;,(x) is  the permittivity of a cold collisionless 
plasma 

e,p(x)  6(r-r') -1im i , , (x ,  r-r'), T-tO, v,jf+O, 

while the quantity c Tj is determined by collisions and by 
spatial dispersion. We investigate the solution of equa- 
tion (1.5) for 1x1 <<a. With this in mind we expand the 
cold part of the permittivity in terms of x/a restricting 
ourselves to f i rs t  order terms: 

Here a i j  = cjj(0), bij= -acj,/~xI x.o. According to the 
condition 

we can without loss of generality also assume that 

In a cold collisionless plasma the solution of equation 
(1.5) becomes infinite in the plane x=O, and therefore 
condition (1.4) near this plane i s  certainly satisfied. 
This condition is also satisfied if the dispersion and the 
collisions a r e  not significant, and this enables us to 
consider in equation (1.5) in the zero order approxi- 
mation in terms of ( h p ) - ' ,  r,a-', x/a. At the same time 
we substitute cqj into (1.5) in the form of (2.1). After 
this we apply to (1.5) the Fourier transformation: 

here T(k) i s  the Fourier component of the potential 

tp ( k )  = cp ( r )  e-'l'dr, 

cTj(k) i s  the thermal and collision part  of the permitti- 
vity of the corresponding homogeneous plasma: 

eI j r (k )  = j [ l im &(O, r-r') ]exp(-ikr+ikrl)dr. .+- 
In (2.4) we have also utilized the fact that the potential 
q(r) according to our assumption falls off outside the 
region x<< a ,  so  that in carrying out the integration one 
can assume that p(r) 1 .= +, = 0. The condition that the 
dispersion and the collisions a re  not significant evident- 
ly now takes on the form 

The solution of (2.4) is an asymptotic formula for the 
Fourier component of the potential for large 1 k,l (cf,, 
(1.4)). Depending on the sign of k, we obtain 

- '* (" Q ( k )  exp [ R  ( k )  - i eT (k') kg (biik;kjt)-I&:] , v* (I;) = - 
k 

(2.6) 

is the thermal and collision part  of the longitudinal 
permittivity; k '  is a vector which has the components 
k:, k:, k:; 

Q(k) -exp[2-'A-"(b,-b,)LL], 

R (k) ,  ---i (2b,) -'(h+b) k. In (a3b,,kik,) 

+i(2b,) -Ik.k@[ (@.+a*) (b,+b,) -2b&@] 4-"L, 

A = [  (b,+b,)k.12-4b,pLhb, 

L=ln { [ ( b , + b ~ ) k , - A " ]  [ (b.,+bb)ki+A"]-I). 

The Greek subscripts take on the values y and z, qO,(k,) 
a r e  arbitrary'functions of the given vector k,, is an 
arbitary constant of integration which must be chosen 
s o  that the integral in (2.6) should converge. In addition 
to (2.5) in order that the solution (2.6) be valid we also 
need the condition 

which ar ises  a s  a result of neglecting quantities of the 
order of Ix<TjI in the initial equation (1.5). If the prin- 
cipal contribution to the integral 

9 (z ,  k ~ )  = (2x1-' SQ ( l i ) e sp  ( i k a )  dk. 

is made by the values of k, for which conditions (1.4), 
(2.5), (2.7), a r e  satisfied then, neglecting the region 
1 krl s a-', we obtain 

3. INVESTIGATION OF THE OBTAINED SOLUTION 

As is expected for cT=O (i.e., in the absence of dis- 
persion and collisions) the integrals in (2.8) diverge a t  
the point x = 0. We investigate the convergence of these 
integrals for c T f  0. According to (2.3) the f i rs t  integral 
in (2.8) converges if l m T ( k ) a O  for k,--~o, and the 
second one converges if ImcT(k) c 0 for k,-+ m. This 
conclusion follows directly from the Hermitian nature 
of the tensors a,, and b,,, and also from the fact that 
for  sufficiently large values of 1 k, ( the inequalities 
b ,,kjkj > 0, A > 0 hold as the result of which L is real 
while R(k) and lnQ(k) a r e  purely imaginary. The quan- 
tity lmeT(k) always contains a positive term associated 
with collisions. If this term i s  sufficiently large then 
collisions play the determining role in the question of 
the convergence of the integrals (2.8). In this case in 
order for the solution to have a meaning we must set the 
constant of integration (p:(k,) indentically equal to zero, 
a s  a result of which we obtain 

0 

cp (z, k,) = (0-0 (kL) (2%)-I S (abiikikj)-"'Q ( k )  exp [ i k ~  + H ( k )  
-m 

where 
where 

sT ( k )  -k-'eljT(k) klkj 
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But, on the other hand, our solution i s  valid only if 
conditions (2.5), (2.7) are  satisfied. If collisions are  
rare,  then it might happen that they must be taken into 
account in cT(k) only for values of k, lying outside the 
limits allowed by the inequalities (2.5), (2.7). In this 
case the question of convergence of the integrals (2.8) 
must be solved without taking collisions into account. 
The limits of integration i* must be interpreted a s  
values of k, for which any one of conditions (2.5), (2.7) 
ceases to hold. It i s  well known that for a medium in 
thermodynamic equilibrium one must always have 

Im er (k) SO. 

In this case the plasma i s  stable, the electromagnetic 
waves are  absorbed (in the absence of collisions the 
absorption takes place according to the Landau mech- 
anism), and generation of waves, i.e., transfer of 
energy from the plasma to the electromagnetic field, is 
impossible. In such a plasma the solution a s  before i s  
determined by (3.1) which represents a superposition of 
plane longitudinal waves traveling in the direction of 
negative x (from right to left). This result has a com- 
pletely understandable physical meaning, it is related 
to the fact that longitudinal waves cannot exist outside a 
plasma, they originate in the neighborhood of x =  0 and 
a re  propagated in the region of transparency until they 
a re  absorbed. By assumption the plasma occupies the 
half-space on the right and therefore the region of ab- 
sorption is situated to the left of the transparency zone. 
In a stable plasma there will be no waves propagated 
since otherwise this would mean that instead of absorp- 
tion generation of waves is taking place. 

The situation i s  altered if one considers an unstable 
plasma in which the inequality InyT<O is possible. For 
example, let the plasma contain an electron beam prop- 
agating along the x axis from left to right with a velocity 
u greater than the thermal velocity of the plasma part- 
icles. If damping of the oscillations by particles belong- 
ing to the plasma i s  negligibly small, then the following 
inequalities holdce1 

Im er>O for k.<o/u, 

Irn er<O for k.>oh. 

Therefore if the values of k,> o/u satisfy conditions 
(2.5), (2.7) then both integrals in (2.8) a re  convergent. 
In this case there a re  no reasons to regard the constant 
of integration & to be identically equal to zero, and the 
solution is determined by the general formula (2.8) in 
which the second integral describes longitudinal waves 
propagated from left to right. These waves a re  excited 
in the plasma by the resonance particles of the beam, 
i.e., a transfer of energy occursfromthe medium tothe 
electromagnetic field. In future we shall not consider 
unstable plasmas and shall dwell in greater detail on the 
investigation of the solution (3.1). 

4. ASYMPTOTIC FORMULAS 

A rigorous mathematical investigation can be carried 
out only if one introduces additional specific assump- 
tions into the problem posed above. For example, in 

Ref. 4 the solution was obtained in the form of an inte- 
gral obtained from (3.1) if the relations (1.1), (1.2) a re  
satisfied. The corresponding asymptotic expressions 
for the solution were also found in the same paper. 
Nevertheless it i s  possible to obtain certain natural 
estimates directly from the general expression (3.1). 
We shall consider k, to be a complex variable. The 
contour of integration in (3.1) can be deformed in such 
a manner that the free end would recede to infinity in 
the region in which Re[ikP+ In+-(k) 1 < 0. In obtaining 
asymptotic estimates an important role can be played by 
saddle points in which the derivative of the integrand 
vanishes. Differentiating the rapidly varying exponen- 
tial in (3.1) we obtain the eikonal equation: 

kzs (r ,  k) =a,,k,k,-~b,~k,k,+e*(k) k2==O; (4.1) 

<(x, k) i s  the longitudinal permittivity of the plasma, 
(4.1) is a transcendental equation with respect to k ,  
which, generally speaking, has infinitely many solu- 
tions. Among the solutions there are  three "cold" ones 
which remain finite for e T =  0. Of these three solutions 
only one i s  essential for us: k,= ko(x, k,), which for 
x =  0 produces in virtue of (2.2) a wave propagating 
parallel to the x axis (ko(O, k,) = i a). The "hot" solu- 
tions of (4.1) which become infinite for cT=  0 are  
associated with the presence of plasma waves. We 
assume that a significant contribution to the integral is 
made by not more than one plasma wave and we denote 
the corresponding root of (4.1) by k,(x,k,). For an 
arbitrary relationship between the small quantity xu-' 
and rT(k) the separation of the solutions into "hot" and 
"cold" ones is of an arbitrary nature and therefore for 
the sake of definiteness we assume that the plasma 
wave corresponds to the root of greater absolute value, 
i.e., Iko 1 < Ik,(. If the contour of integration can be 
made to pass through the point k, in the direction of 
"steepest descent," and also if 

then the potential for the plasma wave can be easily cal- 
culated. Indeed, let AB be the direction "steepest 
descent" near the saddle point k, (cf., Fig. 1). We 
assume that the contour of integration in (3.1) can be 
represented in the form of the dashed line AB with I k, I 
2 I k I, I kT - kB ( 2 I kT I a In virtue of the inequalities 
(4.2), (4.3) the integral over the segment AB can be 
evaluated by the saddle-point method. From this we 
obtain 

Here (pT(x,k1) is the potential for the plasma wave 

*T 
in 

'Y ( k ~ ,  2) = - -i;- + i k ~ z  + R (k) 1+rT - i 1 t (It,, k,) dk,', 
T 

60 Sov. Phys. JETP 47(1), Jan. 1978 S. M. Dickman 60 



with the integral over BO' we obtain for the latter: 

and it i s  assumed that 

It can be easily verified that 

so that the expression (4.4) can be represented in the 
form of the formula 

rn LL) = c p - ~ ( k ~ )  [2mk1& k T ] - * ( Q  (k) lks,=kT) 

in xexy[ia)k, (z'. kl)dz' - - + iL f R(k) 4 - (4.5) 
I 

in which Z i s  found from the equation [&, k) I = 0. A 
necessary condition to obtain this estimate for the inte- 
gral over AB is the requirement that p,(x,k,) should be 
regular for x-&a. Formulas (4.4), (4.5) must satisfy 
this condition automatically. 

We note the following important circumstance. The 
function p,(x, k,) represents a geometrical-optics 
approximation obtained by us from formula (3.1) which, 
in its turn, is valid if the conditions (2.5), (2.7) a re  
satisfied. Of course, in actual fact in order for (4.5) to 
be valid it i s  sufficient to have conditions (4.2), (4.3) 
satisfied, and the propagation vector must be deter- 
mined from the eikonal equation E i,(x, k)k ikj = 0, in 
which the expansion in terms of x/a i s  not utilized. 
Formula (4.5) can be obtained directly from equation 
(1.5) by the method of the WKB approximation. If con- - 
ditions (4.2), (4.3) a re  not satisfied, then conditions 
(2.5), (2.7) will certainly hold and the solution should be 
sought in the form (3.1). 

In addition to the segment AB it i s  necessary to take 
into account the contribution which is given by integra- 
tion over BO. It may be easily seen that from condi- 
tions (4.2), (4.3) with (4.1) taken into account the in- 
equality 

follows as a rule. If for I k, 1 - I xl -' the condition1) 

i s  also satisfied, then in the integral (3.1) over BO one 
need not take into account the dependence of 6(ki,k,) on 
ki, since the integral converges for values I k, 1 - I x 1 " 
long before this dependence becomes essential, A s  a 
result of integrating over the contour BB'O and of ne- 
glecting the small integral over the arc  BB' compared 

0 

~ o ( z ,  k,) = c p - O  (k,) ( 2 ~ ) ~ ~  I (bgk,kp)-If. 
-- (4.8) 

x Q(k) exp[R (k) +ik.(z-I (0, k,)) Jdk, 

The potential @,(x,k,) describes the "cold" waves in the 
plasma, including the characteristic longitudinal wave 
with k,= k,(x,k,). The field is obtained by the sum of 
expressions (4.5) and (4.8): 

'T' (2, k ~ )  =cpr ( t ,  k,) +cpU(2, k,). (4.9) 

Differentiating (4.9) with respect to x one can obtain the 
component Ex of the electric field and it turns out that 
for a real k, the expression ( 8qT/8xl >> 1 8cp0/8x I holds, 
and therefore Ex is determined basically by the plasma 
wave. But if 11mk,xl >> 1, then the potential (4-5) is 
exponentially small and this corresponds to a strong 
damping of the plasmawave, and in this case Ex =-8qo/8x. 

For a comparison with the results of Ref. 4 we con- 
sider separately formulas (4.5) and (4.8) in the case 
when 

In (4.8) the dependence of 6(0,k,) on L, i s  then not 
essential. Neglecting collisions we evaluate the integral 
(4.8) for values of ] X I < <  k;': 

0 

cpo-cp-u(2r) -I 5 (-ak.) -'-'" exp (ik,z) d(kp).  (4,lO) 
-- 

Here o= b;i(aa,+a,)ka. For u=O the integral (4.10) 
diverges at the origin. But this divergence is fictitious. 
It can be removed by replacing the upper limit of inte- 
gration by the quantity 

We obtain finally 

As i s  expected p, for a =  0 depends on x logarithmically. 
The strongest singularity at the origin occurs in the 
component EO, of the electric field: 

E."-cp-"2na) -'r (i-ia) (za-')'-ae"". (4.12) 

We calculate the power dissipated in the plasma. The 
field i s  determined by the sum (4.9), but the principal 
contribution to the integral 

i s  given by the component (4.11). Going around the 
singularity at x=O on the lower side we obtain 

Here P differs from zero because the permittivity ten- 
sor  for the cold plasma (2.1) i s  not Hermitian for corn- 

61 Sov. Phyr JETP 47(1), Jan. 1978 S. M. Dickman 61 



plex x. The flux of energy transported by the wave for 
values of x such that I lmkT 1 << I ~ e k  ,I , is determined 
basically by the solution (4.5) and therefore can be cal- 
culated by means of the Poynting vector 

(cf., Ref. 7). From this we obtain the result S,+ P= 0 
which follows from the law of conservation of energy. 
It can be easily seen that (4.11)-(4.13) differ from the 
corresponding formulas in Ref. 4, 5 only by constant 
factors. 

5. SOME SPECIAL CASES 

First of all we consider an isotropic plasma without 
a magnetic field:c8* 91 

OU-0, bij-a-16ul 

er (k)  =-3r,'(k.'+kLZ) ai. 

The singularity at x=O in a cold plasma is associated 
with the excitation of electron Langmuir oscillations. 
Collisions are not taken into account: v,,/w << cT. 
Then (3.1) assumes the form (i = 0 )  

'4 (2, LA) =cp-* (kA) (2n) 5 (k2+kli) -* -- 
X exp (ad+kD',krJa) dk, 

(5 .2)  

Here we have set x '=x+3rGk:a .  From this one can 
easily find formula (4.5) for the potential of the Lang- 
muir plasma wave (cf., Ref. 4 ,  5):  

cp(z.  k,) -cp-'(kA) ( -4nrr , - I )  -" ( -~' /&a)-~'  

Xexp[ -tn14+2i(-~'/3)"a-~~r~;']. (5.3) 

The potential (4.8) is expressed in terms of special 
functions: 

a 

TD (2,  k ~ )  =cp-' (k,) (2.1) -' j ($'+kLs) -"'exp (ikq') dks='/ip-a (4) 
-- 

x [ i (L , (k ,~ ' )  -I, ( X I ~ , )  ) +2n-'Ka (dk,) 1. (5.4) 

Formulas (5 .3) ,  (5.4) are valid if the inequality 

is satisfied. The transparency zone for the plasma 
wave (5.3) is situated at x'<O. For positive values of 
x'>O the plasma wave is exponentially damped and the 
potential (4.9) is determined only by the one cold wave 
(5.4).  If 1 x'1 5 rD>,  then it is necessary to utilize the 
general expression (5.2).  Figure 2 shows the depen- 
dence of the square of the absolute value of the compo- 
nent E, of the electric field on x for different values of 
k,. The dimensionless function 

FIG. 2. The dependence of the function U on the coordinate 
5 =xrDe-2/Sa"/3 (the parameter is K = k &{'a lJ3) .  

is related to Ex by the expression 

E,(z, kL) = i c p - O  (k,) (251) -'ri:n-"'U (~ ' r~* ' ' o - '~ ,  k , n e  ;"'a" ). 

Figure 3 shows graphs of the real and the imaginary 
parts of U(t, K ) .  

We now consider the case when the singularity at 
x =  0 is associated with the excitation in an isotropic 
plasma of ionic Langmuir waves 

If at the same time we also have ( v e f f / w ) l J 3  >> (k,rD,)" 
>> kxrD, ,  then the thermal motion of the ions need not be 
taken into account and the function cT(k) takes on the 
form2' 
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For the sake of simplicity we assume that condition 
(1.1) is  satisfied, then using formula (3.1) we obtain 
setting 6 = -03, 

The plasma wave in the geometrical-optics approxima- 
tion is  determined a s  before by formulas (4.4), (4.5), 
but formulas (4.8), (4.10) a r e  now no longer valid, 
since the inequality (4.7) for the function (5.5) does not 
hold. Nevertheless one can easily obtain asymptotic 
estimates by noting that the field Ex in the plasma is 
expressed in terms of a Bessel function: 

Here 

From this we obtain for I x" 1 << r g / a  in accordance with 
(4.4), (4.5) 

While for lx" 1 << r$/a  we obtain E x =  qo0_/21rx". We note 
that the transparency zone in which the plasma wave 
(5.6) is  propagated is  situated at x>O, i.e., to the right 
of the singularity. 

We now turn to the case when the spatial dispersion 
is  not associated with the thermal motion of the part- 

icles but i s  determined by the relative macroscopic 
motion of electrons and ions. We assume that the 
electrons move with respect to  the ions along the x axis 
with velocity u,  then 

If 1 k,u 1 << w, then for w,(x) = w the weak spatial disper- 
sion approximation i s  valid: 

From this in accordance with (3.1) we obtain [it i s  
assumed that the relations (1.1) and (5.1) a re  valid, 
and moreover = 01: 

I, 

q--q-'(2n)-' exp(ik&+ik,'wo-')k;' dk,, 
-- 

h--max(k,, a-I).  (5.8) 

The electric field i s  expressed in terms of the prob- 
ability integral @(z) :  - 

E.=icp-0(2n)-L ~ e ~ ~ ( - i ~ z + i ~ ~ a u o - ~ ) d ~  

='liicp-'o" (nal ul ) -'" exp ('/,irr siqn u 
-ioxk/4au) [I-@ ('/,eta I x o"'a-ah 1 u I -'") 1. 

Here 6 takes on the values 3 ~ / 4 ,  n/4, - n/4, -3s/4 de- 
pending on which of the relationships x>O, u>O; x>O, 
1~ <O; x<O, ZL >O; x<O, u <O respectively hold. The 
asymptotic expressions can be sought either from for- 
mulas (4.4), (4.5), (4.8), (4.10), o r  directly from ex- 
pression (5.9). As a result we obtain the electric field 
of the plasma wave: 

FIG. 4. The dependence on 
6 of I VJ6)  1 (solid curves) 
and of I W,(b) 1 (dotted 
curves) for different q .  
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The wave (5.10) i s  excited only if u and x have the 
same sign. This is  associated with the fact that the 
saddle point k ,  of the integrand of (5.8) lies on the nega- 
tive semiaxis in the case when ux>O. But if ux<O, 
then k,>O and the neighborhood of k ,  is not significant 
for the evaluation of the integral (5.8). The "cold" solu- 
tion does not depend on the signs of u and x and i s  
always determined by the formula: 

Expressions (5.10), and (5.10') a re  valid when x2w 
>>a lu 1 .  The field in the plasma i s  the sum of these 
expressions: Ex = E; + q. If the opposite inequality 
x2w << a 1 u ( holds then the field does not depend on x: 

1 
E= = - irg-" (L) " exp (: .ign .) . 

4 aun 

In conclusion we consider a magnetoactive plasma. 
We take the propagation vector kL to be small, assuming 
that the inequalities (1.1) and la1 << 1 are  satisfied. 
Without taking collisions into account we consider the 
first two terms in the expansion of E ' ( k )  in terms of k,: 

The field in the plasma is determined by the integral 

c4 

1 1 
E4=iq-o(2n)-t exp (-ipz - - 3 i3p3 - 3 i y p 5 )  dp. 

0 

For certain directions of the magnetic field the coef- 
ficient f i  vanishes (cf., the expression for p given in 
Ref. 5). In this case the behavior of E,(x) near the 
origin i s  determined by the magnitude of y. In particu- 
lar, y determines the value of the pricipal maximum of 
the amplitude of the field I E , ~ ~ .  Figure 4 shows the 
dependence of the square of the absolute vzlue of the 
function 

a 

V q ( 6 )  --I exp(-i6t-iqt3-its)& 
0 

on 6  (cf. also Fig. 5). The field Ex is  related to V ,  by 
the expression 

in which q = ~ ( 5 / y ) ~ '  5/3. The dotted curve shows the 
dependence on 6 of the square of the absolute value of 
the function. 

The field in the plasma is proportional to W a ( 6 )  if we do 
not take into account the second term in (5.11). Figure 
6 shows the dependence on the parameter q of the mag- 
nitude of the principal maximum of I V a l 2 .  The maxi- 
mum is determined for different values of 6 for a given 
p. A s  can be seen from the diagram this dependence i s  
nonmonotonic for q < O  (i.e., for negative B). Moreover, 
the position of the principal maximum 6, (the thin 
solid line) behaves in a discontinuous manner for cer- 
tain negative values of q .  Such a discontinuous behavior 

FIG. 5. 

of 6 ,  i s  explained by the fact that for certain particular 
q the principal maximum undergoes a change: the main 
maximum decreases in value while one of the auxiliary 
maxima increases and becomes the main one. In Fig. 6 

FIG. 6 .  The dependence of the value of the principal maximum 
of I Va(6)  l 2  on q-curve I, and the dependence of the position 
6 ,  of the principal maximum on the parameter q-curve 11; 
curves III and lV illustrate the corresponding dependences for 
the function Wa(6) .  

64 Sov. Phys. JETP 47(1), Jan. 1978 S. M. Dickrnan 64 



we have shown for comparison by a dotted curve the numerical treatment of the results. 
magnitude and the position of the principal maximum of 
I WJ6) 1 '. For  I q 1 >> 1 the asymptotic equation 

must hold. From Figure 6, it can be seen that for large 
positive q the equality (5.12) is attained quite rapidly 
while for negative q the asymptotic transition from V,(6) 
to Wq(6) occurs considerably more slowly. This fact i s  
also illustrated by Fig. 4. From Fig. 4d, e i t  can be 
seen, for example, that for q < O  the transparency band 
for the plasma wave determined by the function WA6) is 
situated at 6 > 0. But if the plasma wave is determined 
by the function V,(6), then the transparency band for 
q - -1 is basically still situated a t  6 <O. Thus, the 
maxima of I WJb) 1' and I VG(b) 1 ' a r e  situated respec- 
tively on opposite sides of the origin, while for q > O  the 
positions of the maxima of I W,( 6) 1 ' and I Vq(6) 1 ' approx- 
imately coincide (Fig. 4a, b). 
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 he inequality (4.6) may be not valid only for certain functions 
E T@) devoid of physical meaning. As regards condition (4.7). 
i t  is much more rigid; for example, it  is  not valid if cT&) - k i 2  (cf., the following section), but, in any case, it  is al- 
ways satisifed if the function cT(k) exhibits a power depen- 
dence with a positive exponent. 

 he dependence of c r  on collisions indicated above occurs in 
a weakly ionized plasma, and in this case veii= vin. 
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We develop a kinetic theory of the nonlinear wave interaction in a semi-bounded plasma for the specular- 
reflection model. We obtain the nonlinear equation for the field; we use this to study the surface-wave 
resonant interaction that leads to decay and explosive instabilities. 

PACS numbers: 52.35.Mw, 52.35.Py, 52.25.Dg 

1. INTRODUCTION 

It i s  well known that the electrodynamic properties of 
a spatially uniform plasma a r e  described by giving the 
linear and non-linear electrical susceptibilities. The 
electromagnetic field is then given by the solution of the 
non-linear equations for a given distribution of the 
charges and currents in the plasma.[ll If the plasma is 
spatially bounded the electromagnetic field depends also 
on the conditions given on the surfaces bounding the 
plasma. A distinguishing property of a spatially 
bounded plasma is that together with bulk oscillations 
there exist in i t  also surface waves which propagate 

along the boundary surface and which a r e  damped deep 
in the plasma. 

The structure of the surface waves depends in an es- 
sential way on the shape of the surface and the nature of 
the boundary conditions. It is clear that the boundary 
conditions themselves must be determined by the nature 
of the interactions of the particles in a plasma with a 
bounding surface. The surface waves a r e  described in 
the simplest way in the case of the so-called specular 
reflection model, when one assumes that all charged 
particles incident on the surface a r e  specularly re- 
flected from A number of authorsr6*' (see also 
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