
it is violated. On the other hand, for r~ << 2, the distri- 
bution function depends only on the total energy E. It is 
thus necessary to satisfy the chain of inequalities 

which leads to a lower temperature bound on the range 
of applicability of the results obtained. 

Let us note that in finding the potential of a charged 
dislocation we regarded the donors as fully ionized and 
in doing so restricted ourselves to temperatures such 
that kT>>cd, where c, i s  the activation energy of the do- 
nors. However, our results hold qualitatively even at 
lower temperatures, when screening is provided by elec- 
trons moving among the donors without their prior ac- 
tivation. This occurs until quasicontinuity of the donor 
distribution in the volume of the semiconductor is en- 
sured, i. e., until the distance between the donors nil/' 
is much less than the characteristic scale of variationof 
the electrostatic potential, given by the Debye radius, 
i. e. 

For germanium in which m - 10'a8g, x = 16, nd - id3 c ~ ~ ,  
and 1Oq < < c lo-', a combined analysis of the inequalities 

(25) and (26) shows that the results obtained in this work 
are qualitatively valid down to temperatures T- 30 K. 
For the temperature at which the dependence of the cross 
section on temperature goes over from a power function 
to an exponential one we obtain To- 130 K. The absolute 
magnitude of the capture cross section (radius) in the 
temperature range '30 K < T < 300 K proves to be of the 
order of 3 10'' cm c o < 2 10" cm, which is in agree- 
ment with the experimentally observedca1 large cross 
sections. 

The author is deeply grateful to I. B. Levinson, Yu. 
A. Osip'yan, and V. B. Shikin for numerous discussions 
of the results of the work and for valuable comments. 
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The temperature dependence of the electron-phonon thermal conductivity is obtained by numerid solution 
of the kinetic equation and compared with experiment. 

PACS numb: 74.30.Ek 

1. In very clean superconductors the electronic ther- 
mal conductivity x, is determined entirely by the scat- 
tering of electrons by phonons (%,*) and by the crystal 
boundaries, while the phonon thermal conductivity ic ,,is 
determined entirely by the scattering of the phonons by 
electrons (X ,he) and also by the crystal boundaries. The 
solution for the nonequilibrium correction rp to the elec- 
tron distribution function f has the f ~ r m ~ " ~ '  

where c = (6% A~)"'. Under the conditionc2' 

the decisive role in the calculation of the electronic 
thermal conductivity, a s  was noted in the work of Gure- 
vich and Krylov, ['I is played by the function cp~. InRef. 
3 an integral equation for rp, was obtained. In this arti- 
cle we report the results of a numerical calculation of 
the electronic thermal conductivity, based on the solu- 
tion of th is  equation, and compare the results with the 
experimental data. We neglect the influence of the non- 
equilibrium character of the phonons on the electrondis- 
tribution function, which is permissible for tempera- 
tures that are  not too 10w~*~ ' :  

2. For the electronic thermal conductivity in a nor- (2) 
mal metal we have, using Matthiessen's rule, 
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~'4 a* FIG. 1. Plots of the function 
$(y, b) for different values of '' b: 1)  t = l ,  b=O; 2) t = 0 . 8 ,  b 

a, =1.55; 3) t = 0 . 6 4 ,  d = 2 . 4 1 ;  4)  
t = 0 . 4 8 ,  b=3.50;  5 )  t = 0 . 3 6 ,  

I at b = 4 . 8 1 .  

Y l O  8 6 4 2 - 6 '  

The first term in (3) is due to scattering by phonons and 
the second to scattering by impurities or the crystal 
boundaries. As a rule, even in the case of a pure metal 
it is necessary to keep the second term, since it be- 
comes essential in the low-temperature limit. In super- 
conductors the thermal conductivity is usually repre- 
sented in the form 

(here and below, t s  T/T,). The function f (t) has been 
calculated repeatedlyc"51 and agrees well with the ex- 
periments. 

The function g(t) is connected with the correction to 
the electron distribution function by the relationst2' 

The function is connected with the function cp3 in (1) by 
the relation 

(cu, depends on the matrix element of the electron-phonon 
interaction, the sound velocity and the Fermi velocity"') 
and obeys the integral equationa' 

As follows from (5)-(7), for the BCS model the func- 
tion g(t) is a universal function of t. The integral equa- 
tion (7) was solved by reducing it to a Wear equation of 
large rank. The mesh frequency was chosen everywhere 
to be such that the accuracy of the calculations was not 

TABLE I. 

worse than 1%. The explicit form of the function @(y,b) 
for several values of b is shown in Fig. 1. The depen- 
dence of b on t in the BCS model has been calculated and 
tabulated in detail by ~Uhlschlege l .~~ '  Since the function 
g(t) describes a whole class of superconductors close to 
the BCS model, we also give its values in the form of a 
table. It is interesting to note that, despite the rapid 
decrease, associated with the gap, in the number of elec- 
tronic excitations, the absolute value of the thermal con- 
ductivity x,, increases right down to extremely low 
temperatures (see Table I). Below temperatures such 
that 

i. e., for tS0.4, cl'e' it is necessary to take into account 
the contribution of the phonon thermal conduction. L51 

A comparison of the dependence g(t) calculated for the 
BCS model with the experimental data for tinc7' and in- 
diumh*81 is given in Fig. 2. Here the thermal conduc- 
tivity of tin has been taken as  an average over different 
directions. 

3. It is natural to ascribe the slight deviation of g(t) 
from the experimental points to strong-coupling effects, 
which manifest themselves, in particular, in the differ- 
ent temperature dependence of b(t) from that in the BCS 
model. To take these into account one sometimes uses 
the semi-empirical formula 

where AC is the difference in the specific heats above 
and below the transition point. For the BCS model, 
ACES /Cn= 1.43; for tin, AC/C, = 1.6. As a comparison 
with the experimental data of Ref. 9 shows, formula (8) 
is not a bad description of the temperature dependence 
b(t) in the temperature region under consideration. The 
theoretical curve calculated from formula (8) is given by 
the dashed line in Fig. 2. 

FIG. 2.  Plot of the function 
M g(t). The solid curve corm- 

sponds to the BCS theory, and 
the dashed curve i s  calculated 

,, from formula (8) for Sn with 
corrections for strong-cou- 

effects; o d a t a  for gT X-b for h. tT.81 

t 47 Q8 09 I0 
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FIG. 3. Plot of the function 
g(t) for lead. The solid curve 
is calculated from formula (9) 
and the dashed curve is cal- 
culated with the coefficient 

To conclude this  section we make comparisons with 
the calculations in other papers. In Ref. 4 the func- 
tion g(t) was determined by means of a variational meth- 
od. The form of the trial function differed substantially 
from that given in Fig. 1. In Ref. 4 the function g(t) was 
found to increase below the transition point, owing to an 
unfortunate choice of the trial function. 

In Refs. 10 the method of Landau and ~ o m e r a n c h u k ~ ' ~  
was used to solve the electron kinetic equation. In this  
case, a correction even in t to the distribution function 
was used to determine the temperature dependence of 
the thermal conductivity. Because the correction is 
even, in the calculation of the heat flux Q it is necessary 
to take into account the dependence of the momentun on 
t ( p  =po(l + 5/2%)). Then the integrand in the expression 
for Q turns out to be close to the integrand in (5), and 
this leads to good agreement with experiment. C'O1 How- 
ever, the good quantitative agreement between the ex- 
pressions for the ratio of the thermal conductivities not 
only in the region ( y  - b)/b << 1 but also in the broader 
region y - b can scarcely be regarded a s  constituting a 
rule. We note also that, in view of the fact that the so- 
lution of the momentum type is a solution of a homoge- 
neous equation, '"when the nonequilibrium character of 
the phonons is taken into account the equation for the 
electron distribution function, despite the fact that the 
drag effect is small, will have a different mathematical 
form. L2' 

4. In order to examine the question of the applicabil- 
ity of the calculations of Ref. 2 in the case of supercon- 
ductors with strong coupling we have calculated the 
temperature dependence of the thermal conductivity of 
lead near T,. In this region, for the temperature de- 
pendence b( t )  we can use the formula 

Figure 3 shows the results of the calculation (the solid 
curve) and the experimental data of Refs. 12 and 13. 
Even with the factor 4.5 in formula (9) the theoretical 
curve is much higher (the dashed curve in Fig. 2). 
Finally, calculations using the formula (8) (for lead, 
AC/C,, = 2.65) would lead to a curve coinciding with the 
solid curve in Fig. 3 near T, and coinciding with the 
dashed curve near t = 0.9. Thus, for lead the difference 
between the theoretical curve and the experimental data 
turns out to be rather substantial, indicating the need to 
use a more refined model. 

The authors express their gratitude to A. P. Petrov, 
who suggested the method for solving the integral equa- 
tion. 
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