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The statistical tensor method is used to develop a theory of the dependences of the intensity and phase of 
an echo signal on the phases of the input pulses. General relationships are obtained between the 
components of a statistical tensor before and after the passage of a pulse. An analysis is made of the 
formation of an echo signal allowing for the scatter of local fields which alter the statistical tensor. It is 
shown that the appearance of a signal independent of the phase of the second pulse is associated with the 
quadrupole inhomogeneous broadening mechanism. The adopted method also predicted a characteristic 
feature of the quadrupole inhomogeneous broadening mechanism involving a change in the statistical 
tensor rank. The possibility of detecting this feature is discussed. Some properties of the "forbidden" 
quadrupole echo signals are discussed. 

PACS numbers: 76.60.Lz, 76.20. +q 

INTRODUCTION 

It has been thought that the dependences of the inten- 
sity and phase of a spin echo signal on the phases of the 
input pulses a re  well understood. However, the case 
when one o r  both pulses a r e  acoustic has been attract- 
ing special attention because i t  is necessary to allow 
not only for the initial phase but also for the phase k. r, 
where k is the wave vector of the acoustic vibrations 
and r is the radius vector of the nucleus under consid- 
eration. Averaging over the volume of a sample reduces 
the echo signal by a factor of a t  least X/l, where X is 
the wavelength and 2 is the length of the sample. There - 
fore, several pulse combinations with mutually compen- 
sating phases have been suggested. L1*23 The f i rs t  ob- 
servations of a nuclear spin echo signal, excited by a 
combination of electromagnetic (M) and acoustic (A) 
pulses, were reported recently. [3*41 It was found that 
the intensity and phase of the echo signal were complete- 
ly independent of the phase of the A pulse. The expla- 
nation was based on the fact that the formation of the ob- 
served echo signal was due to the quadrupole inhomo- 
geneous broadening mechanism. In all  these investiga- 
tions the calculations were carried out for nuclei with 
certain specific values of the spin. As shown below, a 
number of inaccuracies was committed o r  use was made 
of additional ideas not related to the dependences of the 
echo on the input pulse phases. 

Our aim is to investigate, for arbitrary spin, the de- 
pendences of the A and AM pulses on the phases and to 
identify the role of the inhomogeneous broadening mech- 
anism. We shall develop a theory of the spin echo using 
the method of statistical tensors. We shall show that 
this method is particularly convenient in determining the 
dependence of the echo signal on the input pulse phases. 
The adoption of a coordinate system rotating with the 
initial phase makes i t  possible to obtain general rela- 
tionships between the statistical tensor components R: 
before and after the passage of a pulse. These relation- 
ships a r e  valid for any spin and any type of a periodical- 
ly varying classical field on condition that the spin sys-  
tem has an equidistant spectrum. Such relationships 
depend only on the change in the magnetic quantum num- 

ber  Anz governed by the nature of the input pulse. The 
statistical tensor method allows us also to consider, 
from a general point of view, the formation of an echo 
signal allowing for the scatter of the local fields which 
alter the components. We shall show that the appear- 
ance of a signal independent of the phase of the second 
pulse i s  entirely due to the quadrupole inhomogeneous 
broadening mechanism and is independent of the nature 
of the external field. The method predicts also another 
characteristic feature of the quadrupole inhomogeneous 
broadening mechanism, which involves a change in the 
rank of the statistical tensor. Such a change gives r i se  
to precessing magnetization components also in those 
cases in which this has been regarded (so far)  a s  impos- 
sible. Moreover, we shall consider the possibility of 
detection of electromagnetic signals due to a change in 
the statistical tensor rank. 

1. PHASE RELATIONSHIPS IN  A SPIN SYSTEM 
AFTER ONE INPUT PULSE 

In the most general case the interaction of a nucleus 
with an external classical field is described by the Ham- 
iltonian 

where T' and V' a r e  spherical irreducible tensor oper- 
ators of rank I s 21, representing respecitvely a nucleus 
of spin I and an external classical field. Let us  assume 
that the spin system is described by the density matrix 
p(t ) ,  related to the statistical operators Rr of rank 1 and 
to the components R: byC5] 

where (:::) a r e  the 3j symbols. 

If we use the expansion (1.2) and the commutation 
relationships between two irreducible tensor operators 
T: and T;, C6' the equations of motion for the density 
matrix yield the following system of equations for R:: 
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where the structure constants a r e  

Here, (:::) a r e  the 6j  symbols. 

We shall f irst  consider the interaction of a nucleus 
in a static magnetic field H with a rotating rf field of 
frequency w, amplitude w,, and initial phase p. The 
action of such a M pulse is described by the Hamilto- 
nian 

where w, is the Zeeman frequency. According to Eq. 
(1. I), the expression (1. 5) contains only irreducible 
tensor operators of the f i rs t  rank. It then follows from 
Eqs. (1.3) and (1.4) that 

io, -- [l(l+i)-q(q+l)l":Rq+lex~[i(ot+~) I .  (1. 6) - 
We shall introduce new statistical tensors P: using the 
condition 

P,'=cxp { - i q ( o t t v ) ) R , ! .  (1.7') 

The transformation (1.7) represents conversion to a 
coordinate system rotating with the initial phase cp. The 
system (1. 6) reduces to 

dPql -- i o ,  - -iq(o,-o)P,'  - - [ l ( l + l ) - q ( q - 1 )  l'%-1 
dt 2 

which is easily solvedcT1 giving 

p q , ' ( t ) - ~ : f q ( ~ .  0 1 ,  ~ ) P , ' ( o ) ,  (1.9) 

FX,(O, a , ,  t )  = ~dq,',~~(a)exp~-iqwo.lltld~f~ (a)P,L ( 0 ) .  (1. 10) 
q",q 

Here, did (a) a r e  the rotation matrices, w ,, =[(hw2) 
+ wf]112, AW = w, -0, tan cy = w ,/w. 

If we now return to the laboratory coordinate system 
by the inverse of the transformation (1.7), we obtain the 
following dependence of the M-pulse phase: 

Rqzl ( t )  =exp(-i  ( q - q ' ) c p ) ~ ~ ! q ( ( o ,  o l ,  t )  e x p ( - i q ' o t ) ~ ;  ( 0 ) .  (1. 11) 

If the input pulse has a randomly varying phase cp, we 
have to average Eq. (1.11). Then, only the components 
~ : : ( t )  with q' = q do not vanish. If the initial state is 
described by a set  of tensors Rk(0) associated only with 
the diagonal elements of the density matrix, the appli- 
cation of a noncoherent pulse does not produce ~ : ( t )  with 
q #O. Hence, it follows that the transverse components 
of the magnetic moment vanish. Similar results a re  
obtained i f  the spin system is subjected to an A pulse 
producing transitions which alter  the magnetic quantum 

number by Am = * 1. However, in contrast to a M pulse, 
the ranks of the tensors R: before and after the passage 
of the pulse may be different. 

We shall now consider an acoustic pulse causing 
transitions with Am = + 2. The interaction Hamiltonian 
is 

%A=AonI.+a[I+2 exp { - i ( o t + $ )  ) +I-' exp ( i ( o t + $ ) I  I ,  (1.12) 

where I)= k.r5 + rp, k is the wave vector of sound, r is 
the radius vector of a spin j, p is the initial phase of 
the A pulse, and la l is a constant governed by the elas- 
t ic properties of the investigated crystal and by the di- 
rection of the acoustic vibrations relative to the mag- 
netic field. 

Formulas (1.3) and (1.4) give the following system of 
coupled equations 
dR,' - = -iqo.~~'+~~~~ex~[~i(ot+$)]+~'~~~~ex~[~i(ot+g)], 
dt 

(1.13) 

where the coefficients A and A' a r e  expressed in t e rms  
of the structure constants, 6j  symbols, and 3 j  symbols. 
The explicit form of these coefficients is unimportant 
because the phase dependence of interest to u s  can be 
obtained in a general form. The substitution 

transforms the system (1. 12) to a system of linear dif - 
ferential equations with constant coefficients: 

The general solution of this system is analogous to (1.9) 
but with a somewhat different function @:::(w, w,, t ) :  

The application, to this solution, of the transformation 
which is the inverse of (1.14) gives the following rela- 
tionship between the statistical tensors before and after 
the passage of a pulse: 

( t )  e x  - i q -  - q ( o , l ,  t p - t 0 .  (1. 16) 
2 " '  

Formulas (1.11) and (1.16) a r e  easily generalized to 
the case of any periodic perturbations characterized by 
irreducible tensors of rank I and causing transitions 
with Am =p. We still have Eq. (1.16), but now $12 
should be replaced with $/p. In this way we obtain the 
following results: in the case of an equidistant spectrum 
the phase of an input pulse affects all the components 
of the statistical tensors with the exception of those for 
which q' = q. The rank 1 can change in an arbitrary 
manner. It follows from the relationship (1.2) that the 
average values of the irreducible tensor operators a r e  
F:a R:. Therefore, there is no dependence on the phase 
not only in the case of sequences such a s  (I,(O)) - (I,@)), 
but also such as, for example, (I,(O)) - ((I& + I, I+)(t)). 
The existence of such a phase dependence is particularly 
important in the case of A pulses because $ depends on 
the radius vector of the nucleus under consideration and 
we have to average over the whole sample, which r e -  
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duces greatly the average spin operators. It also fol- 
lows from the relationship (1.16) that the assumption of 
many -quantum nature of the interaction between the spin 
system and a A pulse, which is made by Golenishchev- 
Kutuzov et  al. is not related to the dependence of the 
echo signal on the input pulse phase. 

In solving the system (1.3) we have to use not only 
Eqs. (1.11) and (1.16) but also allow for the initial con- 
ditions. In the high-temperature approximation (gPH 
<< kT, where g denotes the nuclear g factor), we obtain 
the following initial conditions from Eq. (1.2): R ~ ( o )  
# 0, R;(O)s 0 for all values of 1 > 1. It follows from the 
system (1.6) that an rf field does not al ter  the rank 1. 
Then, for the stated initial conditions we obtain the non- 
zero components R;(t) and Rf l(t). For the A pulses 
causing transitions with Am = f 1, the coupled system of 
equations relates statistical tensors of different ranks 
1. In contrast to the case of a LM pulse, the same initial 
conditions give RIl(nl), Rf2(n1), . . . , ~ 3 ~ - ~ ~ ( n ~ ) ,  where 
n1 is the duration of action of an A pulse. For A pulses 
with Am = i 2 ,  we obtain the following se t  of the statisti- 
cal tensors: R;(n1), Rf2(nl), . . . , RF(rl), RyuI(nl). How- 
ever, the dependence of the phases is given by Eqs. 
( 1  11  and ( 1  1 6 )  Before investigating the dependences 
of an echo signal on the input pulse phases, we shall 
consider the formation of this signal employing the s ta-  
tistical tensor concept. 

2. FORMATION OF AN ECHO SIGNAL 

Let us  assume that after the action of a f irst  pulse of 
duration r1 a system of nuclei is described by the sta- 
tistical tensors R:f(n,). An echo signal after the action 
of two pulses separated by an interval r12 is obtained if 
allowance is made for the deviation Aw of the reso- 
nance frequency w, from its average value w. As usual, 
let us  assume that the scatter of AW obeys the normal 
law exp[- ( A W ) ~ T ~ ~ / ~ ]  of width 1/T$ We shall postulate 
that these deviations a r e  due to local fields. The in- 
fluence of a static local field after the action of input 
pulses can be described by the perturbation factor 

where (m, I A(t) I ma) a r e  the matrix elements of the 
evolution operator A(t). Usually, deviations from the 
resonance frequencies a r e  described in the first  ap- 
proximationLB1 by the Hamiltonian Zl, which commutes 
with the Zeeman interaction Hamiltonian. In this case 
the perturbation factors simplify to 

Here, Em a re  the eigenvalues of the operator Up 
to the moment r12 from the application of the first  pulse 
the spin system is described by the following statistical 
tensors: 

R:(n,, T ~ ~ ) - G ~ ( T ~ ~ ) R ~ ~ ~  (3%). (2.3) 

In the case of the dipole inhomogeneous broadening 

mechanism the deviation from the resonance frequency 
is governed by the Hamiltonian = - fiAwI, and the per - 
turbation factor assumes, in accordance with Eq. (2.2), 
the form 

~ , , " ( t )  =exp [ - iq lo t l .  (2.4) 

s o  that up to the moment rl2 when the second pulse a r -  
rives, we have 

Rtll(nI, T ~ ~ ) - R ~ ~ ~ ( ~ ~ )  exp [?iAortzl.  (2.5) 

The action of the second pulse of duration n2 is described 
by Eq. (1.10) but R;(o) should be replaced with the ex- 
pression for R:~(T,, rl2). After two pulses separated by 
an interval r12 between them at  a time t from the f i rs t  
pulse the spin system is described by the following sta- 
tistical tensors: 

The observed echo signal is governed by the average 
value of (I,), which-in accordance with Eq. (1. 2)-is 
(I,(n,, r12, n2, t)) a: (R: + ~ 1 , ) .  Substituting in Eq. (2. 6) 
the values of R: obtained by means of Eqs. (2.4) and 
(2.3), we find that the final expression for (12 is a sum 
of terms multiplied by the following exponential func- 
tions: 

erp [ - i lo t ] ,  exp [-iAo (t-r12) 1, exp [ - i A o  ( t - 2 ~ ~ ~ )  1. (2. 7)  

Averaging over a normal distribution gives, respective- 
ly, 

The last term represents the echo signal a t  the moment 
t=2r12. 

3. DEPENDENCE OF AN ECHO SIGNAL ON THE 
PHASE'OF THE SECOND PULSE 

We shall define the phase cp of the second pulse a s  the 
difference between the phases of the second and first  
pulses. This can be done always by redefining the ini- 
tial phase. 

It follows from the results  of the preceding section 
that only a sequence of statistical tensors 

gives a spin echo signal a t  a moment t =2r12 in the case 
of the dipole inhomogeneous broadening mechanism. 
Then, according to Eq. (1. l l ) ,  a change in the phase 
of the second iM pulse by cp relative to the f i rs t  a l ters  
the echo phase by 2 p  in agreement with the well-known 
result. However, and A pulses produce also a 
second sequence of statistical tensors: 

The components of thetensors ~ f ~ ( n ~ )  and Rfi(ni, 712, 82) 
a r e  identical and, consequently, there is no dependence 
on the phase of the second pulse. Substituting the ex- 
pressions (2.4) for the perturbation factors allowing for 
the dipole inhomogeneous broadening, we find that the 
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sequence (3.2) does not produce an echo signal. The 
situation is different in the case of the quadrupole in- 
homogeneous broadening mechanism, which-in the f i rs t  
approximation-can be described by the ~ a r n i l t o n i a n ~ ' ~ ~  

Using Eqs. (2.2) and (2.3), we then obtain 

A similar expression describing the action of the sec- 
ond pulse readily shows that a sequence of the (3. 1) type 
again produces an echo signal a t  a moment t = 2rl2 and 
this signal depends on the phase of the second pulse. 
However, in contrast to the situation when the dipole 
broadening mechanism predominates, Eq. (3.4) for the 
perturbation factor now describes a number of new prop- 
erties: 1) the same value of R: corresponds to a set  of 
frequencies Aw,= (2111 + 1)qAw; 2) for al l  values of p 
4 I I - 1 I, we have Aw,= - Aw,,,; 3) the rank of the ten- 
so r s  R: may change. After the second pulse transform- 
ing R:(nl, ri2) into R:i(rl, r,,, a,), the perturbation factor 
again contains terms of the (3.4) type, but instead of the 
time interval r,, we now have t- rip The f i rs t  of these 
properties produces a ser ies  of quadrupole echo signals. 
From the second property i t  follows that, in particular, 
the echo signal appears a t  t = 2rl2  also for the sequence 
(3.2) independent of the phase of the second pulse. 
These results apply to .If and A pulses and they demon- 
strate that the echo signal has two components: one de- 
pends on the phase of the second pulse and the other is 
independent of this phase. In the special case of I=$ 
this i s  in agreement with the conclusions reached by 
Alekseev ef al. However, in addition to this conclu- 
sion, Alekseev et al. L21 asser t  that for I = 2  and the di- 
pole inhomogeneous broadening mechanism, we can have 
an echo signal independent of the second-pulse phase, 
which is incorrect. 

The property 3) may be important in sequences of 
two o r  more acoustic pulses. For example, i t  has been 
statedLi1 that two identical A pulses produce no precess- 
ing components of the magnetic moment if the spin i s  
I= 1. In fact, a general analysis of the solutions of the 
system (1.6) made a t  the end of the first  section of the 
present paper seems to confirm this conclusion for a r -  
bitrary spin. However, in view of the quadrupole in- 
homogeneous broadening mechanism which alters the 
rank of R:, we can have the following situation for a 
sequence of two A pulses with Am = * 1: 

The average values of ( I , )  do not vanish only because 
of the presence of the perturbation terms G~:*~)(T~~) .  

However, there a r e  also additional phase factors con- 
taining k. r,, which weaken the echo signal, If a third 
acoustic pulse with Am =i2 is applied, the phase shift 
is compensated in accordance with Eqs. (1.11) and 
(1.16) and the signal intensity r i ses  again. 

Let us consider the case when two acoustic pulses 
generate an electromagnetic echo signal. Difficulties 
associated with the generation of sound a t  two frequen- 
cies by means of the same piezoacoustic transducer can 
be avoided by applying A pulses with A m = 1 to one 
side of a crystal and A pulses a t  twice the frequency to 
the opposite side. According to Eq. (1.161, in this case 
the phases of the A pulses become compensated and the 
generation of an electromagnetic signal is possible be- 
cause of a change in the rank of R: by analogy to Eq. 
(3. 5). 

We shall conclude by considering certain features of 
the "forbidden" quadrupole echo signals. So far, we 
have ignored the quadrupole splitting AwQ during a pulse 
and allowed for i t s  action only in the interval between 
the pulses. However, if AmQ-  w,, i t  is necessary to al- 
low for such splitting also during a pulse. The system 
(1.8) now acquires terms -ihw&F1 on the right and, 
therefore, we find that even for LM pulses-in contrast 
to the sequences (3.1) and (3.2) when there is no phase 
dependence o r  the echo signal depends on p-the "for- 
bidden" echo signals may be governed by different phase 
dependences on q, 347,447,. . . , 121+ 11 cp 

The author is grateful to G. M. Ershov for valuable 
discussions. 
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