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The problem of the shape of spectral lines due to hyperfine transitions in active atoms in an inert buffer 
gas atmosphere is solved. The solution is based on the quantum-mechanical kinetic equation for the 
density matrix of the radiating atom. The derivation and solution of this equation is based on the 
following assumptions: the collision time is small in comparison with the mean free time, the probability 
of reorientation of electron and nuclear spins is small in each collision, and the number of collisions 
during the emission time is large. It is shown that the line width and shape depend significantly on the 
strength of the weak magnetic field producing Zeeman splitting of the hyperfine structure levels. In zero 
magnetic field, the l i e  width is comparable with the l i e  shift. As the field increases to a value in the 
range 0.01-1 Oe, the width is found to decrease appreciably and becomes smaller than the shift by a few 
orders of magnitude. The line shape is then approximately Lorentzian. The shifts and widths due to the 
combined operation of the Doppler effect and collisions are expressed in terms of exact quantum- 
mechanical scattering amplitudes. Quasiclassical expressions are obtained for these quantities together 
with quantum corrections due to the nonclassical character of the translational motion of the atoms. For 
light atoms, these corrections can amount to up to 10%. 

PACS numbem 31.30.Gs, 32.60.+i, 32.70.J~ 

1. INTRODUCTION 

Detailed knowledge of the shape of spectral lines, es- 
pecially those associated with hyperfine transitiond, is 
important for many applications, for example, radio 
astronomy, resonance experiments in optics, quantum 
frequency standards, and s o  on. The shift of spectral 
lines due to  hyperfine transitions, which is produced by 
collisions between radiating atoms in an inert buffer 
gas, has been calculated by a number of  author^,^'"'^ but 
all these calculations were performed for the two-level 
system in the quasiclassical approximation to  the motion 
of the colliding atoms. However, real  atoms have more 
than two levels and the quasiclassical approximation i s  
not really valid for light atoms. In fact, quantum-me- 
chanical corrections may well be important. Line broad- 
ening was not calculated in most of these papers although 
the line width is important for many purposes, for ex- 
ample, when the atomic system is exposed to resonant 
radio or  optical frequency pump fields. This problem 
was partially solved in our previous but a gen- 
era l  enough quantum-mechanical theory of broadening of 
hyperfine structure lines with allowance for many sub- 
levels has not been available. Published calculations 
have frequently been based on special models (see, for 
example, Rautian and sobel'manCQ1 and Sobel' manc lo'), 

s o  that i t  has been difficult to  estimate the accuracy of 
the results obtained in this way. 

For the reasons indicated above, there is considerable 
interest in a rigorous quantum-mechanical solutiom of 
the problem of the line shape, capable of yielding a re- 
sult with a controllable degree of precision. In this 
paper, we use the quantum-mechanical kinetic equation 
to calculate the correlation function in terms of which 
the line shape i s  expressed. The interaction between the 
atoms is taken into account in this equation in terms of 
the exact scattering amplitudes which a re  different for 
different hyperfine structure sublevels. To obtain an 

approximate solution of the kinetic equation, we assume 
that the mean free time of the radiating atom is small  
in comparison with the characteristic time of the prob- 
lem, i. e., the emission time, and we carry  out an ex- 
pansion in terms of the reciprocal powers of the colli- 
sion frequency, which is analogous to the well-known 
Enskog-Chapman expansion. 

It turns out that the width and shape of a line depend 
significantly on the magnitude of the weak magnetic field 
producing Zeeman splitting of the hyperfine structure 
levels. In zero magnetic field, the line width is com- 
parable with the line shift. As the field increases up to 
a value in the range 0.01-1 Oe, which depends on the 
scattering amplitudes and the collision frequency, the 
width is found to decrease substantially and becomes 
smaller than the shift by a few orders of magnitude. The 
line shape is then nearly Lorentzian. 

The shift A and the width r will be expressed in terms 
of the exact scattering amplitude of the atoms. They 
will then be expanded in terms of the quasiclassical pa- 
rameter. Numerical results will be obtained for a num- 
ber of pairs of active and buffer atoms. Both general 
formulas and particular numerical data show that the 
Foley relationc"] (see also ~obel 'man~'~') ,  namely, r/ 
l A I" 1, which is valid to within an order of magnitude in 
the optical band, is not valid in the present case. 

We note that the quantum-mechanical kinetic equation 
was used previously for optical transitions in gases by 
Pestov and ~ a u t i a n ~ " '  and by Alekseev et al.clsl In the 
former paper, the shape of the spectral limes was not 
analyzed in detail. The results of the latter paper can- 
not be directly applied to  hyperfine structure transitions 
which, a s  already mentioned, have specific properties 
related to  the strong dependence of the width on the mag- 
netic field, and the relationship between the shift and 
the width. 
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2. THE KINETIC EQUATION 

The probability of emission of a photon by a radiating 
("active") atom, averaged over all its initial excited 
states p, and summed over the final states vo, is given 
by 

where x ,  u, and w, are, respectively, the wave vector, 
polarization, and frequency of the emitted photon, k and 
p a re  the initial and final wave vectors of the active atom 
po, vo, and p, v a re  i ts  internal states, f 0,(k)wUo i s  the 
initial diagonal density matrix of the excited atom, and 
F,, a re  the matrix elements of the electromagnetic in- 
teraction. The quantities f,wo,,,(k, p; n; w,) a re  the 
Fourier transforms of the nondiagonal elements of the 
two-particle density matrix of the active atoms. Since 
there may be many collisions between the active atoms 
and the buffer atoms during the emission time, these 
Fourier transforms must be determined by deriving and 
solving tile appropriate kinetic equation. The derivation 
of this equation i s  not in itself trivial because the quan- 
tities in which we a re  interested do not have classical 
analogs, and the equation for them cannot be obtained 
from simple balance considerations. The most satis- 
factory way of deriving the required equation is, in our 
view, the diagram method in the form put forward by 
Konstantinov and Perel' ["I (see also D'yakonov and Pe- 
rely [15]). It has the advantage, in comparison with the 
other possible approaches (see, for example, Alekseev 
et al.c131), that i t  provides an indication of the accuracy 
of the approximations employed at all  stages of the cal- 
culation, and can be generalized to more complicated 
cases, for example, when the active atoms a re  exposed 
to radio-frequency and optical pump fields.['61 Within 
the framework of this method, one can conveniently car- 
ry out a systematic allowance for the influence of colli- 
sions in radiative processes and in other situations (an 
example can be found in ~ o ~ t ~ ~ i n ~ ' ' ~ ) .  However, be- 
cause of lack of space, we cannot reproduce the deriva- 
tion here and quote only the final result. 

The kinetic equation for the density matrix of a radiat- 
ing atom can be written in the form 

2xtr 
N,' Re lo,,,(po, PO) -a,. (PO, PO) I 

at 
h3 d3q --j ---;N.b 

2m2 (23) 

xJddpoT ' la., (p.. p.') 1'8 (E,+e.-EOr-e,,) 
P *  +z la,,(p,, pot) I26(E,+e,-Eor-e,.)f,,, (k,  p; x ;  t )  

h3 +- %N,.. d3pra,,~.(por, p .)~~.(pO1,  pa) 
mZ 

c.v. ( 2 4  

Xf, , - . ,  (k, p'; x ;  t)G (Eo+e,-E,'-e,,), (2) 

where w,, = (c, -&,)/ti is the transition frequency, c,, 
c, are  the internal energies of the active atom, ~ , = R ~ p i /  

(2m) is the energy of relative motion of the active and 
buffer gas atoms, m i s  their reduced mass, 

a r e  the wave vectors of relative motion of the atoms be- 
fore and after the collision, 

ma and m, are  the masses of the active and buffer gas 
atoms, and p, q and p ', q '  a re  their wave vectors in the 
laboratory frame before and after collision. The quan- 
tities a,,, (po, p 6 )  a r e  the scattering amplitudes of the 
active atom between the state po, p and p k, p' due to a 
collision with a buffer gas atom or molecule. The 
lengths of the vectors po, ph a re  related by the energy 
conservation law: 

The quantity N :  =Nb  f :(q) represents the occupation num- 
bers of the buffer atoms, N, is their concentration, and 
f ;(q) i s  the equilibrium distribution function. The ini- 
tial-state subscripts pO, vo, a r e  omitted from f,, . The 
last term in (2) can be interpreted a s  the "input" term 
of the kinetic equation ("input" into the states p and v). 
The remaining integral terms a r e  "output" terms; the 
term x - v  takes into account the Doppler frequency shift 
due to the thermal motion of the active atom. 

The derivation of (2) was based on the following ap- 
proximations: a) the collisions were assumed to be bi- 
nary and instantaneous; b) collisions between active 
atoms were neglected; c) the line shift and width, and 
the frequency detuning, were assumed small in compari- 
son with the frequency of the radiated line (this ensures 
that, the last sum over v' contains only terms in 
which c,-E,=E,. - cue  to within RIAw+ir/2t,andwhich 
correspond to the superposition of the spectral lines), 
and d) the radiative widths and shifts y, and A,. of the 
levels a re  not taken into account, nor a re  terms A' 
-iy1/2 that a re  linear in the forward-scattering ampli- 
tudes and correspond to transitions to states kt f p and 
V '  # v for c, =c,. and c, = c u r  (this i s  connected with the 
fact that we a r e  considering hyperfine structure transi- 
tions in the presence of Zeeman splitting when A' and 
y ' vanish and A, and y, a r e  very small). 

It i s  important to note that Eq. (2), which is the start- 
ing point for our analysis, is similar to Eq. (13)of Alek- 
'seev et al. The latter equation suffers from a mis- 
take in the argument of the &-function but, when this is 
removed and the same notation i s  employed as in the 
present paper, the differences between the two equations 
a r e  connected only with the particular properties of the 
hyperfine structure transitions considered here (transi- 
tion energy and momentum of the radiofrequency photon 
both small). 

3. CALCULATION OF THE SHIFT AND WIDTH OF 
A SPECTRAL LINE 

We must now identify the small parameters in terms 
of which we can expand the solutions of (2). One of them 
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TABLE I. Shifts, broadening, and auxiliary parameters. 

Experiment Theory 

I v , i V ~ ~ a - . I ~ n - &  

I I I I I I I I I I I I 

is the small addition to the elastic scattering amplitude 
of the atoms due to the hyperfine interaction: 

.-He 

NazS-He 
Rbw-He 
Rb"-Ar 
RbW-Kr 
RbW-NZ 
Gus-He 
CsLSJ-Ar 
CsLSJ-Xe 

where a@&, po) =a(po, Bo) i s  the amplitude when the hyper- 
fine interaction is ignored (the gas-kinetic amplitude). 
The order of magnitude result is q" l a,, /a I" I U, /U I 
<< 1, where U, i s  the energy of the hyperfine structure 
interaction and U i s  the total effective energy assotiated 
with the interaction between the atoms (of the order of 
their thermal energy). A more accurate numerical es- 
timate will show that q varies from ~ ~ " 1 0 ' ~  for the light 
pair of atoms H-He up to ~ " 0 . 0 1  for the heavy pair 
Cs-Xe. The transition amplitude between the hyper- 
fine-structure and Zeeman levels a,,. = a,,, for p" p 
is frequently not greater in order of magnitude thap a,,. 
This follows from experimental datac'&221 and theoseti- 
cal estimatesc7'a*e9s241 (the transition cross section is 
I a,,, l 2  - 10"~-10'~~ cm2, s o  that I a,,./a 1- 10-~-ld'~). 
The transition amplitude for the interaction between al- 
kali atoms and N2, H,, D,, CH,, C2%, C,H4, cyclohex- 
ane, and other molecules is of roughly the same order 
of magnitude.'lal For the transition amplitudes bettveen 
hyperfine structure levels of the alkali-like ions Sr', 
Ba*, it is found that 1 a,,,/a I <  10~2-5x10~2.C'81 

The small transition amplitudes a r e  also characteris- 
tic for atoms with total electron angular momentum J 
=1/2. This is connected with the selection rule M J  - - MJCe41 for transitions between all the sublevels of a 
given multiplet, and has been confirmed experimen- 
tallyca1 for the thallium atom in the 2 ~ 1 1 2  ground state 
(transition cross section between lo-'@ and 10'" crn2, 
s o  that I a,,./a 16 10'2-10-'). Although the amplitudes 
a,, and a,,, (p' f p) may differ in magnitude, we shall 
characterize them both by the single parameter g as- 
suming that a,, , a,,. - qa, where q<< 1. This will be 
done for order of magnitude purposes. 

- 
*Calculations performed in our previous paperI7g81 using Aw(R) from the paper by Ray et aI.l31 
**Calculations canied out by M. B. Gornyi (preIiminary results). 

173 ( 323 
673 

295 
303 
303 
303 
303 
303 
303 
303 

There i s  one other small parameter, namely, tNe ra- 
tio of the mean f ree  path for elastic scattering L = l/ 
(N, u) and the wavelength X of the radiated photon. At 
pressures of a few torr  (N,"10l7 c m 9 ,  this ratio 4s 
L / x  - 1 0 ~ ~ - 1 0 ' ~  for hyperfine structure transitions., The 
collision frequency between active and buffer gas atoms, 
v = i 3 / ~  - 10' sec-', will be assumed to be large in clom- 
parison with the total line width r, its shift A, and the 

frequency detuning (see Table I). 

6.52 
5.4OiO.Zi 

4.42 
130 [';I 
720 [L81 
-60 [z8] 

-559 [Z8] 
508[ZB] 

1200 [I8] 
-212 

-2350 ['q 

We shall also assume that the degenerate hyperfine 
structure levels a r e  split by a constant magnetic field 
H, into Zeeman sublevels. The separation between these 
sublevels, and also between the spectral components, 
will be assumed to be arbitrary for the time being. The 
presence of a magnetic field is  usually the rule rather 
than the exception: it i s  either the stabilizing field in 
microwave devices or  the geomagnetic (stellar magnetic) 
field in astrophysical applications. 

Let us now multiply both sides of (2) by the initial dis- 
tribution function f :(k) of the excited atom, which we 
shall assume to be the equilibrium fanction, and sum 
over k. Each suffix and v represents a set of two 
quantum numbers, namely, F and M. Henceforth, we 
shall indicate only the magnetic quantum numbers M, 
and M,. The suffix 1 will refer to the lower and the 
suffix 2 to  the upper hyperfine structure level. We shall 
also take the Fourier transform of (2) with respect to 
time, and substitute into it the expansion (6) for the scat- 
tering amplitudes. The final result is the set  of equa- 
tions 

- 
- 
- 

8.4 lo-$ 
1.20 10-a 

0 I5 
25 

012 
0.10 
12 

110 

The sum over Mi and ML involves only the nondiagonal 
terms, i. e., either M i  *MI or  M i  * M,. 

The operator describes collisions between active 
and buffer-gas atoms without taking into account the hy- 
perfine interactio~, and is the usual Boltzmann collision 
operator; a and r are  the shift and broadening operators. 
All the operators a r e  integral: 

- 
- 
- 
- 
- 

<lo-? 
- 
- 
- 

(0.5 
- 

sf U,x, (p; x ,  o)=J S(P.P' ) I ,~ ,N, (P ' ,~?~)~ 'P '  (8) 

and so on. The kernel of $ is 

- 
- 

0.22 
3.3 
1100 

2.3 1OS 
570 
280 

9.7 I P  
1.2 lo5 [Ze] 
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6.C8 ['I 
5.36 ['I 
4.18 ['I 
128 ['I 

510- 
-160 ** 
-848** 
- 

1065 ** 
-226 ** 

- 1 ~ * *  

- 
- 
- 
- 
- 

0.25 
5.0 
- 
- 
- 
- 

- 
2 5 lo-'' 

3 lo-= 
4.7 lo-*' 

0.3 
4 
0.4 
0.1 
0.7 
004 
i 

- 
- 
- 
- 
- 

1900 
0.48 1W ['I 

- 
- 
- 
- 

7 
- 

11.6 
157 
84 
68 

116 
173 
8(i 

74 

- 
lo-$ 
- 

lo-" 
lo-' 
lo-' 
lo-' 
1WS 
lo-' 



where o(p,) = 1 la(po, go) l'd~2, is the total collision cross 
section of the atoms. The kernels of the remaining op- 
erators are given by the following expressions: 

2xh d'q 
A n ~ , ( p ,  P')- -; Jm~:~e[aM2w.(pe, pol 

i -- At d'q 
rn.n,(p. PI)=-- - 

2m2 J' (2n)' N' . 

xJ d3po{2 Re a.(pa, 64) [a,,.(pO, 6) +~u,M,(Po,  b) 1 +z ( l a ~ , n ( ~ a f i o )  I' + I ~ M , ~ ( P o ,  P.) I ~ I ~ ( ~ o - E o ) ~ ( P - P ' )  
M 

A' d'q' 

+ ;; Nqvb Re (o'(p/. PO) IanS~.(p.', PO) +a=.n. (PO'. PI) 1 

+aM,,, (PO', po) a~.:.Y,(pof, pa) 18 (En-En'), (11) 
M.'Y,' 1 M.*M,* h' d'o' 

i A x , ~ ,  (PI. PI + 2- rY.~, (prl.p)=;;;; J e ~ ~ . ~  
(2x1 

The collision operator 5 on the right-hand side of (7) 
is  of the order ofnu- N, :,a2, whereas the broadening and 
shift operators, r and A ,  on the left-hand side of (7), do 
not exceed N, voao!- qv in order of magnitude. This 
means that the Maxwell distribution is formed for the 
resulting atom in a time that is small in comparison with 
the other characteristic times of the problem, so that 
the difference between the matrix elements fMaM, @; x ; w) 
and the Maxwell function f (P) is  small: 

where 1 G,,,,@) I is of the order of q or L/A and the co- 
efficients (P,,~,(A) are independent of p. In the zero-or- 
der approximation in q, L/x, the equations in (7) are 
found to split, and the matrix elements f x ,  w )  
satisfy independently the Boltzmann kinetic equation 

The small corrections GMZM1(p) will be sought in the form 
of an expansion in reciprocal powers of the collision fre- 
quency. 

Let us substitute (13) in (7) and integrate with respect 
d3p(2r)'. Since terms involving the collision operator 

S are found to vanish a s  a result of this procedure, the 
final expression is 

where w;2,, = w - wMZM1, (- . .) represents averaging 
over the Maxwell distribution: 

and so  on. The parameters j t,M2.'r'l), ( rMzul) and the 
nondiagonal coefficients (@a 1) are  given by formulas 
that follow from (10)-(12): 

where ( I'kM1) is the adiabatic (transverse) broadening, 
connected with the adiabatic excitations of the active 
atom, and ( r EM, ) is the nonadiabatic (longitudinal) 
broadening, connected with transitio t other s ates. 

*M M The explicit form of the operators A 2  and 3 fol- 
lows from (12) and is not introduced 
containing these operators a re  smaller 
(I';::) by a factor of q (in order of magnitude). 

If the correction functions GYaYl have been determined 
(the evaluation of these functions will be considered be- 
low), we can use the set of algebraic equations given by 
(15) to calculate the quantities cpYZM1(w), in terms of 
which the spectral line shape is expressed [see (13) and 
(I)]. For arbitrary Zeeman splitting of the hyperfine 
structure levels, and if their number is large, the line 
shape is described by complicated expressions although 
there a re  no fundamental difficulties in calculating the . 
line shape. Because of lack of space, we shall not re- 
produce these formulas here, but they do show that, for 
fields Ho << E v ~ / ~ ~  = q [Oe] (when v=107 sec"), the line 
shift and broadening are  both of the order of qv. 

As the field is increased until H,,>Evq/j~~, there is a 
significant splitting of the sublevels, and the spectral 
lines become narrower. Their shape in such fields de- 
pends on whether there is a superposition of the spectral 
components (5 = 1/2) 

.for the particular transition. If there is no superposi- 
tion, and this is so  in, for example, hydrogen (F, =0, 
F, = I), then for H, >> fiv/FB the set of equations given by 
(15) separates completely and only one equation is suffi- 
cient for evaluating the shape of an individual spectral 
line. For the frequently used transitions between the 
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sublevels M, = O  and M, =0, one can use the symmetry 
of the system with respect to this transition to take out 
one equation form (15) even for lower fields H, >> fiG/ 
/LB. In such cases, the spectral line shape i s  giveh by 

It is clear from (24) that the line shape is Lorentzian 
and that the shift ( A  " qv is large in absolute mag- 
nitude in comparison with the collisional broadening 

and the Doppler broadening 

We have omitted from (25) all terms in the shift of order 
higher than the first order in q. In (26) and (27), on the 
other hand, we have to retain all terms of order qe and 
(L/A)~. 

In general, spectral lines can overlap, and (15) wil l  
contain a number of equations. For example, if  the 
active atom is ~ b "  in the ground state (F, = 1, F, =2), 
then, for the transitions between the M, = 0 and MI = 0 
states, we have the superposition of the following F r e e  
lines if we neglect the term in (23) that is quadratic in 
H,: M,=M,=O, MI=-M,=l, MI=-Ma=-1. The set 
of equations in (15) for H,>> .>t i~G/~~ will then consist 
of only three equations. They lead to the followin@ line 
shape: 

It is clear that this line shape i s  nearly Lorentzia, and 
the shift (A,,,,) -qv is large in comparison with the line 
width, as in the preceding case. The fractional terms 
in the braces in (28) become negligible when v/wo h> q 
or  H,, >> f i ( ~ w ~ ~ ) " ' / ~ .  In either case, they can be ne- 
glected so that (28) becomes identical with (24). 

We shall seek the correction function G@), retaining 
only terms of the first order in the parameters q, L/A. 
In this approximation, the operator 3 is absent f r ~ m  
the equation for G@) and, according to (7), (8), aud (13), 
this equation assumes the form 

We have taken the function f i(p) out from under the inte- 
gral sign, which can be done because of energy copser- 
vation in a collision, and have cancelled it out. By (29), 
the angular dependence of G,,,,@) can be written in the 
form 

where 9 is the angle between p and n. The expansion 

coefficients G i,Ul(p), G&Ml(p) satisfy the following 
exact differential equations: 

where tJ is the angle between p and p'. 

The above integral equations can be solved only for 
extremal values of the ratios of the masses of the col- 
liding particles: m, << m, or ma >> m, . In either case, 
a change in the energy of the active atom during the 
collision i s  a small fraction of the order of ma/mb << 1 
or mb/ma << 1 of its energy prior to collision. This en- 
ables us to transform the integral equations (31) and (32) 
into differential equations. However, the coefficients of 
the differential equations and their solutions a r e  differ- 
ent for the two cases. Because of lack of space, we re- 
produce only the final results. 

The case ma << mb . Equation (31) becomes 

where 

and ut,(p) is the transport cross section 

In order of magnitude, v~ (P )  - pap 'u(P), y(p)  - pa PU(P), 
where v(p) = Nb vutr(p) is the relaxation frequency of the 
active atom, so  that both terms on the left-hand side of 
(33) provide the same contribution. The nonsingular 
solution of (33) is 

Equation (32) can be transformed into an algebraic 
equation because the differential terms a re  of the order 
of pa << 1. Its solution is 

We can now use (36) and (37) to determine the total width 
rYeY1 =( I'M,Ml) + rM + r . Apart from the term 
( rYlM2) given by ( l b ,  we have the additional contribution 

due to the Doppler-Dicke effect and the contribution 

connected with the deviation of the distribution function of 
the atom from the Maxwell form. The broadening given 
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by (39) is  of adiabatic origin, just as (rMZMl). 

The case mu >> m,. Since both the change in the energy 
of the active atom and the angle of single scattering a re  
small, it is convenient to start directly with (29). Ex- 
panding in powers of (p' -p), , we obtain the Fokker- 
Planck equation for the correction function: 

where the relaxation frequency is given by 

The angle-dependent term on the right-hand side of (40) 
has been omitted because it is of the order of pa << 1 and 
gives a correction - pt to the width, which we have ne- 
glected. 

Equation (40) has the solution 

G,,,,, (p) =- i~ \~ lv , ,  

which enables us to determine the Doppler-Dicke width 

Thus, in this case, collisional broadening reduces to the 
Maxwell broadening ( rMzMl). In both cases, i. e., both 
for m,<<mb and nz,>>rn,, we obtain the same expres- 
sions for the shift (AMzMl) [see (16) and (17)], but dif- 
ferent widths. When the magnetic field is not too weak, 
the line shape is Lorentzian, according to (24): 

When there is no overlap of the spectral components 
and (28) is  valid, its difference from (44) is small and 
reduces mainly to a change in the total width rqM1, but 
the order of magnitude of this width remains the same. 

The total line width rMZMI in (44) consists of a number 
of components. The components rkMl and (the 
latter is absent for mu >> m,) are of collisional origin. 
They are of the order of 11 as compared with the shift 
(AMzMI). This estimate remains valid even in the ab- 
sence of Doppler broadening because it is fonnected only 
with the fact that collisional perturbations of the hyper- 
fine-structure sublevels are  small. The term rzzM1 is 
due to the combined effect of thermal motion and colli- 
sions. Collisions (their number v/Lr is of the order of 
10'-10~ during the emission time l / r )  lead to a random 
change in the velocity of the radiating atom and thus re- 
duce the Doppler width rD by a factor of L / x  (this is the 
Dicke effect). A s  a result, we have the order of magni- 
tude relation r - wzv '/c 'v, where the numerical coef- 
ficient depends on the ratio of the masses of the collid- 
ing particles. The analogous Brownian narrowing down 
to rC" q2v<< I( A) 1 (as compared with the Foley estimate 
rC- I ( A) I) is subject to collisional broadening. 

4. QUASICLASSICAL APPROXIMATION FOR THE 
SHIFT AND BROADENING AND SOME NUMERICAL 
RESULTS 

The above expressions for the shift and broadening of 
a spectral line correspond to the exact quantum-mechan- 
ical description of binary collisions. However, under 
the usual conditions, the motion of the atom can be 
looked upon as quasiclassical, and the departure from 
classical motion can be taken into account in the first 
nonvanishing approximation a s  a small quantum-mechan- 
ical correction. 

Let us begin by finding the classical expression for 
the shift. We substitute in (17) the well-known expres- 
sion for the scattering amplitude in terms of the phase 
shifts 8,, which, in the classical approximation, have 
the form 

In this expression, U(R) is the energy of interaction be- 
tween the colliding atoms without spin correction, U,(R) 
is  the addition due to the hyperfine interaction, and R, 
is the value of R corresponding to the turning point. 
Next, we expand the phase shifts (45) in terms of the 
small ratio U,/U, replace summation over I by inte- 
gration, and take into account the fact that the hyperfine 
interaction is small, i. e., 1 6j2' - 6j1)l<< 1. Integration 
between I and Eo finally yields the following result: 

<drr.)=hNb J A W I M . ( R ) ~ X ~  [- F] I l+f  (R)  ]Ra dR. (&) 

where AwMz~,(R) = UM~CR) - UMl(R)/fi 

and @(y) is the probability integral. When the ratio U/T 
is small, we can use the simplified formula 

T h e  expression given by (46) was obtained in our pre- 
vious papersC7*81 on the theory of the hyperfine line shape 
based on classical collisions regarded as  random Pois- 
son impacts corrected for the curvature of the trajec- 
tories of the colliding atoms. The method used in our 
previous papersc7*e' could not be used to obtain an un- 
ambiguous expression for f(R). The formula given by 
(46), which is obtained from exact quantum-mechanical 
theory, differs from the usually employedL1~53 statistical 
formula by the term f (R). This term is small for light 
pairs such as H-He (less than I%), but for heavy pairs, 
it may become significant (- 1) in the region where 
molecular forces change from attractive to repulsive. 

To obtain the quantum-mechanical corrections to (46), 
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we can use an expression for the phase shifts that is 
more accurate than (45). X calculation, which we shall 
not reproduce here because% lack of space (see Baty- 
gin et a~.''~'), has shown that the quantum-mechanical 
correction Am is equal to 0.113( A) in the case of H-He. 
The quantum-mechanical correction in the case of H-H, 
should be greater still. For active atoms heavier than 
hydrogen, the correction Am is small. 

The quasiclassical expression for adiabatic broadening 
can be obtained from (19) in a similar way. It is 

where vo= (2~/m)'" and we have assumed that the en- 
ergy of attraction does not provide an appreciable con- 
tribution, so  that W(R) = U(R)/T for U(R) >O and W(R) = O  
for U(R) <O, x =  W(R1) + m v z / 2 ~ .  The quasiclassical ex- 
pression for r' i s  obtained if we use the quasiclassical 
approximation for An2Y,(~). Further details can be 
found in our previous paper.c853 

The adiabatic broadening ra + rl- I"' can be estimated 
with the aid of (46) and (49) if we note that this formula 
includes contributions of the regions AR of integration 
with respect to R, whose width amounts to a few Bohr 
radii, beginning with a value Ro at which the exponential 
in our formulas reaches - 1 [U((Ro) - T)]. For smaller 
values of R, the function exp[- U(R)/T] is found to fall 
rapidly and, for large R, the local shift A w(R) de- 
creases rapidly. If we use (46) to express the local shift 
in terms of the observed shift, A w(Ro)" ( Anzul)/ 
4nNbR AR, we obtain the following approximate formu- 
la for the adiabatic broadening I' a + r I: 

where p is the buffer gas pressure. 

In conclusion, we compare some of the shift calcula- 
tions based on (46) and the broadening calculations based 
on (49) o r  (50) with the experimental data (see Table I). 
The table is based on values of R, estimated as  sums of 
the corresponding atomic radiicz8' for those cases for 
which broadening was estimated from (50). When this 
was done, we adopted the experimental value of the 
shifts. The table lists values of ra + l?' estimated from 
(50). The experimental value of the nonadiabatic broad- 
ening Pa is expressed in terms of the experimental val- 
ue of aDa for transitions to other states in the form ga/ 
NbE. When there is a disagreement among the experi- 
mental data, we take the latest result (other data can be 
found in the review l i t e r a t ~ r e ~ ' & ' ~ * ~ ' ~ ) .  The collision 
frequency was estimated from the formula v =  N, I T R ~ V ~ ,  

where Nb =3.18X 10" cm". We have also estimated the 
values of the parameter q - r a/ I A I -  I A l /v, character - 

izing the smallness of the hyperfine interaction and the 
order of magnitude of the narrowing of the line. 

We note that, on the whole, the agreement between 
theory and experiment is satisfactory.' We also note 
that there is a considerable difference between ra and 
rna, which is in conflict with the well-known Wannier 
model,cz'' according to which r a - rna. In fact, it turns 
out that we have both ra << ma and ra >> ma. However, 
in all  cases, I' a << v and Pa>> v (this enables us to use 
the Enskog-Chapman approximation). 

In the case of hydrogen, the determination of ( A nznl ) 
from (46), using the exchange perturbation theory to 
find U(R) and A wn2n1(R), (A,,,,) =4.70 Hz/Torr 
at  T = 323 OK. When the quantum-mechanical correction 
A g  =0.62 ~ z / T o r r  is introduced, this result i s  im- 
proved a s  follows: &, = (+,,,) + A g  = 5.32 ~ z / ~ o r r ,  
which lies within the range of experimental error:  4, 
=5.41*0.25 Hz/Torr. The theory also gives the cor- 
rect temperature dependence of the shift in the broad 
range between 173 and 673 OK. The quantum-mechanical 
corrections which we have obtained improve the agree- 
ment with experiment a t  T = 323 OK for the shift calcu- 
lated by Davison and Liewc5' (A,,, = 5.40 Hz/Torr), but 
the resultant values of %.are too high a t  high tempera- 
tures (T-400-700 OK). This is explained by the fact 
that the variational method used by Davison and LiewC5' 
to determine Aw,(R) and U(R) did not yield good enough 
wave functions. 

The data listed in our table show, despite their incom- 
plete character, that the theory not only provides an ex- 
planation of the experimentally established strong nar- 
rowing of the hyperfine transition lines due to Brownian 
motion of the active atoms during the emission process, 
but gives acceptable computational formulas for the line 
shape, shifts, and broadening. The hyperfine transition 
case which we have considered is thus also interesting 
because it enables us to complete the solution of the set  
of integral kinetic equations and obtain numerical re- 
sults. This is in contrast to the optical case analyzed 
by Alekseev et al. ,'lS' which was confined to a model 
calculation. 
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