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Statistical thermodynamics of formation of a new phase. 
II. Theory of boiling of volatile liquids 
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The fluctuating growth of a vapor-filled tuacroscopic bubble in a moderately superheated or decompressed 
volatile liquid is treated as two-dimensional diffusion of a germ of a new phase in the space of its 
variables, viz., the volume v and the pressure p of the vapor in it. The relief of the free energy of a s 
"liquid + bubble with vapor" over the (v, p) plane is investigated in the vicinity of the labile equilibrium 
of the system, and the two-dimensional equilibrium distribution function of the germs with respect to their 
variables is determined. The nondiagonal diffusion tensor in (v, p) space near the saddle point is also 
calculated. A two dimensional stationary equation of the Kramers-Zel'dovich type of the kinetics of 
forruation of a new phase is solved and an expression is obtained for the probability of homogeneous 
nucleation at arbitrary viscosity and volatility of the liquid far from its critical point. Various limiting 
cases are considered. 

PACS numbers: OS.20.Dd, OS.70.Fh 

1. INTRODUCTION 

The analysis of the kinetics of formation of a new 
phase[1-81 has led to the development of a new method of 
describing the kinetics of a first-order phase transition 
in which the growth of a macroscopic germ of a new 
phase is treated as diffusion over the germ-size axis. 
The difference between the equation of the kinetics of 
new-phase formation (the Fokker-Planck equation) and 
the ordinary diffUSion equation lies in the fact that the 
germ-size axis is not homogeneous: a certain force 
field is superimposed on it and is governed by the 
"supersaturation" of the investigated system. A natural 
macroscopiC model of the kinetics of new-phase forma­
tion is therefore diffusion in the field of external forces. 

The task of determining the rate of formation of the 

new phase in this approach breaks up into two stages: 
(a) determination of the coefficient of diffUSion of the 
germ over the size axis as a function of the germ size; 
(b) determination and investigation of the "potential re­
lief" on this axiS, the relief being specified by the posi­
tion of the system on the Van-der-Waals diagram in its 
metastable region. We make use here essentially of the 
fact, first pointed out by GibbS, that the potential relief 
on the size axis is a potential barrier that separates the 
quasi-single-phase region of the size axis from the two­
phase region. It is the diffusion flux from one region to 
the other which determines the kinetics of new-phase 
formation. Both stages of the solution of the nucleation 
problem become much more complicated if a single 
variable no longer suffices for a macroscopic descrip­
tion of the new-phase germ. This is the situation with 
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a boiling volatile liquid, where two parameters charac­
terize the macroscopic bubble, its volume v and the 
vapor pressure P in it. This can also be the case for 
non-isothermal condensations (where the parameters 
are v and the temperature e), as well in some other 
problems. 

Stage (a) is made complicated by the fact that if we 
have several variables the diffusion coefficient D is in 
the general case a nondiagonal tensor. In stage (b), 
before we seek the flux of the germs from the quasi-one­
dimensional region to the two-phase region it is neces­
sary first to investigate the potential relief on the plane 
of the two variables, but it is impossible to state be­
forehand how this relief separates the quasi-one-dimen­
sional region on the plane of the germ variables from 
the two-phase region. 

We consider in this paper the boiling of a volatile 
liquid, regarded as the process of diffusion of a germ 
bubble in the space of its two variables v and p. The 
analysis is based on a method proposed by a number of 
workers, [5,7,8] and on an approach developed by one of 
us, [9] which makes it possible to calculate accurately the 
bubble equilibrium distribution function. Just as in[91, 
the analysis is restricted to moderate decompression or 
superheating of the liquid, corresponding to a high poten­
tial barrier between the quasi-single-phase and the two­
phase regions. 

We consider first the physical formulation of the prob­
lem. We isolate in a large liquid volume W with rigid 
adiabatic walls" a small part (having volume V) bounded 
by a semi-permeable shell with pores of a size that pre­
vents passage of near-critical bubbles. The volume V 
must satisfy here the relation 

v,<V<W, (1) 

where Vc is the volume of the critical bubble. The prob­
lem is to calculate the probability 1/ [sec- i ] of formation 
of one transcritical vapor-filled bubble in the volume V 
per unit time under the condition that the "medium" W 
- V is in a single-phase state. The probability of simul­
taneous existence of several near-critical bubbles in the 
volume V will be neglected. 

2. ANALYSIS OF THE RELIEF OF THE SADDLE 

The dynamics of the variation of the state of a real 
bubble in a volatile liquid is quite complicated. For ex­
ample, apart from the fact that this bubble is not in thermo­
dynamic equilibrium with the surrounding liquid and that 
there is no mechanical equilibrium between the external 
pressure, the capillary pressure, and the vapor pres­
sure in the bubble, we must consider also the inhomo­
geneities of the pressure p and of the temperature e in­
side the bubble, the variation of the temperature on the 
bubble boundary with changing number of molecules in 
the bubble, the ambiguities in the variation of the bubble 
shape at constant volume, and others. 

We assume the macroscopic bubble to be spherical. 
The temperature effects on the bubble boundary, which 
are accounted (or by introducing a correction in the dif-
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fusion coefficient, [10] will not be considered here. As 
to the inhomogeneities of p and 19 in the bubble; we shall 
neglect both, assuming that the characteristic times of 
establishment of hydrodynamiC and thermodynamic equi­
librium inside the bubble are much shorter than the times 
of variation of the bubble dimensions and of the number 
of vapor molecules in it. Therefore the pressure p at 
any instant of time will be connected with the number N 
of molecules in the bubble by the equation of state of an 
ideal gas 

pv=N.8. (2) 

The use of this equation means, besides the statements 
made above, that we assume that 0 ;: p,,/ PI« 1, where p" 
and PI are the vapor and liquid densities in cm-3• The 
temperature 19 [ergs] will be assumed to remain constant 
in the course of the nucleation, by virtue of the condition 
(1) and the large heat capacity of the liquid. 

We emphasize that it is precisely the difference be­
tween the pressure p and the saturated-vapor pressure 
in a bubble of given curvature (i. e., the absence of ther­
modynamic equilibrium) which is the reason for the ap­
pearance of the second variable p of the bubble. 

The free energy of a spherical bubble of volume v con­
taining N" vapor molecules and situated in a liquid with 
temperature 19 at a pressure P is equal to the minimum 
work required for its formation: 

(3) 

Taking into consideration the condition for the thermo­
dynamic equilibrium of the critical bubble with the sur­
rounding liquid tJ.,,(Pc, e) = tJ.1(P, e) and the expression 

Il,(p, 8) =11· (p" S)+eln (pip,), 

we transform (3) into 

F •• =v (P-p) +os+N.8 In (pip,) , (4) 

where Pc is the saturated-vapor pressure in the critical 
bubble. Going over to the dimensionless variables x = v/ 
v., y =p/Pc, '1! =F w /19 and expanding '1!(x, y) near the 
point (1,1) (see Fig. 1) corresponding to the state of la­
bile equilibrium of a "liquid +bubble with vapor" system 
in the volume V in powers of Ax =x -1, Ay =y -1 up to 
second order inclusive, we obtain 

1, 1 (1IR. 0 )(~X) '¥(x,y)='¥,+-(M AM)='¥,+-(~x~y) 1 R 
2 2 0 I. ~y 

~'¥ + (~x)' + (~y)' 
• 2R. 2R.' (5) 

where 

.4= ax'i. axayl, = (-20S.l98 0) = (1IR. 0 ) ( 
a''¥ a''l' ) 

a''l' "I" a''¥ I 0 No' 0 {IR. 
ayax • ay' • 

is the matrix of the second derivatives of '1!(x, y) at the 
saddle point; Ar = (Ax, Ay) is the radius vector drawn 
to an arbitrary pOint from the saddle point; '1!c is the 
dimensionless work of formation of the critical germ; 

Deryagin et lil. 963 



v 

v ... ' 
o. 

'1 'I I I 
------4--- _______ ._ .. .! 

I 

:r 

FIG. 1. Projection of lhe dimensionless free-energy surface 
1It(x, y) of lhe system near lhe saddle on lhe plane (X, z) of the 
dimensionless variables of lhe germ. The cross marks the 
principal axes of the saddle; d and d' are its linear generators; 
1 and 2 are the respective phase- and mechanical-equilibrium 
lines of lhe germ, while 3 and 4 are the line of the energywise 
most favorable growlh of the germ and the watershed between 
lhe quasi-single-phase and two-phase regions of the (x,y) plane; 
a and Q are the steepest-descent directions of nry/C{iry and of the 
flux of germs at the saddle point. 

R" and Ry are the prinCipal curvature radii of the lJt(x,y) 
surface at the point (1,1); u[g/sec2] is the surface ten­
Sion, Sc [cm2] is the area of the critical-bubble surface; 
N~ is the equilibrium number of vapor molecules in the 
bubble. The first derivatives (alJt/ax)c, (alJt/ay)c are 
equal to zero here because the respective conditions of 
chemical and mechanical equilibrium are satisfied here. 
The absence of a quadratic cross term in (5) follows 
from the fact that AX Ay =0, i. e., that the fluctuations 
of the variables x and yare statistically independent, at 
least near the saddle point. 

It is seen from (5) that the principal curvature radii 
R" and Ry are of opposite sign, i. e., that the labile­
equilibrium pOint (1,1) of the system is always a hyper­
bolic point of the surface. In this case the relief (4) of 
the free energy of the bubble can be approximated in the 
vicinity of the saddle point by the surface of a hyperbolic 
paraboloid. This saddle-shaped free-energy surface of 
the system lies inside the first quadrant of the (x, y) 
plane parallel to the coordinate axes. The saddle point 
is the point of intersection of the phase-equilibrium line 
1 and the mechanical-equilibrium line 2 (see the figure). 
These lines are expressed in the coordinates x and y by 
the respective equations 

y=y~ exp{-bp,'/p,x"'}, 

y=y .. ,+blx"', 

(6) 
(7) 

where y .. =P .. /Pc, Yut =p/Pc; P .. is the saturated-vapor 
pressure over a flat surface; P is the external pressure 
on the liquid, 

(8) 

is the ratio of the capillary pressure to the vapor pres­
sure Pc in the critical bubble; Rc is the radius of the 
critical germ bubble. .Since Rc and Pc decrease with in­
creasing decompression or superheat of the liquid, the 
parameter b =2u/RcPc can serve as a measure of the 
supersaturation of a volatile liquid relative to the boiling 
process. 

964 Sov. Phys. JETP 46(5), Nov. 1977 

In the region between 1 and 2 lies the energywise most 
favored trajectory 3 of the fluctuation variation of the 
macroscopic subcritical germ, a trajectory joining the 
vicinity of the origin with the saddle point. It constitutes 
the bottom of a trough going through the saddle; this 
bottom is, from the point of view of the theory of sur­
faces, [11] one of the two surface-curvature lines (i. e. , 
lines such that at each of their points the tangent is di­
rected along the prinCipal direction of the surface) pass­
ing through the saddle point. USing the differential equa­
tion of these curvature lines[lll 

( dy )' d [pqt-(1+q')sJ -d +[ (1+p')t- (1+q')rJ ~+(1+P')s-pqr=O (9) 
x dx • 

where 

iI''¥ 
s'" ilxOy • 

O''¥ 
t""­Oy' • 

(9a) 

in conjunction with the condition (dy/dx)c=O, we can ex­
tend the trough-bottom line to the interior of the region 
of small germs so long as the macroscopic expression 
(4) for the free energy of the bubble holds in this region. 
The second curvature line (4), which passes through the 
saddle point and staisfies the condition (dy/dx)c =00, is 
the line of the crest that separates the quasi-line-phase 
and two-phase regions of the (x, y) plane. 

In the general case of a viscous and volatile liquid, 
the fluctuation growth of the subcritical bubbles is con­
nected neither with the phase-equilibrium lj.ne 1 nor with 
the mechanical-equilibrium line 2, and not even with the 
energywise most favored trajectory 3. The reason is 
that, besides the physical liquid volatility and super­
saturation parameters with which all these three lines 
are connected, the nucleation problem involves also a 
viscosity parameter, which influences the nucleation 
process not via the potential relief in germ-size space, 
but through the nondiagonal tensor of diffusion in this 
space. The most probable germ-growth parameter is 
therefore obtained for the vector flux Q as a function 
of the variables x and y. By way of an example that 
illustrates how strongly the viscosity of the liquid alters 
the most probable germ growth trajectory, we consider 
the case of an ideal inertialess liquid. In this case, at 
all pressure fluctuations, the volume of the bubble as­
sumes instantaneously a value such that the bubble is in 
mechanical equilibrium. It follows therefore from phys­
ical conSiderations that in this limiting case the most 
probable trajectory for the germs is the mechanical­
equilibrium line 2. We note that the Doring's hypothe­
sis[4] that all the subcritical germs are in mechanical 
equilibrium is precisely equivalent to replacing an ar­
bitrary liquid by the limiting case of an ideal inertialess 
liquid. 

It turns out, however, that not at all values of super­
saturation and volatility of the liquid is the equilibrium 
of the bubble stable. To elucidate this question, we con­
Sider the condition for the stability of the mechanical 
equilibrium of a near-critical bubble. 

Since the volume changes in an ideal inertialess liquid 
much more rapidly than the number of vapor molecules 
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in the bubble, it fallows that the equation of state (2) can 
be written in the coordinates x and y in the form xy = 1. 
Calculating at the saddle point the derivatives dy/dx of 
the equation of state and of the mechanical-equilibrium 
equaUon (7), we find that the mechanical equilibrium of 
a near-critical bubble is stable at b < 3 and unstable at 
b>3. 

Thus, in an ideal inertialess liquid, the most probable 
trajectory of the fluctuation growth of a subcritical germ 
coincides with the mechanical-equilibrium line only at 
b < 3. If b > 3 the most probable trajectory no longer co­
incides with the line 2 and its determination calls for an 
analysis of the general expression for the vector flux Q. 
It was DOrings assumption[4l that at b > 3 the growth of 
the germs is also connected with the condition of their 
mechanical equilibrium which led to the incorrect con­
clusion that the nucleation rate tends to infinity as b - 3 
and that the final formulas of[4l are discontinuous when 
b goes through 3. 

Examination of the average curvature H(x,y) of the 
surface (5), given when account is taken of (2) by 

H(x, y) =1/2 (IIRx+ IIR,) 
=1/2 (N,.'-2as/98) =1/2N,'(1-b/3), (10) 

where 

1/sb=-R,JRx=2aIRp" (11) 

shows that the dimensionless parameter ib is the ratio 
of the principal curvature radii of the saddle and charac­
terizes the "width 'of the saddle." As the superheat or 
decompression of the volatile liquid increases, i. e., on 
gOing from b«3, H»O, IR" I»Ry to b»3, H«O, IR" I 
«R y , the saddle changes from wide to narrow. 

Thus, it is easily seen that in the two-dimensional 
approach the passage of the average curvature of the 
surface (5) through zero produces no discontinuity what­
ever either in the matrix A (see (5» or in the matrix D 
(see (1l.12) of Appendix II), which specify completely the 
nucleation process. We shall return to this question in 
Sec. 4. 

We investigate the two-dimensional equilibrium dis­
tribution function given, as shown in Appendix I, by 

(12) 

where w(x,y) is defined in (5), Ny=Vpl, N~=vcPI' N~ 
=vcP~, go is the total probability that the volume V con­
tains no macrobubbles. Substituting (5) in (12) we see 
that near the saddle the variables separate in cp l<Y : 

<jl.,='I'.<jJ" 

q>x=g,NvN,' exp{-.'If ,+as,(dx) '/98} , 

'I',=N.' exp{-1/2N:(dy)'}. 

(13) 
(13a) 
(13b) 

The function cp", which describes the equilibrium dis­
tributions of the germs along the trough that leads 
through the saddle, is similar to the usual equilibrium 
distribution function introduced by Zel'dovich[Sl in the 
one-dimensional nucleation problem. The function cp y, 

which describes the equilibrium distribution of the bub­
bles with respect to the pressure inside them, 1. e., in 
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the cross section of the trough, calls in accordance with 
fluctuation theory[12l for the natural normalization: 

Consequently, it is necessary to write in place of (13b) 
the correctly normalized transverse distribution func­
tion 

q>,= (Nv'12n) 'I. exp {_1/2N,'(~y)'}, (13c) 

the presence of which is one of the distinguishing fea­
tures of the tWO-dimensional nucleation problem. Then, 
USing (13c), we obtain in place of (12) 

3. CALCULATION OF THE NUCLEATION 
PROBABI LlTY 

(13d) 

The liquid volume V introduced in Sec. 1 can have in 
the course of the nucleation various states that differ 
from one another in the energy E, in the number N of 
the molecules in V, in the volume of the nucleated bubble, 
and in the pressure in it. The aggregate of all possible 
(single-phase and two-phase) states of the volume V is a 
grand Gibbs ensemble. The volume W - V plays the 
role here of a single-phase thermostat and a reservoir 
of molecules with a speCified chemical potential. 

From the point of view of statistical phYSics the nu­
cleation process is determined by the flux Q of the states 
of the volume V per unit time, directed from the meta­
stable quasi-single-phase states of the volume V (which, 
by virtue of the absence of a macrO-bubble, are charac­
terized by two variables, E and N), to its two-phase 
states, which contain a transcritical bubble with vapor 
(the later states are additionally characterized by two 
more variables pertaining to the bubble). 

We note that by virtue of inequality (1) the production 
and growth of the bubble in V affects only insignificantly 
the fluctuations of such thermodynamic characteristics 
of the volume V as its energy E and the total number of 
molecules. These variables form thus a constant back­
ground against which the fluctuation growth of the germ 
evolves. To get rid of the background of the variables 
E and N, we change over from the four-dimensional 
space of the states of the volume V to the two-dimension­
al space of the variables v and p, in which each point is 
the trace of the space of the variables E and N and has, 
by virtue of the foregOing, practically the same statis­
tical weight go. Summing the quasi-single-phase states 
over E and N, we obtain the total probability go of V­
volume states in which there is no macroscopic germ 
(see Appendix I). 

Integrating the flux Q through the saddle over its cross 
section we obtain the total flux [ from the region of the 
heterophase fluctuations into the two-phase region of the 
(v,p) plane. Dividing the total flux [by go we get 

v=[/g" (14) 

where II is the probability of nucleation per unit time in 
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the volume V that contains no macrobubbles in the meta­
stable state. 

To calculate Q we must solve the two-dimensional 
equation of the diffusion of vapor-filled bubbles in the 
space of the dimensionless variables (x, y) = (v/ve, piPe) 
that has a potential relief 

'¥",,=F,.;e. 

In the vicinity of the saddle, the two-dimensional 
nucleation-kinetics equation can be written in the form 
of a continuity equation for the flux Q, similar to the 
equation proposed by Kramers[81 and Zel'dovich[81 for the 
one-dimensional casel ): 

anlat=div Q, 
ft n 

Q=«p.,D grad -, 
«p •• 

(15) 

(15a) 

where rp",,'" rp(x, y) is the equilibrium distribution density 
of the germs relative to the variables x and y; n '" n(x, y) 
is the distribution density of the germs in the nucleation 
process; D is the generalized diffusion tensor and is 
calculated in Appendix ll. Considering only a Single 
germ in the volume V, we normalize thereby n(x, y) by 
the condition 

-J ndzdy=1. 
o 

The external pressure P and the liquid temperature 
6 have been assumed constant already in the discussion 
of the potential relief. In other words, it is assumed 
that no change in the decompression or the superheat 
takes place in the course of the nucleation, i. e., the 
nucleation process is stationary (8n",,/8t =0, where n,." 
is the stationary distribution density of the germs). To 
this end we shall remove from the ensemble of the states 
of the volume V, by USing suitable boundary conditions, 
the states with grown bubbles and replace them by quasi­
single-phase states. 

The boundary conditions for Eq. (15) are formulated 
in the following manner: At the point 0 with coordinates 
x = ° and y = 0, where the source of the germ bubbles is 
located in our problem, [81 we set the boundary condition 

(16) 

Of course, we set this condition not at the point 0 itself, 
but in those points in its vicinity which, first, are them­
selves far enough from the point 0 to be able to treat the 
produced bubble macroscopically, and second, have 
nevertheless distances close enough to the point 0 to be 
negligible in comparison with the distance to the saddle 
point. 

The boundary condition 

n.,ill' •• =O. x=x'»x, (y is arbitrary) , (16a) 

removes from the ensemble of states of the volume V 
those states with grown bubbles. 

We propose that practically the entire descent of n,j 
rp"" from unity to zero occurs near the saddle. We 
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therefore seek the gradient of n"y/rp"y, in analogy with 
the one-dimensional case, in the form 

n •• 
V _ = Ca exp{'I,AaAr}, 

«p •• 
(17) 

which yields for Eq. (15) the required solution that goes 
from the origin through the saddle. Here a is an unknown 
vector that indicates the direction of the steepest descent 
of n,."/rp,,y, ar = (~x, ~y) is the radius vector drawn 
from the saddle point to an arbitrary point, and ~ is an 
unknown number that determines the speed of the de­
scent of n"y/f{J"y (~,.;o). 

Using the boundary conditions (16) and (16a), obtain 
the constant C: 

C= (-Al2n) ':'. (18) 

Substituting (5), (13d), (17), and (18) in (15a) we obtain 
for the germs a flux 

Q Vv,p,'( 'AN ')'!' {'¥ (M' AM) + 'A(aAr) }D (19) 
=g,~ - , exp - ,- 2 --2- a. 

whose direction does not agree, since the tensor D is 
not diagonal, with either the direction of the steepest 
descent of n/ rp, or with the principal axes of the saddle, 
or even with the lines 1 and 2 (see the figure). If we 
find for A and D formulas that depend on r, then ex­
preSSion (19) makes it possible to construct the vector 
field on the (x, y) plane and solve completely the problem 
of the most probable trajectory of the fluctuation growth 
of the germ. 

We obtain next from the condition (15) of the stationary 
nucleation process an equation for a and ~: 

- C~rADa) H (.~ra) (aDa) =0, 

or 

ADa=l.a(aDa) . (20) 

Equation (20) breaks up into the characteristic equation 

ADa=i..a (21) 

.for the eigenvalues ~ and the eigenvectors a of the ma­
trix AD, and the condition for the normalization of the 
eigenvector a: 

(aDa) =1. (21a) 

Writing out (21) fully at the saddle point in the form 

Aft (D.'IR. -D.'IR.). ADa= a=Aa, 
D.'(6-oo)IR.oo D.'(Hoo)IR.oo 

(22) 

where D; = 36/4ve 1), O=P~/PI' and w =PeRe/{JVt 1) are 
dimenSionless parameters, 1) [g_cm-I_sec·l ] is the vis­
cosity of the liquid, {J is a dimensionless condensation 
coefficient, and Vt [cm-sec· l ] is the average thermal 
velocity of the vapor molecules, we obtain a system of 
linear equations 

208, 208, 
-D.' 99 x.+D.'TeY.='Ax" 

6-00 1+W' 
D;ccN./--xa,+D;ccN·/--YfJ='AYa, 

00 00 
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whose solution yields for the nonpositive root of (22) 
(this is the root of interest to us) the expression 

).=-D.'{ (H.'+K/oo) 'I'-H.} = _ 3~v, {[ (1-x+oo)'+4xF'-1+x-oo}. 
SR. 

(23) 
where Htl =H + 1/2wBy is the "dynamic" average curva­
ture of the system free-energy surface (5), K = l/B"B y 

is its Gaussian curvature, and X = bw/3 = 2a/3j3v,1/ is a 
dimensionless parameter. 

The eigenvector a= (xo• Yo) corresponding to the given 
root ~ is of the form 

a=x O. 1+2R'TltJo). (24) 

Thus, although the saddle point (1,1) does remain un­
changed in terms of the coordinates x and y at all physi­
cal values of the parameters B c, 1/, and Pc, the direc­
tion a of the steepest descent of n/ cp depends via ~ on all 
the physical parameters of the problem (see the figure). 
In the limiting case of a nonvolatile liquid (Pc - 0, w - 0) 
we have ~ - - a/2Rc1/ and a - x(l, 0), and coincides with 
the x axis. If 2RcT/~/a--oo, then a becomes antiparal­
leI to the y axis. 

From the normalization condition (21a) 

! D:cc 

. 0 6-00 
X'(1,1+ 2R'TlA) ( 

D.'--
00 

\ ( 1) 
D,'_1oo_+_OO ) 1+ 2R;TlA =1 

we obtain for x the value 

x= (D.'G) -''', G"" 1+00 (2R'TlA)'+ 2+6 2R,TlA + 1+11 . 
00 0 00 0 00 

From (24) and (25) we get the modulus of a, namely 

1 [ ( 2R TJA)'])'t. 
a= (D.'G 1+ 1 + -;- . 

(25) 

(26) 

To find the nucleation probability v in a volume V per 
unit time, we must integrate Q along the axis passing 
through the saddle point perpendicular to the vector Q 
- DCa, and divide the result according to (14) by go. But 
by virtue of divQ = 0 the result of the integration does not 
depend on the direction of the chosen axis. It is more 
convenient to integrate Q along an axis perpendicular to 
the vector a. Then 4r=4zno and a·no=O, where 

(27) 

is a unit vector perpendicular to a. From the condition 
no=l we get 

(28) 

Taking (14), (19), and (21a) into account, we obtain 

1 +- 1 +- aQ 
v-- S Q.d(~z)=-S -d(~z) 

go _~. go _~ a 

Vv,p.' , +s- { (~z)' " =--(-AN.')I'exp{-'I',} exp ---(DoAno) 
2na 2 

} VVP'( -AN' )'J. (29) +A~zaDo (al)a)d(~z)=~ 2n(Do'~no) exp{-'I',}, 
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where it can be shown that 

[ 20s. ( 2R,TlA )'] Do'ADo=X' N.'-ge- 1+-0- >0 (30) 

for all values of Bc, 1/, and Pc. 

Substituting (23), (26), (28), and (30) in (29), we obtain 
an expression for the nucleation probability per unit 
time: 

( 3~Vf8 MG) 'I. 
v=Vp,'R. ---- exp{-'I'.}; 

16T1 L (31) 
M ... [ (1-)(+oo)'+4xl"'-1+X-OO. 

1+00 ( M)' ( 11)( M) G .. ---;-- 1 - 2X - 2 - -;; 1 - 2X +1. 

L""1-'13b (1-JI/2y) '. 

Formula (31) is in fact the sought expression for the 
per-second probability of formation of a critical bubble 
with vapor in a volume V. This expreSSion is valid for 
stationary volume boiling. of a decompressed or super­
heated volatile liquid far from the critical point, in the 
entire range of variation of the viscosity and volatility 
of the liquid at not too large supersaturation of the sys­
tem. The effect of the inertial properties of the liquid 
and of the heat relaxation on the interface between the 
bubble and the surface can be taken into account in the 
spirit of Kagan's work[101 by modifying the diffusion ten­
sor D (see formula (22» without changing the subse­
quent procedure of obtaining the final formula (31). 

4. DISCUSSION OF RESULTS 

The problem of the boiling of a volatile liquid involves 
three physical parameters whose values determine the 
state of the system: the radius Bc of the critical germ 
(it characterizes the supersaturation), the vapor pres­
sure p ... over the flat liquid surface (it characterizes the 
volatility), and the viscosity 1/ of the liquid. We neglect 
here the effect of the vapor density in the bubble on the 
surface tension a. Representing (31) in the form 

{
OS, 1 MG 3~Vf8R"} 

v=Vp'exp --+-ln~---
, 98 2 L 16T1 

where 

=Vp,' exp{-j.{R,) +j,(R"p" TI)}. 

MG 

L 

(32) 

=MC :"' ( 1-:J -( 2 - :)( 1- ~) +1 ] / [ 1- b3 ( 1- ~)'] 
(32a) 

we see that by varying the viscosity and volatility of the 
liquid we can obtain I/a 1>/1' 

Thus, the criterion 

1 MG 3~v,eR.' I 208. 
InL~ >"38 (33) 

determines the region of the values of Bc , Pc, and 1/ 
where the pre-exponential factor has a stronger effect 
on v than the work of formation of the critical germ. 
The limiting nucleation cases, which we shall now con-
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sider, identify several such regions. A detailed inves­
tigation of the criterion (33) is beyond the scope of the 
present paper. 

In the course of solving our problem we have intro­
duced in lieu of the three dimensional parameters Re, 
P ... , and 1/ the three dimensionless parameters 

where 

P,=P. exp{-20/p,6R,}. 

Two of them are best combined into a dimensionless 
parameter w: 

(34) 

(35) 

which contains all three dimensional parameters and is 
convenient for the investigation of the limiting cases of 
the problem. We shall consider various limiting values 
of the parameter w, which enters the final formula (31) 
via the factor MGIL. 

The limiting case w - 0 corresponds to the follOwing 
limiting values of the physical parameters: 1/- 00 or Re 
- 0, or else Pc - O. In the case of an iruinitely viscous 
liquid we have>. - 0, D~ - 0 and ,,- O. The case of un­
limited supersaturation of the system (Re - 0) cannot be 
considered in our scheme, since the latter is intended 
for small and moderate superheats and decompressions 
of the liquid. 

As Pc - 0 we go over to the analysis of a nonvolatile 
liquid, the cavitation in which was considered in[S]. An 
investigation of the relief (5) expressed in the coordinate, 
v and P shows that one of the axes of the saddle drops to 
the v axis, and the trough leading through the saddle be­
comes infinitesimally narrow. The problem thus be­
comes one-dimenSional, corresponding to a germ with a 
single variable, v. The expression (31) for the nuclea­
tion probability takes the limiting form 

Vp,lR, 
y =--(60)Y' exp (-'P',) , 

2'1 
(36) 

which coincides with formula (36) of[S]. We note that 
Kagan's corresponding expression (34)[10] is equivalent 
in our notation to 

po' Vp.'R. , 
v =----<--(60) I, exp(-'P' ,), 

p, 2'1 

i. e., it undervalues the result by a factor P~ / PI and 
states erroneously that nucleation is impossible in a 
nonvolatile liquid. 

The opposite limiting case w - 00 corresponds to the 
following limiting values of the physical parameters: Re 
- 00 or 1/ - 00. The case Re = 00 corresponds to eliminating 
the superheat or the decompression of the liquid. The 
work of formation of an infinitely large critical germ is 
then infinite, i. e., boiling of the liquid is impossible.2) 

As 1)- 0 we deal with the bOiling of a nonviscous (ideal) 
volatile liquid. If we neglect in this limiting region the 
influence of the inertia of the liquid, then we obtain 
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from (IT. 8) for an ideal liquid ~ y = - i b~x, i. e., a rig­
orous relation between the variables x and y, so that our 
problem becomes one-dimensional. This means physi­
cally that any finite fluctuation of the pressure in the 
bubble changes the volume instantaneously in such a way 
that the bubble remains in mechanical equilibrium. Thus, 
the bubble always remains on the mechanical equilibri­
um line (2) throughout its fluctuation growth, a fact en­
sured by the infinitely large D ~ • 

Allowance for the influence of the inertia of the liquid 
as 1/- 0 upsets the rigorous correlation between ~x and 
~y, so that in the general case the nucleation problem 
remains two-dimensional also for an ideal liqUid. Al­
lowance for the inertia of the liquid affects the nucleation 
probability" by altering the expression for DC (see Ap­
pendix IT). To obtain quantitative results we shall con­
sider, taking (IT. 7) into account, the region 

(37) 

in which w» 1, but is not so large as to allow the inertia 
of the liquid to come into play at the very outset. If b/3 
»1, which corresponds to a decompression ~ P» 2pc, 
expression (31) reduces to 

Vp,'R ( 6 )'" v=--' [20-3p,R,] - exp(-'P',), 
4'1 0 

(38) 

which goes over into (36) if 3/b is neglected with unity. 

At b/3« 1, which corresponds to positive and limited 
negative values of P, the expression (31) takes the form 

p, Nv~v, (0) 'I. 
v= po' 2(1-b/3) e exp(-'P',). (39) 

If b/3 is neglected, this expression differs from Ka­
gan's[10] formula (36), in which no account is taken of 
temperature effects on the bubble boundary, by a fac­
tor PI I P ~, which corresponds to the correct choice of 
the pre-exponential factor of the equilibrium distribu­
tion functions. 

At b/3 comparable with unity we must use the general 
formula (31), which remains continuous when b/3 goes 
through unity and does not lead to an unphysical decrease 
of the nucleation rate. 

We have considered the limiting case of the two-di­
menSional nucleation problem, where, in accord with the 
numerical value of w, one of the two parameters (vola­
tility or viscosity of the liquid) is decisive in the kinetics 
of the formation of the new phase, but since expression 
(35) for w contains the quantity R e , which is connected 
with the degree of supersaturation of the system, it fol­
lows that for any liquid the entire system supersatura­
tion range breaks up into three regimes: the volatile­
liquid regime (w» 1), when viscosity can be neglected; 
the viscous-liquid regime (w« 1), when volatility can be 
neglected, and the intermediate regime (w '" 1), when the 
liquid must be simultaneously regarded as liquid as well 
as volatile. According to (35), the intermediate regime 
for highly volatile liquids shifts towards larger satura­
tions, and towards lower ones for highly viscous 
liquids. 
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APPENDIX I 

As already mentioned in Sec 3, each state of the 
volume V is characterized in the nucleation process by 
four variables: the energy EnN(v,p), the volume V, the 
number N of molecules in it, the bubble volume v, and 
the vapor pressure p in the bubble; the last two variables 
are physically meaningful only for states with quasi­
macroscopic germs of a new phase. 

At small and moderate supersaturation of the system, 
when the region of the heterophase fluctuations and the 
two-phase region of the four-dimensional space (E, N, v, 
p) are separated by a high energy ridge, the calculation 
of the flux of the states of V from the first region to the 
second does not require a detailed examination of the 
growth of the germ of the new phase, including its micro­
scopic stage. It is quite sufficient to conSider, on the 
one hand, the states near the metastable equilbrium 
of the system, i. e., the states of a homogeneous super­
heated or decompressed liquid, and on the other, the 
states near the labile equilibrium of the system, which 
contain a macroscopic near-critical bubble. 

Near-metastable states will be assumed to correspond 
to the values3) v =p =0, i. e., they are described by only 
two variables, E and N, in contrast to the near-labile 
states. The probability of a near-metastable state of 
the volume V such that it is in an n-th quantum state with 
energy EnN and contains N molecules of liquid (while the 
medium W - V is in a single-phase state) is equal to 

WnN=C exp (k-'S(E,' -ilE, No' -ilN)}, (1.1) 

where C is a normalization factor and is constant for the 
given reservoir W - V regardless of the states of the 
volume V« W; k is Boltzmann's constant; S is the en­
tropy of the medium W - V in the state corresponding to 
the given state of V; E ~ and N~ are the energy and num­
ber of molecules of the volume W - V in the state of 
equilibrium with the metastable state of the volume V, 
characterized by Eo and No; Il.E =EnN - Eo, Il.N =N -No; 
the subscript zero labels metastable states. 

Expanding S in (1.1) in powers of Il.E and Il.N about 
the metastable state and then summing WnN over nand 
N, we obtain the total probability that the volume V has 
no macrobubbles, i. e., that it is at the point (v =0, p =0) 

(1.2) 
n,N N 

where 

A.-C exp {SoIk}, 

JJ.~ is the chemical potential of the liquid in the volume 
W when the volume V is in a metastable state; dpt 
=F N - F ~ is the change of the free energy F N of the 
volume V in comparison with its metastable state; So 
is the total entropy of the volume W at the metastable 
state of V. 

To consider the probability of the near-labile states 
of V, we shall attempt to separate an expression simi­
lar to (I. 2), so as to determine the change of the total 
probability of the states of the volume V following th~ 
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transition from the metastable to the labile state. Ac­
cording to[12], the probability dWnN(V,P) that the volume· 
V in the n-th quantum state with energy EnN(v,p) contains 
N molecules of liquid as well as a bubble having a volume 
in the interval (v, v +dv), in which the vapor pressure is 
in the interval (p,p +dp), is 

dWftN(V, p) =C exp (k-'S(Eo' -ilE" No' -AN,)}dv dp, (1.3) 

where E ~ and N~ are the energy and number of mole­
cules of the medium W - V in the state corresponding to 
the labile equilibrium of V; dEc =EnN(v,p) - Ec and Il.Nc 
=N - Ne is the change of the energy and of the number of 
molecules of the volume V in comparison with the state 
of the labile equilibrium, and c is an index that desig­
nates the labile-equilibrium state. 

Expanding Sin (1.3) in powers of Il.E and Il.N about 
the labile equilibrium point and then summing dWnN(V,P) 
over n and N, we obtain, in analogy with[9], the prob­
ability dw(v,p) that the volume V contains a macroscopic 
bubble with a volume in the interval (v, v +dv) with a 
vapor pressure in the interval (p, p +dp): 

(I. 4) 
A,=Cexp {S/k}, 

where p, Vela is the value of the Jacobian 8(N" Nv)1 
8(v,p) of the tranSition from the dimensionless space of 
the variables (N" Nv ) to the dimensional space (v, p), 
where N v is the number of vapor molecules in a bubble 
of volume v and with pressure p; N, is the number of 
liquid molecules filling the bubble volume v at constant 
p,; JJ.~ is the chemical potential of the liquid W when V 
is in the labile state; dF'ivvl> =FNvI> -F'ivvl> is the change 
of the free energy of the "liquid + bubble with vapor" sys­
tem in the volume V compared with the labile-equilibri­
um state; Se is the total entropy of the volume W when 
V is in the Jabile state. 

It is important to separate in the expression for F NvI> 
the terms that do not depend on N and take them outside 
the sign of summation with respect to N. To this end, 
we treat the "liquid + bubble with vapor" as a sort of 
weak solution of bubbles in a liqUid. The free energy 
of our system, according to thermodynamics of solutions 
is[12] 

(1.5) 

where F N is the volume free energy of N molecules in 
the volume V - v, F vi> is the free energy of the bubble 
characterized by the values v and p, and the third term 
takes s into account the entropy of the mixing of the bub­
ble in the liquid. Then 

(1.6) 

where N v is the number of liquid molecules in the vol­
ume V - ve , the logarithmic term being neglected here 
because we are seeking dWnN(V, p) only in the vicinity of 
the labile equilibrium point. 

Substituting (1.6) in (1.4) we obtain 
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dw(v,p)=/(v,p)dvdp L.WnN'= 
n,N 

(1.7) 

where 

(1.8) 

is the total probability that the volume V has a macro­
scopic critical germ, and 

v, {I!J.F.p ' } 
!(v,p)=P'eexp -r-e 

is the probability density that the macroscopic germ in 
V has a volume and pressure in the respective inter­
vals (v, v +dv) and (p, p +dp). 

Thus, owing to (1.5), the probability of formation in V 
of a given macrobubble can be represented as a product 
of the probability of formation in the volume V of a crit­
ical bubble in which the vapor pressure is saturated by 
the probability of the deviation of the critical bubble 
from the given values ofv and p. 

In comparing g c with go we shall neglect, in view of 
the inequality (1) and the invariance of the temperature 
and of the supersaturation of the system, the difference 
b~twef3n V -v and v, and will also assume that J.L ~ '" jJ.~ • 
We shall also assume that the presence of the germ in 
the volume V produces practically no change in the fluc­
tuations t1N and t1FN of the number of molecules and of 
the· free energy of the volume V. Then, substituting 
(1.2) in (1.8), we obtain 

g,""go exp {I!J.Slk}, (1.9) 

where t1S =Sc - So is the increase of the entropy of the 
volume W when V goes from the metastable homoge­
neous-liquid state into the labile state of the "liquid 
+ bubble" system, a state that serves as a thermody­
namic characteristic of the process of new-phase forma­
tion. 

Since the volume W is insulated, the entropy incre­
ment t1S is equal to the change t1FNw of the free energy 
upon formation of the critical germ, divided by the ab­
solute temperature T. USing (I. 5), we get 

I!J.Slk=-I!J.F ",/kT=- (F ,,'+F,p'-8 In Ny-F ,,0) 18",,-F,p'/8+ln Ny 

(I. 10) 
Substituting (1.9) and (1.10) in (1.7), we get 

v, {F,p} 
dw(v,p)=cp(v,p)dvdp=goNvP'eexp -e-- dvdp. (1.11) 

Assuming that the onset of the macrogerm in V hardly 
changes the fluctuations of the number of particles and 
of the energy in the volume V, we arrive at the conclu­
sion that the variables E and N, which characterize the 
states of the volume V together with v and p, are an al­
most constant background that accompanies the forma­
tion of the new phase in V. We can therefore go over 
from the four-dimensional space (E, N, v, p) to the twO-
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dimensional space of the germ variables, each point 
(v,p) of which corresponds to a sum, over nand N, of 
all possible states(E, N, v,p) with fixed v and p. The 
probability density ((J(v,p) is then the equilibrium dis­
tribution function of the nucleating bubbles with respect 
to their variables v and p and is connected with the re­
lief to the free energy F w of the system. 

Changing to the dimensionless quantitiesx=v/vc , 

Y =p/Pc, 'iJ!=Fw/e, we obtain in (x,y) space 

dw(x, y)=cp.ydxdy=goNyN,'N,'exp {-'l'(x, y)}dxdy; 
N/c=VcPI, N,,c=vcp,/. 

(1.12) 

APPENDIX II 

In any diffusion problem, to find the diffusion tensor 
we must know the forces that act on the system, and the 
velocity with which the system moves under the influ­
ence of these forces. In Zel'dovich's formulation of the 
nucleation problem, the forces acting on the system are 
specified by the equilibrium distribution function ((J"" 
that determines the potential relief 'iJ!(x, y) in the space 
of the germ variables 

F=grad (In cp •• ) =-grad 'l' (x, y). (ll.l) 

The velocities x =v/vc and y =p/Pc are obtained from the 
phenomenological equations of motion that describe the 
time dependence of the bubble radiUS (the bubble center 
is immobile): 

(ll.2) 

where m is the molecule mass, and the dependence of 
the number of vapor molecules in the bubble on the time 
is 

(ll.3) 

where Vt = (80/1Tm)1/2, PRo is the pressure of the saturated 
vapor in a bubble of given curvature and is connected 
with the saturated-vapor pressure p .. over a flat surface 
by Kelvin's formula 

p.=p~ exp {-2o/p,8R}. (ll.4) 

The calculation of the diffusion coefficients as functions 
of the arguments v and p require both an exact solution 
of Eqs. (ll.2) and (n.3) and an exact calculation of the 
forces, using (ll. 1) and (4). But the presence of a rather 
steep saddle in the problem allows us to replace this 
problem by the simpler one of calculating the diffusion 
coefficients in the vicinity of the saddle, near which the 
small forces F" and F" and the velocities x and y can be 
expanded in powers of t1 x and t1 y and only the linear 
terms retained: 

a'l' l!J.y 
F.=--=--

ay Ry 
(ll.5) 

Neglecting in (ll.2) the term with R2 near the saddle and 
recognizing that ii =R dR/dR, we get 

(IT. 6) 
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-----------------------------------------------

The criterion for neglecting the inertia term can be 
readily shown, with the aid of (II.6), to be of the form4) 

(II. 7) 

from which it follows that at sufficiently small displace­
ment of the system and low liquid viscosity we can dis­
regard the effect of the inertial term. 

We neglect next, for SimpliCity, the inertial term. 
We transform (II. 6) and (II.3), with allowance for (II; 4), 
in the following manner: 

R, [ 20 20 20 1 R, 0 
R=~ p-p,+p,-p--+--- =-~p+--~R, 

41') R, R, R 41') 2R,1] 

., n~v,R.' ( 2n~v,op: n~v,R.' • 
1> ---- P.-p,+p,-p) = ~R----u.p, 

e pIe e 

or else, changing to the coordinates x and y, 

3p, [ b ] X=- -~x+~y , 
41] 3 

3~vl [ b . ] y=-- -(Il-CIl)~x-(1+ro)~y . 
4R, 3 

(II. 8) 

(n.9) 

To obtain the connection between the forces and the 
velocities, which defines the tensor D, we reduce Eqs. 
(15) and (15a), assuming the tensor D and the forces to 
be functions that vary much more slowly than n"y and 
grad n"y in the vicinity of the saddle, to the form 

~ i}~ i}~ 
-i}- = - (D.'F.+D.:F.)-- - (D:F.+D,.'F.)--

t i}x i}y 

i}'n. i}'n . i}'n 
+D ,--' +D ,-'-' +(D '+D ')--'-' 

• i}x' 'i}y' ., .. ax ay 
(II. 10) 

and, rewriting this equation of diffusion in an external 
field in the Fokker-Planck form 

an i}n I)n I)'n I)'n 1)2", __ 
~=-X~- ·~+D'--·'+D'~+(D '+D ,)-.-.... 
i}t ax Y I)y • ax' 'i}y' .... I)x I)y , 

we obtain the system of equations 

(II. 11) 

Substituting (n.5), (n.8), and (II. 9) in (II. 11), we write 
out the system of equations 
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2as, b 3p, 3p, 
D.'--~x-D.:N:~Y=--~x+-~y, 

ge 3 41') 41') 

20s, b 3~v, 3~v, 
D • .'--~x-D .. N .. ~y = ---(Il-ro)~x- --(1+ro)~y. 

98 3 4R, 4R, 

Equating the coefficients of .<1x and .<1y, we obtain the 
diffusion tensor D at the saddle point: 

( 
D.' 

D'= 
\ D' Il-ro 

(II. 12) 
, • (0 

We see therefore that at w» 15 the tensor DC becomes 
symmetrical. The ratio of the viscosity, volatility, and 
superheat of the liquid, for which we can neglect the 
nondiagonal forin of DC, can be determined from the 
criterion w« 1 and 15« 1, which corresponds, for ex­
ample, the low-volatility liquids or those with very low 
viSCOSity. 

1)The method of solving (15) was proposed by V. N. Likhachev. 
2)As follows from (11.7), as Rc- oo it is necessary to take into 

account the influence of the inertia of the liquid on the value 
of the diffusion tensor. 

3)The presence of microscopic germs is reflected in the value 
of chemical potential of the homogeneous liquid. 

4) A method for taking into account the inertial term in D is 
given in[I01. The criterion (II. 7) practically coincides with 
criterion (35) of that reference. 
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