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The Lagangian method of obtaining the equations of hydrodynamics for He I1 is generalized to the case 
of the quantum anisotropic liquid H ~ ) - A .  A complete set of He3-A orbital hydrodynamic equations is 
derived on the basis of the Lagrange equations. It is shown how the set of Lagrange equations can be 
reduced to the Hamilton form. The spin subsystem parameters are included in the Hamiltonian formalism 
The He3-A spin equations of hydrodynamics are found by taking into account the presence of an external 
magnetic field. The general form of the conservation laws for a system obeying the Hamilton equations is 
presented. The energy, momentum, angular momentum and total spin conservation laws are found on this 
basis. The form of the dissipative corrections to the He3-A equations of hydrodynamics is considered. The 
kinetic coefficients are enumerated and the requirements are found which they should satisfy in the case of 
a combined analysis of the spin and orbital subsystems as well as in the case of an analysis of only the 
latter subsystem. 

PACS numbers: 67.50.R 

INTRODUCTION 

The problem of the Lagrangian or Hamiltonian form 
of the equations of hydrodynamics has long been of in- 
terest. Such a form of the equations was found by Lamb 
for the classical liquid. ''I ~ a v ~ d o v ~ l  found the Lay 
grangian form of the equations for a barotropic l iq~id. '~ '  
The problem was solved by Khdatnikov for helium II.'~' 
We shall briefly review this latter work. 

The basic characteristics of the superfluid a r e  the 
mass density p, the entropy density s, the normal and 
the superfluid velocities vn and v, and the momentum 
density j; The equations of hydrodynamics a r e  formu- 
lated with the help of the Lagrangian 

where E = E - g(vn - v,) is obtained by a Legendre trans- 
formation from the thermodynamic energy density &, g 
= ~E/'/Bv, is the normal momentum density. The vari- 
ables a, 6 and y a re  the Lagrangian multipliers in the 
laws of conservation of mass, entropy, and one more 
quantity, the reason for whose introduction will be ex- 
plained when the Lagrangian (1) is varied with respect 
to vn. This yields 

and v, = V a. After this, the equations of hydrodynamics 
can be obtained a s  the Hamiltonian equations if the pairs 
6, a), (s, p), Cf, y) a re  considered a s  pairs of canonically 
conjugate variables (q, P),  for which 

Recently, the problem of the Lagrangian and Hamil- 
tonian formulation of the hydrodynamical equations of a 
quantum liquid were considered in Ref. 5. 

In an anisotropic quantum liquid H ~ ~ - A  (see, for ex- 
ample, the review of Ref. 6) there is an order param- 
eter A (the physical meaning of which is the energy gap 
in the excitation spectrum) 

where 6 are  Pauli matrices, k is the wave Vector of the 
excitations, and A. is the maximum value of the gap. 
The vector iP = + i*z characterizes the orbital part of 
the order parameter, such that the vector 1 = X @, in- 
dicates the direction of the orbital momentum of thepair 
and n determines the direction of the spin momentum of 
the pair. 

The superfluid velocity is expressed a s  follows in Thus, thanks to the introductior~ of the Clebsch variables terms of the order parameter 
f and y, we have obtained (together with 8) three arbi- 
trary functions that a re  necessary for the description of tr 
the three independent components of g. V ,  - - - @%,V @,& 

2m 

As was shown in Refs. 4, the Lagrangian formalism 
can be reformulated in Hamiltonian language in standard In Ref. 7, the authors assumed the Lagrangian for- 
fashion. The Hamiltonian here has the usual form mulation of the equations of orbital hydrodynamics of 

H ~ ~ - A .  In the present paper, along with the Lagrangian, 
1- J d3zE,  E = i l r p u . Z + g ~ . + ~ .  (3) we consider the Hamiltonian formalism, and in com- 

parison with Ref. 7 we also consider the spin hydrody- 
Here & =&(p ,  S, g); it is also necessary to substitute (2) namics of H~'-A, in addition, we take into account the 
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dependence of the energy F on the time derivative of 1; 
moreover, the equations are formulated from the very 
beginning such that the stress tensor is symmetric. 

ORBITAL HYDRODYNAMICS 

A number of papers have recently appeared devoted to 
the orbital hydrodynamics of H~'-A (see Refs. 8 and9). 
This calls for taking into account the dependence of E on 
1, and also on its derivatives. To the Lagrangian (1) 
we add the structure condition on the reference frame 
(@,, cp,, 1) with the Lagrangian multiplier a, and also a 
term which describes the transport of the order param- 
eter. It should be so chosen that variation with respect 
to j yields the correct expression for the superfluid ve- 
locity. The term ( E / 2 m ) ~ ~ ( j  . V)aI  satisfiesthis require- 
ment but is not a Galilean invariant. Therefore, i t  is 
necessary to introduce the "new" derivative 

The component ccurlv, is necessary in order that we 
obtain ultimately a symmetric stress tensor. Similar 
considerations lead to the result that should depend on 
the total derivative 

As a result, we obtain the Lagrangian 

This Lagrangian leads to the following set of equations 
(on the left we have the variables the variation with re- 
spect to which yields the corresponding equations): 

n: I=[@, x@,I, (6) 

a@ I 
v,: g=-=sV$+fVy-G,Vli+-rot([lXG] + [a1 XFI) 

dv. 2 
v.: j=pv.+g, (9) 
a ,  $, y: p+Vj=O, i+V(sv,)=O, j+V(fv,)=O, (10) 
p: pa+jV~+'/2pu.~-jv,-Ql+~p=O, (1 1) 

s, f :  $+v,T$+T=O, y+v,Vy=O, 

d 
@,: -@,= [ax@,],  

dz  
(12) 

where 

and T = 8C/8s is the temperature, p = 6 / 8 p  is the chem- 
ical potential. 

It follows from (12) that 

i. e., the relation a,@, = 6,, can be considered as the 
boundary conditions for the given system of equations. 
With account of these relations, we can find from (6) 
and (7) the expression for the curl of the superfluid ve- 
locityclO1; 

Moreover, we note that the term Vd! in the expression 
(7) for the superfluid velocity can always be eliminated 
through the gauge transformation (D - exp(- 2imct/E)ib. 

It follows directly from (6) and (12) that 

We then find for the superfluid velocity 

We shall show how the obtained equations can reduce 
to Hamiltonian form. Forst, for the variables q 
- ( p ,  s, f, 1, a,), on the time derivatives of which the La- 
grangian (5) depends, we can introduce the canonically 
conjugate variables p = 8 L/B?. We find the following 
( 9, P) pairs: 

(p, a ) ,  (st PI, (f, T),  (1, G ) ,  ( @ I !  F) .  (18) 

We construct the Routh function R(q,p, v,,, v,, j, 0) 
= p i  - L, which gives the Hamiltonian equation (4) for the 
variables (q, p). Equations (7)-(9), which are specified 
by the Lagrangian variables V,,, V, and j of R can be re- 
garded as  expressions of the corresponding quantities 
in terms of the Hamiltonian variables (q, p). After sub- 
stitution of these expressions in the Routh function R, it 
should be reduced to the energy density E with the addi- 
tional structural condition 

In particular, the following Hamiltonian equation exists 
for I: 

Generally speaking, e depends on G and also g (for this 
reason the total derivative appears in (20)); however, 
the derivative in (20) is at constant g. 

The function i? actually is identical with R, with ac- 
curacy to total divergence of the function of (q, p) (which 
is not reflected in the form of Eqs. (4)), if we assume 

Thus we see (with account of v, - v, = 8&/ag), that E is 
obtained from e by the Legendre transformation with a 
change from the variables G and g to their conjugates 
dl /& and v,, - v, the expression T =8: /8s = 8c/8s is sub- 
stantiated, and so on. 
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Hamilton's equations, given by (19) are equivalent to 
the system (10)-(13), (20). We note that although there 
are two equations for [(16) and (20)], the unknown vec- 
tor function 62 enters into the system, the choice of 
which also assures the consistency of these equations. 

SPIN HYDRODYNAMICS 

The spin hydrodynamics of ~e : ' -A has been considered 
in the linear approximation both microscopicallyu1 and 
phenomenologically. [I2] The Hamiltonian and Lagrang- 
ian forms of the nonlinear equations of spin hydrody- 
namics will be formulated below.. 

Here we must take into account the dependence of the 
thermodynamic energy density & on the magnetization 
M, and also on the vector n and its spatial derivatives. 
We shall also assume that the system is located in the 
external field H, so that we must add to the internal en- 
ergy density &, the term that is clue to this field: & =&, 

-M. H. 

With the help of the Hamiltonian (3) or the Routh func- 
tion (19), we can obtain the usual canonical equations if 
we introduce pairs of canonically conjugate variables 
(n, C), (q, f), the meaning of which is that 

where r is the gyromagnetic ratio. The variables Q, f 
are necessary since it is impossible to describe the 
longitudinal n part of M by means of g. It is also neces- 
sary to take it into account that a contribution g~ is made 
to the momentum density by the spin subsystem, 

and must now be substituted in (8). 

By means of (22), (23), we find the Hamilton's equa- 
tions 

where 

For M we find the equation 

dM 
- + M ( V v , ) = F [ M X ( h - H ) ]  + r l $  X n l  . 
dl  

It follows from Eqs. (24) and (28) that 

The pairwise scalar products of the vectors n, q , €  are 

conserved in this same sense (or with the replacement 
of the derivative by 8/8t+v,V). Therefore, we can 
choose the orthogonality of this basis a s  the boundary 
condition; in addition, we assume li?= q2 = 1; here r[ 
= (M n)qxn. Starting out from these conditions, we 
find the following for the momentum flux: 

To change over to the Lagrangian, we must carry out 
an operation that is inverse to that given in the previous 
section. We construct = p i  - R, taking it into account 
that now we must also include (n,,f ), (I), f )  inthe set (q,p). 
Separating the total divergence, we get the Lagrangian 
(5), except that now 

and &, 5 (which determine M in accord with (22)) are  as- 
sumed to be expressed in terms of n, 9 and their deriva- 
tives from (24), (25). The Lagrange equations for (~l, 

9) are equivalent here to (26), (27). 

Recognizing that the term gdb (23) is now included in 
the momentum density, we find 

j=pVa+sVp+fVy-F,VcD,,-GdVLI-g,Vn, 

-SiVq3+1/2 rot ([l X GI + [@, X F] - I ' - l M )  . (32) 

CONSERVATION LAWS 

Before proceeding to consideration of H ~ ~ - A ,  we for- 
mulate some general premises that are  valid for a sys- 
tem described by Hamilton's equations (4). Let S be the 
generator of the group acting on (q, p). Writing out this 
action on E and using (4), we find 

a a~ 
S ( E + B ( I ) = ~ ( ~ S ~ ) + V  (-sp+- a v p  a v q  aE S I )  . 

Substituting S = 8/8 t, we obtain (assuming that the en- 
ergy E does not depend explicitly on the time) the en- 
ergy conservation law 

Substituting S = V, we obtain (assuming that E does not 
depend explicitly on the spatial variables) the law of mo- 
mentum conservation 

The generator J of a group of rotations in space pre- 
sents a special case of S, since it does not commute with 
the derivatives of V, as  was tacitly assumed in the der- 
ivation of (33). Let J be the generator of rotations about 
that spatial point at which the values of q and pl' are 
taken, then E and p i  should be invariant to this rotation 
(in the absence of an external field), and instead of (33) 
we obtain 
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Thus, we see that the antisymmetric part of the stress 
tensor II,, contains the term 

which we use for a redefinition of the momentum den- 
sity. Starting from (35) 

The divergence of the remaining term in  the antisym- 
metric part of the s t ress  tensor reduces to the diver- 
gence of the symmetric tensor. We finally obtain the 
law of momentum conservation with the symmetric 
stress tensor 

In connection with the symmetry of the stress tensor, 
we obtain the possibility of formulating the law of the 
conservation of angular momentum in the usual form: , 

Although our equations a re  given by the Routh func- 
tion (19), the latter differs from E by a term whichdoes 
not depend on the derivatives of (q, p )  and which vanishes 
upon substitution of the equations of motion. Therefore, 
all the given formulas are  applicable. 

If we choose as  S the generator of those rotations in 
spin space relative to which E, is invariant upon neglect 
of the spit-orbital interaction, then, upon substitution in 
(33), we obtain the conservation law 

+[MXH] *=O. (40) 
Equations (24) and (40), with neglect of terms with ve- 
locity v,, transform into the equations formulated in the 
linear approximation by Graham and Pleiner. 

Substituting all the pairs of canonically conjugate vari- 
ables that were introduced into consideration by us, we 
find 

Substituting these pairs in (34), and using the equa- 
tions of motion, we find 

1 de 9-1 (P +? v:) + v . ( v . g + ~ r + ~ -  a~ + (h-HIM) 

where jo = j - pv,,. 

Our expression for the current (32) differs from (37) 
by the total gradient, i. e., we can obtain the previous 
formulas by the redefinition 

Substituting, we find from (35), 

where the pressure is 

Finally, with account of the presence of the external 
field that which violates the conservation laws, we find 

a i 
--ji+VAni,-- [ V X  [ M X H ]  j i = O .  
d t 2 

(45) 

Here n,, is obtained from IT:, according to the rules (38), 
and 

KINETIC COEFFICIENTS 

The dissipative terms should be introduced a s  correc- 
tions to the obtained set of hydrodynamic equations. By 
virtue of the condition (15), the generalization (7) is 
achieved through the substitution p - p + z ,  by adding JS.. 
and A respectively to the expressions for the time de- 
rivatives of G and M, and by adding to the tensor n,, the 
dissipative contribution T,,. By virtue of the condition 
l e  = 2 - 1, the corrections to the derivative of 1 and n 
with respect to time should have the forms uxl  and y 
x n  respectively. Finally, we obtain the set of hydrody- 
namic equations 

The quantity 62 is obtained from this same set of equa- 
tions. 
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In the absence of a dependence of on dl/dt, we ob- 
tain (assuming G= K = 0) for the orbital hydrodynamics 
a set  of equations coinciding with the set Xo, with the 
exception of the expression for the s t ress  tensor. 

For the entropy, the generalkcation of (10) takes the 
form 

where u is the dissipative entropy flux, and D is the 
dissipation function, which determines the rate of in- 
crease of entropy. Requiring that the law of energy con- 
servation have the formc131 

we find, separating the total divergence, 

a& a& (57) 
Q'=To+j,z+u,,r, + - [ I X u ] ,  + - [ n X  y],, 

d v l i  Vn,  

where 

In Eq. (58), we have the sum of the products of the 
generalized forces and generalized flux densities. They 
should be connected with one another through the kinetic 
coefficients. We have at  our disposal a triad of orthog- 
onal axial vectors vc1, a l + n ,  V ( Z ,  a l - n ,  and V(Q) u l x n  
(we assume them to be normalized), with the help of 
which we can construct an arbitrary polar tensor of 
fourth rank and an arbitrary axial tensor of odd rank. 

Thus, in the linear approximation, the generalized 
forces and flux densities a re  divided into two groups, in 
the first  of which are  - VT and m (polar vectors), in the 
second (- Vj,,, - w,,, [ lx  Z], [nx $1, - a a / a ~ ,  H - h) and 
(2, T,,, u, y, I(, A) (scalars, pseudovectors and polar ten- 
sors of the second rank), and the generalized forces and 
flux densities a re  expressed in terms of one another only 
within these groups. 

For the dissipative flux of the first  group, we have 

The contribution to D due to -- o S  VT is a quadratic 
form, constructed over V(I,  . VY, vtz, - VT, vc3) VTwith 
the help of the matrix C. This quadratic form should be 
positive-definite, and the matrix C is symmetric by 
virtue of the Onsager symmetry. In addition to the dis- 
sipative part there is a reactive part of the flux density 
o (the index on Y takes on the values 1 ,2 ,3  over which 
summation is implied): 

o r = b , . [ v , , , x ( V T )  1. (60) 

Consideration of the second group is carried out sim- 

ilarly. To obtain the dissipative part of the flux density, 
we should write out all the components of the general- 
ized forces and flux densities2' belonging to this group 
in the basis vcl,, vc2,, v(s,, which have the form of the 
corresponding products (for example, u generates V(S, 

uD and [ v ( ~ , x ~ ] .  9). The contribution to D from this 
group has the form of the sum of pairwise products of 
components of forces and fluxes. Thus, if the matrix 
a interconnects the components of forces and fluxes,then 
the contribution to D is a quadratic form, constructed 
over the components of the generalized forces with the 
help of the matrix a. This quadratic form should be 
positive definite, and the matrix a is symmetric by vir- 
tue of the Onsager symmetry. 

This matrix a determines the dissipative part of the 
flux densities; in addition, there a re  the reactive terms 

r,, is obtained from ?,, by symmetrization. We note that, 
generally speaking, all the kinetic coefficients depend 
on the angle between 1 and n. 

We now consider the case in which the spin effects can 
be neglected. We a r e  left with only the single vector 1. 
However, a s  before, we can separate the group q - VT 
for which 

The coefficients X, > 0 and X, > 0 have a dissipative 
character, while the coefficient cpl has a reactive char- 
acter. 

The second group contains scalars, pseudoscalars 
and tensors of second rank. However, with account of 
the presence of the vector 1 in the transformation plane, 
the pseudoscalars break up into scalars (projections on 
1) and two-dimensional vectors orthogonal to 1 (thus, K 
= (1. K)l+ KL). So far a s  the tensors of second rank a r e  
concerned, they break up a s  follows: 

where X and W are  vectors orthogonal to 1, T:, and w:, 
are also orthogonal to  1 (i. e., Zkrik = lkw~k = 0) and i r re-  
ducible (T:, = wt, = 0). The inverse expressions (say, for 
w) take the form 

after which 4, is sought from (63). 

The contribution to D from the second group divides 
into the sum of products of the generalized flux densities 
and the scalar forces (2,  71, ~ 2 ~ 1 .  K) and (- vj,, -wl, 
-w2, -J.ae/aG), the vector (A, u, K - (1 K)1) and (-w, 
-[=XI], - a~/aG + 1(18c/aG), and the tensor T:, and -wtk. 
The s K o f  scalar flux densities is expressed in terms of 
the set  of scalar forces with the help of a symmetric 
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matrix (according to Onsager) such that the quadratic 
form constructed on it is positive definite. So far as  the 
tensor quantities a re  concerned, the following relation 
holds 

in which the coefficient X, > 0 has a dissipative charac- 
ter and cp, a reactive one. 

For the vectors, we get the following relations: 

The coefficients cp,, q,, cp5 have a reactive character. 
So far as the dissipative parts of the generalized vector 
densities (A, u, K - l(1. K)) are  concerned, as  is seen 
from (66), their components in the two-dimensional sys- 
tem of coordinates orthogonal to 1 are connected with the 
components of the generalized forces in this same sys- 
tem of coordinates [-w, -EX  1, -8c/8G +1(l ae/aG)] by 
means of the matrix 

Correspondingly, according to Onsager, this matrix 

should be symmetric and the quadratic form constructed 
on it should be positive definite. 

The situation in which the frequencies a re  such that 
the spin subsystem, because of the weakness of the spin- 
orbit interaction, can be considered independently, re- 
quires special consideration. (In particular, the law of 
conservation of M holds here, so that A must be a total 
divergence. ) This case was considered by Graham and 
Pleiner. C121 
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