
where v, (0) = C ~ ~ ~ ( O ) / B ,  is the electric drift velocity at 
7'0. 

2 )  Stageof a growing field in the kinetic regime cor- 
responding to the time interval < r < T2.  In the above 
mentioned case of a constant rate of injection 

In particular, for a distribution of the form I = z ~ ' ' ~ ' ~ ' ~ / @ :  
which was considered in Ref. 10, 7,- b2/Z; Av/vo= b. 

We note also that i?10(~2) = B0v0 b2/c.  In such a field the 
electric drift velocity v,(T,) = vob2 so that an ion during 
a period of oscillations drifts along the small torus ra- 
dius over a distance of the order of h a =  ~ b ~ .  

3) Stage of the hydrodynamical evolution starting for  
T > 7,. For a study of this state of the evolution of a 
monochromatic Alfv6n wave one must develop a non- 
linear theory of the hydrodynamic Alfven instability which 
was discussed in the linear approximation in Ref. 9. 

According to what has been said in the foregoing, the 
presence of a source of resonant particles thus affects 
considerably .the non-linear evolution of a monochromatic 
wave. The main effect displayed when there is asource 
present consists in a systematic change in the wave am- 
plitude which is qualitatively different from the effect 
of damped oscillations of the amplitude when there i s  no 
source present. 

We are grateful to A. B. Kitsenko, K. N. Stepanov, 
and V. D. Shapiro for a discussion of the results of the 
present paper which was very useful for us. 
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A theory is developed of absolute parametric aperiodic instability in a spatially inhomogeneous plasma, 
when the electromagnetic waves generated in the plasma are trapped by the plasma near the peaks of the 
pumping-wave field. 

PACS numbers: 52.3S.Py, 52.35.Hr 

1. The present paper i s  devoted to the theory of the 
phenomenon of electromagnetic-wave trapping by aplas- 
ma. The essence of such a phenomenon consists in the 
fact that the secondary electromagnetic waves paramet- 
rically excited under the action of a pumping electro- 
magnetic wave do not get out of the plasma, but are  
trapped inside it. It may be expected that such a phe- 
nomenon is one of the causes of the reduction in reflec- 
tion of electromagnetic waves by a plasma during some 
short interval of time. 

As a specific example of the appearance of the trap- 

ping phenomenon, below we consider parametric insta- 
bility in an inhomogeneous plasma, during which the 
pumping wave gets transformed into an electromagnetic 
wave and perturbations aperiodically growing in time.'' 
It is shown in the process that, after the intensity of the 
electric field of the pump exceeds some threshold value 
in the spatially inhomogeneous plasma, the development 
of absolute parametric instability becomes possible. The 
growing-in time-plasma perturbations are localized 
near the peaks of the electric field of the purnpingwave. 
The regions of such localization are small compared to 
the characteristic dimension of the pump inhomogeneity 
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in the plasma. Therefore, the secondary electromag- 
netic waves do not, with exponential accuracy, get out 
of the small regions of their localization, and are, con- 
sequently, not scattered by the plasma. This allows us 
to assert that, as  a result of the parametric instability 
studied below, there occurs trapping of the electromag- 
netic radiation by the plasma. Such trapping is essen- 
tially connected with the spatial structure of the pump 
field, and cannot, in the considered model, arise in the 
field of a running wave. However, parametric trapping 
turns out to be possible even in the case of very small 
reflection coefficients. 

The theoretical model used below presupposes an elec- 
tron density of the inhomogeneous plasma linearly de- 
pending on the coordinate x: 

Here 
where n, = 4me/47r8 is the critical density of the plas- 
ma, e and m, are the electron charge and mass, and wo 
is the pump frequency. Let us represent the pumping- 
wave's electric field, which we shall assume to be di- 
rected along the y axis, in the form 

Ea(x, t ) = ' I ~ [ E , ( x )  exp ( - ioot )+Eo'(x)  exp ( i o , t ) ] .  (1.2) 

In the simplest case of negligibly small absorption of 
the pumping wave in the plasma we have, in accordance 
with (1.1) and according to Ref. 3, that 

where Ai(- I) i s  the Airy function, E(0) is the intensity 
of the electric field of the pump in a vacuum, A =  2(wo 
x ~ , / c ) ' l ~  is the distension factor for the field in the in- 
homogeneous plasma, L, = ( 4 ~ ~ ) " '  is the scale of the 
field inhomogeneity, A, = c/oo being the wavelength of 
the pump in a vacuum. In the case of total neglect of the 
absorption the pump field (1.2) corresponds to a standing 
electromagnetic wave. 

2. The localization of the plasma perturbations in the 
vicinities of the peaks of the pump field (1.3) requires 
the wavelength of such perturbations to be small in com- 
parison with the wavelength of the pump. Denoting the 
wave vector, 5112~,", of the pumping wave by ko(x) and 
the x component of the wave vector of the perturbations 
by k,, we have the inequality k, >> ko. This inequality, 
for one thing, allows us to use the geometrical-optics 
approximation; for another, it allows us, in writing 
down the eikonal equation for the parametric instability 
due to the nonlinear transformation of the pumping wave 
@to an electromagnetic wave and an aperiodic perturba- 
tion, to use immediately the pertinent result of the theo- 
ry of the spatially homogeneous plasma (see Ref. 4): 

~ ' ( o ,  k )  ='/4vs2 ( x )  ( k 2 f  ki2)6e,' (o, k) 

x [ 1 + 6 ~ l ( o ,  k )  ] { [ k Z ~ 2 - ( ~ - o o ) 2 ~ " ( ~ - ~ ~ ,  k )  I-' 
+[kZc2 -  2 ~ f r ( 0 + ~ 0 ,  k )  I-'). 

Here 

k=  (k , (x ) ,  k,, k , ) ,  us(x)  -- (AeE ( 0 ) l m . o o )  Ai (-E) 

is the oscillation velocity of an electron in the pumping- 
wave field, and 

where 6< and 6 ~ :  are the partial longitudinal and trans- 
verse permittivities of the a-type particles. 

Setting a s  .our problem the determination of the in- 
stability boundary, let us set w =  iy = 0. Then the eikonal 
equation (2.1) can, under the assumption that the wave- 
length of the plasma perturbations significantly exceeds 
the ion Debye radius rDi ,  be written in the form 

kS4+2p ( x )  kL2k,2+kL'q(x) =O; 

vE2 ( z )  ol12(z) t' u ,"~)  0'2 ( x )  k: ('-'I 
P ( x ) = ~  - 4C2k,Zu,/p ( I )  + - - 

k,' 2k,'c2vTeZp ' 

is the damping constant of the transverse wave in the 
plasma, v,, is the electron-ion collision rate for a com- 
pletely ionized plasma, qe is the Langmuir electron 
frequency, and rD, is  the electron Debye radius. In 
writing down Eq. (3.3), we assume that the inequality 
1 >4 kl ko(x) is fulfilled at the places where the decre- 
ment y,  is substantial. 

The four solutions, * kl, * k2, of the eikonal equation 
have the form 

These solutions can be purely real in some finite x-val- 
ue ranges, where the plasma perturbations turn out to be 
spatially localized. In fact, there exist a few essentially 
different possibilities of appearance of such regions of 
localization. In the simplest case a region of localiza- 
tion is  bounded by reversal points; one of the solutions, 
k,(x), is real inside such a region, vanishes on passing 
through the reversal points, and then becomes purely 
imaginary. From (2.1) it is clear that the reversal 
points are  determined by the condition 

q ( x )  =O. (2.4) 

Another possibility is connected with the limitation of 
the region of localization by the transformation points, 
when inside this region all the roots of the eikonal equa- 
tion (2.2) are  purely real, at the transformation points 
these roots turn out to be equal, while outside the trans- 
formation region the roots become complex. The last- 
property ensures the exponential decay of the plasma 
perturbations outsise the region of localization. The 
transformation points are determined by the equation 

Finally, the third possibility is connected with the limi- 
tation of the region of localization both by the reversal 
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points for one of the roots of the eikonal equation (2.2) 
and by the transformation points, at which the roots turn 
out to be equal (cf. Ref. 5). 

In conciusion of this section, let us introduce, in ac- 
cordance with the assumption, which proves below to be 
justified, that the dimensions of the region of localiza- 
tion are  small compared to the scale L,, the following 
approximation (cf. Ref. 6): 

where, according to (1.3), 

U,Z(m) =A2 Ai' ( - ~ , ) e ' E ~ ( o )  

while 6, corresponds to the extremum points of the Airy 
function. 

3. Let us begin the determination of the instability 
boundary with the case of localization of the plasmaper- 
turbations by reversal points. A reversal point exists 
for perturbations with an x wave-vector component, 
kl(x), determined by the formula (2.3). According to 
the approximation (2.6), Eq. (2.4) leads to the following 
expression for the coordinates of such points: 

where 

V=vE2(m)  a,: ( m )  k.Z/2pv,.ZcZ. (3.2) 

For the localization of the plasma perturbations to be 
possible, the coordinates of the reversal points should 
not assume purely imaginary values. This leads to the 
inequality 

which corresponds to the requirement that the pumping- 
wave intensity be sufficiently high and guarantees the 
existence of purely real reversal points. 

Let us note further that, according to the formula 
(2.3) for kl(x), the function q(x) should not be positive 
between the reversal points. Accordingly, the asymp- 
totic dependence of the perturbations on the coordinates, 
which corresponds to spatial localization, i s  possible 
only when the function p(x)  turns out to be nonnegative at 
the reversal points. Then using the expressions 

2kZzklzp(E) =k,L-k:- f4+kiq(E) ,  
(3.4) 

which can be written down with the aid of the formulas 

FIG. 1. Instability regions in wave- 
number space. 

FIG. 2. Threshold of plasma 
instability with respect to parametric 
capture. 

(3.1) and (3.2), we can assert that it i s  possible to speak 
of localization by the reversal points only for perturba- 
tions with wave-vector components satisfying the condi- 
tion 

According to Fig. 1, the region of such k values lies to 
the right of the curve I. When (3.3) and (3.6) a re  ful- 
filled, we have for the plasma perturbations the follow- 
ing dispersion equation: 

corresponding to the geometrical-optics approximation, 
and determining the threshold value of the pump-field 
intensity (n is a whole number). 

A simple solution, which is not too close to the curve 
I of Fig. 1, to the dispersion equation (3.7) can bewrit- 
ten down when 

In this case, for the threshold pump field we have 

uE2(m) - 2pc'(k,'+f4) 
-- 

U T I Z  kl2wLEZ ( m )  
(3.9) 

Accordingly, for the dimension of the region of localiza- 
tion of the plasma perturbations we obtain 

The smallness of this dimension in comparison with 
~,[;;f'~ is guaranteed owing to the inequality kl >> k,. 

In Fig. 2 we show the limiting curve 8E(m)/42,,  plotted 
against k, for the case k, = 0. To the formula (3.9) cor- 
responds the segment of the limiting curve to the right 
of k , =  i , except for a small neighborhood of this point. 
For the description of such a small neighborhood let us 
use a consequence of the dispersion equation (3.7): 

which obtains when 

Here r($) = 3.6256. To the formulas (3.11) and (3.12) 
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corresponds the following dimension of the region of 
localization: 

The smallest threshold pump value for plasma per- 
turbations localized by reversal points near the m-th 
extremum of the pump field obtains when k, = kl = t , and 
is determined by the formula 

The right-hand side of this formula differs from the 
threshold formula obtained in the theory of the homoge- 
neous plasmac2 by the presence of the small term in the 
curly brackets. Let us emphasize that it is precisely 
the presence of this small term that determines the di- 
mension and, consequently, the very existence of the re- 
gion of spatial localization of the plasma perturbations. 
The smallness of the correction term in the formula 
(3.14) requires the fulfillment of the condition 

which can be fulfilled in the case of a sufficiently large 
dimension of the spatial inhomogeneity of the plasma. 

4. In t h i s  section we shall consider the possibility of 
parametric trapping accompanied by the excitation of 
plasma perturbations localized by the transformation 
points. According to Eq. (2.51, the coordinates, SF', 
of the transformation points are  determined by the for- 
mula 

Since in this case for the coefficients of Eq. (2.2) we 
have 

the realness of the roots of the eikonal equation (2.2) in 
the entire region between the transformation points re- 
quires the fulfillment of the condition 

and the right inequality in the following formula: 

2kZ2[k,f+ (k,'+f4)'Js] cV<k,'+ f'. (4.3) 

The left inequality in (4.3) ensures the location of the 
transformation points on the real 5 axis. When the con- 
ditions (4.2) and (4.3) are fulfilled, we can write the fol- 
lowing dispersion equation for the plasma perturbations: 

Let us emphasize that, according to the inequality (4.21, 

this equation describes perturbations with wave vectors 
lying to the left of the curve I of Fig. 1. Not too close 
to such a curve, when 

(k ;  + t" V, - k: (2n + i) g: (k,' + f" )'I' -- ( k ; + f A ) X + k ~ ~ 2 { L E [ k . ' + ( k , ' + 1 ' ) ' ]  

we obtain from Eq. (4.4) for the instability boundary the 
expression 

uEz(m) 4cZp 
-=- [k,Z +(k," + f ' ) '" ]  

uTs2 oLbZ(m) 
(2n + 1 )  ( 2 ~ ~ ) ' "  (k,' + t')" - k: xi1+ LE(k.'+f6)" I (k , '+ fh )"  + k: 

] "=} . (4.6) 

Correspondingly, for the region of localization we have 

2Lr [ (2n + I )  (?En,)- 1 I [  (1,' + t ')  - k: 
Axb(m) = 2 L E I t p  = - 

g L,(k,< + f ' )  ' (kVk  + f ' ) '  + kVA I" 
(4.7) 

According to the formula (4.6), the threshold pump 
field decreases a s  the curve I of Fig. 1 is approached. 
Therefore, let us give here the results for the case op- 
posite to the case (4.5), when 

(k," t i )  '" - kZZ 4L,kL2 :/, 1 -1 .1 .  

In this case for the threshold field and the region of lo- 
calization we have 

. . 
Azb ( m )  = LE [. 

2'/.:'f2 L~ ( k ,  1 k,  I )  '" (4.10) 

It can be seen from the formulas (4.7) and (4.10) that 
the smallness of the region of localization is guaranteed 
owing to the condition k ,  >> ko. 

The smallest threshold field for the excitation of plas- 
ma perturbations 1ocSized by transformation points oc- 
curs for the value k, = 0. In Fig. 1, the region of such 
instability is located to the left of the curve 11, which 
corresponds to the equation to zero of the left-hand side 
of the inequality (4.8). The outermost right point of 
such a region on the abscissa axis is given by the for- 
mula 

The same point in Fig. 2 limits the region located to the 
left of it, and corresponding to the localization of the 
perturbations by the transformation points. 

5. In the small region between the curves I and II in 
Fig. 1 the locking up of the plasma perturbations in the 
inhomogeneous plasma occurs in the following manner. 
From the reversal point 5r '  a wave with wave vector k2 
propagates towards the region of higher .$ values. At 
the transformation point 5r' (5:' > 5y' ) the wave is trans- 
formed into a wave with wave vector kl, which then 
propagates right up to the transformation point 5:". 
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Here again there occurs a transformation into a wave 
with wave vector k,, which propagates to the reversal 
point kj-' and reflects from it. After this the process 
of transformation and reflection of the waves is repeat- 
ed. For the thus generated standing wave, bearing in 
mind the even dependence of the functions p and q on 5 
- t,, we can write a dispersion equation in the following 
form (cf. Ref. 5): 

The location, necessary for such a dispersion equation, 
of the reversal and transformation points on the real [ 
axis requires the fulfillment of the inequality (3.3), 
which is opposite to the right inequality in (4.3). At the 
same time the condition for realness of k,(x) leads to 
the condition (4.2). Therefore, firstly, the dispersion 
equation (5.1) is valid in the region to the left of the 
curve I in Fig. 1. Secondly, in the region to the left of 
the curve 11 in Fig. 1 it cannot lead to threshold pump- 
field values smaller than the values arising from the 
dispersion equation (4.4). Therefore, with the aid of the 
quantization rules (5.1) we can determine the threshold- 
for instability-pump field only between the curves I and 
II of Fig. 1, thereby joining the asymptotic formulas 
(3.11) and (4.9). In Fig. 2, Eq. (5.1) depicts the seg- 
ment of the curve between the points k, and k,,. 

Notice that the limit of the formula (3.11) and of the 
curve I in Fig. 1 and the formula (4.9) differ from each 
other in the numerical coefficients in front of the small 
correction terms in the curly brackets. In this casethe 
values of such coefficients differ only by roughly 5%. 
This allows us to limit ourselves here to the establish- 
ment of the fact that the dispersion equation (5.1) allows 
us to find the threshold pump field in the region between 
the curves I and I1 in Fig. 1. 

6. When the intensity of the pump field exceeds the 
values corresponding to the instability threshold, the 
plasma perturbations grow in time with increment y. 
Near the threshold, when y << I kl VT*,  V T ,  being the ther- 
mal velocity of the ions, the eikonal equation has the 
form (2.2) with y, replaced by y, + y. Therefore, the 
formulas for the increment can be directly'obtained 
from the above-found formulas for the parametric -in- 
stability threshold. Thus, for example, with the aid 
of the formula (3.9), we obtain 

On the other hand, ' for the excitations localized by the 
transformation points we have, according to (4.6), the 
expression 

The formulas (6.1) and (6.2) a re  applicable in regions 
of k-vector component values lying on the two different 
sides of the curve 

and not too close to it. This curve is the analog of the 
curve I in Fig. 1. 

Notice that, if in the formulas (6.1) and (6.2) we set 
8= 1, then they turn out to be also valid in the case of a 
nonisothermal plasma, when I kl v,,.< y < I kl v, where 
v, is the velocity of sound. For relatively strong fields, 
when the pump field satisfies the conditions 

the increment of the excitations traplied by the reversal 
points is determined by the following formula: 

where w,, is the ion Langmuir frequency. Correspond- 
ingly, 'for the region of spatial localization we have 

In this case the condition 

which, like the condition (3.8), makes it possible to de- 
termine the increment in almost the entire region in 
which the excitations a r e  trapped by the reversalpoints, 
should also be fulfilled. 

For the excitations trapped by the transformation 
points we have 

where 

In this case the region of localization and the correspond- 
ing condition of applicability have the form 

The expressions for the increment differ by only small 
corrections from the results of the theory of the homo- 
geneous plasma. At the same time the possibility 
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of spatial localization and the dimension of the region 
in which the radiation gets trapped are essentially de- 
termined by the spatial inhomogeneity. It also follows 
from the obtained expressions that, for spatial localiza- 
tion to occur, it is necessary that the pump field sup- 
press to a certain extent the thermal motion of the par- 
ticles, which enlarges the region of localization. 

7. The above-presented results indicate the possibil- 
i ty  of the phenomenon of parametric trapping in the field 
of a standing wave. In order to realize what limitations 
the structure of the field in the actual plasma imposes 
on such a possibility, let us use a model in which strong 
absorption of the electromagnetic field occurs in a small 
region, Then outside such a region, instead of the for- 
mula (2.6), we can write 

Here CE(m) is the velocity amplitude of the electron os- 
cillations at the points t,, while R is the energy coef- 
ficient of reflection of the pumping wave. It folloWs 
from this formula that in, for example, the formulas 
(3. lo), (3.13), (4.7), and (4.10) t, should be replaced 
by 

In the enumerated formulas the right-hand sides 
should be small compared to L~/&". This condition 
allows us to say how small the reflection coefficient can 
be and still not exclude the possibility of parametric 
,trapping. In this case such a critical reflection coeffi- 
cient is always small in comparison with unity only when 
the wavelength of the secondary electromagnetic waves 
is sufficiently small compared to the wavelength of the 
pump in the plasma. Thus, for example, for k2, >> r 
k2, when the formula (3.10) is valid, the reflection coef- 
ficient should exceed the value 

This quantity can be used to estimate that limiting value 
that can be assumed during a certain interval of time by 
the coefficient of reflection of the pumping wave as  a re- 
sult of its transformation into parametrically trapped 
electromagnetic waves with wave vector k. Since, ac- 
cording to (3. g), we have (kA3Q4- ( v ~ ( ~ ) / v T , ) ~  << I, such 
a reflection coefficient turns out to be small compared 
to unity, for example, under conditions when the char- 
acteristic plasma-inhomogeneity dimension, L,, ex- 

ceeds by three orders of magnitude the pump wavelength 
4 = 2n X, in a vacuum. 

Finally, let us also touch upon here the question of the 
fate of the wave trapped by the plasma. Since such a 
wave in the region of its localization turns out to be a 
standing wave, upon the attainment of the value, E, of 
the intensity of the localized-in the region-electric 
field at which the contribution to the electron-oscillation 
velocity turns out to be of the order of ZE(rn)- 2vT,(17v,,/ 
w,)"~, the t r ap~ed  wave can become the cause of an 
parametric instability that leads to the trapping of an 
electromagnetic wave of even shorter wavelength in the 
region of a peak of the field of the primary trapped wave. 
Such a process of fractionation of the electromagnetic 
field trapped by the plasma can go on right down to a 
scale comparable to the wavelength, X, of the pump. 

Since such short-wave radiation is ineffectively ab- 
sorbed by the plasma particles, it may be inferred that 
the parametric trapping leads to the reconstruction of 
the spatial structure of the pumping wave. In this con- 
nection, let us note that a soliton-like pumping wave is 
not unstable against parametric trapping for both the 
isolated and periodic solitonsc7 of the electromagnetic 
field if their spatial period is less than Ub, where C 
is the soliton amplitude in units of E,= ( 8 ~ , r n , ~ ~ d e ~ ) ' / ~ .  
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