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Just as the upper equilibrium position of a pendulum can be made stable by vibrating the point of its 
suspension, high-frequency fields can be used to stabilize one symmetry or another of the spontaneous 
polarization of a medium. In phase transitions of the "order-order" type, the effect should be revealed by 
the appearance of a hysteresis shift of the transition point. Attention is called in this paper to the 
possibility of appreciably enhancing the stabilizing action of the field if the polarization-oscillation mode is 
of the activating type. The effect is traced with spin-orientational transition in a magnet as an example. 

PACS numbers: 64.60.Cn, 75.40.B~ 

1. It i s  known that a force that oscillates rapidly in 
time can transform an unstable equilibrium state of a 
system into a stable one. Thus, by vibrating the suspen- 
sion point of a pendulum it i s  possible to stabilize its 
upper equilibrium position. Something of the sort i s  
typical also of the spin, i. e., for the system & = g [ m x ~ ]  
in an alternating field H(t). For example, in a circular- 
ly polarized field H(t) of frequency i2 >>gH the quantity 
m(t) behaves literally as  if a constant field of magnitude 
giZ2/2f2 i s  applied along t h ~  circulation axis. 

An interesting object in which these known dynamic ef- 
fects can occur is a solid near an "order-order" phase 
transition, i. e., when the spontaneous polarization of 
the medium (electric, magnetic, antiferromagnetic, 
elastic, etc. ) has a finite value in both phases, and the 
transition is connected with a change of its symmetry. 
An alternating field can be used to stabilize one polariza- 
tion symmetry or another, and the critical point should 
experience a shift with hysteresis (just as in a constant 
field). 

It i s  important, however, that in these transitions, as 
the polarization-oscillation frequencies decrease, their 
interaction with the acoustic mode of the spectrum usual& 
ly manifests itself. A s  a result the velocity of the long- 
wave sound decreases to zero, and the polarization-os- 
cillation mode has activation at the critical point (see 
Fig. 1). Under conditions of such an interweaving of 
the polarization oscillations with the others, the sta- 
bilizing action of the field i s  not so  evident. 

We shall verify below, using as an example a spin- 
orientational transition in a magnetically ordered sub- 
stance, that this effect does take place and its magnitude 
even increases when the alternating-field frequency i s  
close to the frequency no of the orientational gap at the 
critical point. 

In magnets, the gap in the spin-oscillation spectrum 
is due primarily to magnetoelastic interactions."*21 The 
abrupt decrease of the speed of sound in magnets near 
the magnetic-reorientation points, being of interest both 
as a research tool and for applications, has been inves- 
tigated experimentally (see, e. g., and theoretically 
(see, e.g., C6-121) under conditions that a re  constant in 
time. When estimating the influence of an alternating 

field, we shall disregard effects due to heating and re- 
distribution of the heat in the system. In this approxi- 
mation, the analysis can be carried out directly on the 
basis of macroscopic models. For the example under 
considerations, these a re  well known and will serve as 
the basis here. 

2. Consider a ferromagnet described by two interact- 
ing subsystems, magnetic with uniaxial anisotropy and 
elastic isotropy, with energy 

%,,=r I mim,uik dv. 

Here m(r, t) is the magnetization density at the point r 
= (xi, x2, x,) at the instant t, aik are  exchange integrals 
(the matrix a*, i s  positive-definite), /3 i s  the uniaxial- 
anisotropy constant, n is a unit vector along the anisot- 
ropy axis, h is the external magnetic field, p i s  the 
density of the medium, X and p are Lam6 coefficients, 
uik(r, t) i s  the strain tensor, and y i s  the magnetoelastic 
constant. 

In model (1) we have Im I = m  =const, i. e., i t  is as- 
sumed that T << T,, where T, i s  the Curie point. Nor i s  
account taken of the magnetic-dipole interaction. These 
approximations a re  typical of models usually resorted- 
to for the description of spin-orientational transitions 
under conditions of constant external fields (and pres- 
sures) in antiferromagnets (see, e. g. ,C11*121). In con- 
trast to (I), the magnetic system i s  simulated here by 
two magnetic sublattices. In order not to clutter up the 
exposition, we consider the case of sublattice, since 
this case preserves the main features of the action of 
the alternating field in the transition; we shall discuss 
antiferromagnets briefly in the conclusion. 

Let h =O. The ground state of the system, determined 
from the condition that the energy (1) be a minimum, i s  
knownc3141 corresponds to a homogeneous magnetization 
m, and to homogeneous static deformations (u;, =~:,5~,) 

l C p  y m l  a y m z  
u,,0=- -- U,zQ'U,,O = --. 

3h+2p p ' 3h+2p 2p ' 
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FIG. 1. Variation of polarization-oscillation spectrum (upper 
curve) and of the acoustic-branch oscillations (lower curve), 
which interact with the polarization oscillations, near the tran- 
sition. At the critical point p =  0 the acoustic branch has a 
horizontal segment, and then at  p <  0 its long-wave excitations 
become unstable and the system relaxes to another equilibrium 
phase. 

Here (and hereafter throughout), the direction m, is 
chosen to be the axis 1. At y >O, the ferromagnet is 
compressed in a direction parallel to m, and is stretched 
in the transverse plane. At p>O the equilibrium magne- 
tization is aligned along the n axis, and a t  p<O the vec- 
tor m, lies in the basal plane m, 1 n. 

At the critical point p = 0, mo is in an indifferent 
equilibrium position. In this case the frequency 51, of 
the homogeneous m oscillations that a r e  not accom- 
panied by deformation does not vanish (if y +O). These 
oscillations initiate a spin-wave mode with a dispersion 
law (at m, 11  n) 

where 

k = (k,, k,, k,) is the wave vector of the yave. We note 
that aIj  kl k j  20. 

At p< 0 (p> 0) the orientation m, Il n (m, 1 n) becomes 
an unstable equilibrium position, and the first  to in- 
crease a re  magnetoelastic waves with transverse polar- 
ization of the deformations (U 1 k) with k- 0, propagating 
along m, and in the directions k 1 m,. The dispersion 
law for these and the other waves at small k in the phase 
m, II n is given by 

$+a,ik,kj 
w' (k) 2: st2k2 

x+$+aaiklk, ' 

where sf = p / p  is the velocity of the transverse elastic 
waves at y=O. It i s  seen from (3) that at p=O the speed 
of sound aw/ak vanishes, a t  p<O the quantity 02Q on a 
certain interval of k becomes negative (see Fig. I), and 
instability sets in and leads to a change of the ground 
state. For oscillations about the ground state m, l n  it 
is necessary to  replace /3 in expressions (2) and (3) by 
- P. 

3. We discuss now the action exerted on the system 
by a homogeneous alternating field h(t) with a frequency 
52 much higher than the frequency of the normal oscilla- 
tions o(k) that lose stability in the transition. The am- 
plitude h i s  assumed to  be small, s o  that after the field 
i s  turned on the system relaxes to a homogeneous state, 

against the background of which small forced oscillations 
a r e  produced with a period 2~//52. When m and u deviate 
from the equilibrium regime, additional forces of pulsa- 
tion origin arise. They cause a renormalization of the 
speed of sound and a shift, in either direction, of the 
point where the speed of sound vanishes and the equilib- 
rium phase changes. 

The problem consists of investigating the averaged 
action of the alternating field and of the oscillations of 
m and of u, with frequencies -51, on the dynamics of 
the smooth forms of motion, whose stability i s  greatly 
weakened near the transition. Such motions a r e  the al- 
ready mentioned transverse-sound waves with small k. 
To estimate the effect in first-order approximation in 
the small quantity h2, to which we confine ourselves, we 
can propose the following rather simple and physically 
meaningful analysis procedure. 

The direct action of the field is determined by the en- 
ergy - m * h in (1). Since the field h(t) is homogeneous, 
i t  follows that the magnetoelastic waves a r e  connected 
with the field only by the quadratic (in u) part of this 
energy, which is contained in - m1 h, = (1/2m)(m: +m:)hl 
-mhl, where h,(t) is the field component along the axis 
1, i. e., in the direction of m,. It i s  easily found from 
(1) that for magnetoelastic waves with k - 0 (s:k2 << 52;) 
the polarization of m and u i s  such that in the phase 
m, Il n we have 

The considered binding energy with the field i s  therefore 

For the oscillations in the phase m, 1 n it is necessary to 
replace @ i n  expressions (4) and (5) by -P. We note that 
proximity to the transition point will be understood in the 
sense of ipl<< x. 

The energy (5) introduces into the equation for the 
complex amplitudes of the waves b,(t) a term "h,: 

where A(k) is a coefficient. The symbol . . . stands for 
nonlinear proportional to ha and due to the contribution 
from the energy 1, in (I), principal among which is 
i6 Xi,, /6b:, where a,, is defined in (9). Let hi@) 
=h, cosGt, where a>> l wk I .  In the first-order approxi- 
mation in h we have bil) = 51-'A o h o  Fk sinat, where zk(t) 
is the smooth part of bk(t), with frequencies much lower 
than 51. Therefore in the second order approximation in 
h the value averaged over the t i ~ e  21r/51 is 

- 1 
hlbkm - A  B (k) h26r sin Bt ws Bt-0, 

This means that-in f i rs t  order in h2 the field h(t) does 
not influence directly the dynamics of Fk(t) of the soft 
modes. This can be deduced also more rigorously. 
Consider the indirect influence-via nonlinear interac- 
tion of the waves. 
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4. The binding energy of the normal waves i s  con- 
tained in the term 1, in (1). It contains terms of third 
and fourth degree in the wave amplitudes; these terms 
are equal to 

z 3 = y  j (m2uZZ+msZuJ3- (mzZ+mJz) uI i)  dv, (7) 
a,=-- 2 (m22+msz) (mzu,,+msurs) du. 

m (8 

In the first order in h, the homogeneous field h(t) can 
excite only the mode of homogeneous precession of m. 
The oscillations of other forms come into play in the 
second order in h, and accordingly their averaged action 
on the transverse-sound waves can manifest itself only 
in the higher approximations in h. 

Consequently, out of the entire reservoir of interacting 
waves, it suffices to take into account only the interac- 
tion of soft modes with homogeneous precession, and 
this simplifies the analysis greatly. Taking (4) into ac- 
count, we find that the main contribution is determined 
by the energy 1, and amounts to 

Here ~ , , , ( t )  are  the amplitudes of the oscillations of the 
homogeneous precession. We have written out terms up 
to the second power in the deformation ut,; this i s  suffi- 
cient for an analysis of the stability in the small. 

In terms of the canonical variables, the most signifi- 
cant in z,,, i s  the term with structure "cgc, b:bk, where 
c,(t) is a variable that represents the homogeneous-pre- 
cession mode. We note that in the expansion of the non- 
linear part of the magnet energy in terms of the canoni- 
cal variables of the waves, the typical terms a r e  usually 
those linear in the small amplitudes bk of the magneto- 
elastic waves (seec"'). In our case, however, the ener- 
gy 1, does not contain such terms for the soft modes 
(for the "hard" waves, such as e. g., longitudinal-sound 
waves, such a part i s  contained in a,). The fact that 
the structure of the coupling of the soft modes with 
other, "hard" ones i s  bilinear in bk i s  no accident, and 
reflects a characteristic feature of phase transitions of 
second order and of first order close to second order. 
The reason i s  that the soft modes have a symmetry dif- 
ferent from the other modes, and this symmetry i s  con- 
nected with the transition to the other phase. 

The averaging defined in (9) over the time 27r/S2 in the 
case of a nonlinear coupling of the motions, i s  carried 
out in elementary fashion: in the first-order approxima- 
tion in he it  i s  necessary simply to replace the quantities 
M:, M:,  and MeM, in (9) by their mean values. The 
averaged behavior of the small-amplitude transverse 
sound waves with k - 0 i s  thus described by the energy 

where 

The second term from the right in (10) i s  due to the lin- 
ear magnetelastic interaction. Expression (10) corre- 
sponds to the phase m, Il n. In the phase m, 1 n, in addi- 
tion to the reversal of the sign of p, there appears also 
a small correction - p in the second term of (10). 

5. The quadratic form ~ ~ 2 4 ~  + c2 24, + c, u12 u13 is, as 
can be readily verified, positive-definite. This means 
that the hardness of the soft modes due to the action of 
the alternating field can only increase, regardless of 
the frequency and polarization of the field h(t). The 
change of the hardness is proportional to the intensity 
of the excitation of the m homogeneous-precession mode 
by the field and increases resonantly at S2-a,. 

According to (10) the soft waves a re  those having the 
same direction as at h =O. The renormalization of their 
velocity A s  under the action of a linearly polarized fieM 
h l  m, at IS2-S2,I<<S2+S2, i s  equal to 

where s t  = (p/p)112, and A p is the shift of the transition 
point with respect to the constant p. We have written 
out the result with account taken of linear damping in 
the model, and r is the relaxation frequency of the 
homogeneous ferromagnetic resonance. We note that 
allowance for the damping of the soft modes, if their 
characteristic relaxation frequencies a re  much less than 
the frequencies S2 and a,, does not affect the shift of the 
transition point. 

The region where the obtained estimates a r e  valid 
corresponds to sufficiently small amplitudes h, such 
that1) 

\ A p I a P l g m  and l A ? / a x .  

We note that the case H = O  (i. e. , y=O) differs strikingly 
from that considered (the shift of the reorientation point 
under the influence of the alternating field for models 
of type (1) at y = O  was considered inc151); there i s  no 
resonance effect, there i s  no stabilization at all in a 
linearly polarized field, and even destabilization is pos- 
sible if the circulation axis of the field h(t) i s  antiparal- 
lel to m,. 

Figure 2 shows the variation of the equilibrium phase 
following the application of a linearly polarized field 
h II n (a) and h l n  (b). If the transition is approached 
from the "easy axis" phase (p>O), then this phase re- 

b I 

A P FIG. 2. Variation of equilibrium 
orientation mo: a) h ll n, b) h l  n. 

b .  
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mains stable (metastable) even past the point p=O up to 
a value p = - l A /3 I. On the other hand if the transition is 
approached from the "easy plane" side (p<O), then the 
phase m, 1 n remains metastable up to the point p = I A p I .  
The difference between the behaviors in cases a and b 
is due to the fact that at h Il n the field h in the phase 
m, ll n is longitudinal and therefore A fi = 0, while a t  h 1 n 
we have h 1 m, both in the phase m, Il n and in the phase 
m, 1 n (in the latter case the orientation h l m ,  is regard- 
ed a s  preferred, since i t  is stabilized by the field). 

As the stability-loss points a r e  approached, the speed 
of sound decreases rapidly, and the susceptibility and 
fluctuations increase a s  a result, thereby contributing to  
the jump to the ground state. Reverse jumps should be 
less frequent near these points, since the decrease in 
the speed of sound is smaller in the ground state (the 
difference A s  is of the order x" IApls,), and according- 
ly the fluctuations a r e  smaller and the stability margin 
larger. 

Thus, superposition of an alternating field deforms 
the character of the transition: a region of metastable 
phases appear, the transition i s  subject to hysteresis, 
and the fluctuation level i s  limited. A typical picture of 
a first-order transition is obtained. 

6. The effect i s  similarly analyzed for orientational 
transitions in a system with two magnetic sublattices. 
The direct action of a homogeneous alternating field on 
the dynamics of magnetoelastic waves whose propagation 
velocity changes abruptly (these can now be also waves 
with a longitudinal deformation component) i s  negligible 
in first  order in h 2 .  To estimate the effect it is neces- 
sary to separate in the system energy the nonlinear part 
of the interaction between the sound and the modes of 
the homogeneous ferro- and antiferromagnetic resonance, 

Consider, for example, a magnetically uniaxial anti- 
ferromagnet with mirror-symmetry magnetic sublattices 
(without allowance for the weak ferromagnetism) and 
with energy (I), where now 33, and a, a r e  given by 

1 8m, dm 8,; dm;)  dm, dm, 
, = [ ( + -  ..:-- + fim,m 

2 irx, dx, dx, irx. V X ,  O x r  

1 
-- , ( ( n n ) +  ( n ) )  - ( m )  ( m n )  - (m.+m,) ( H i l l )  ] d u  (12) 

Here L = m, - q, M = m, + m,, m,,, a r e  the sublattice 
magnetizations, Im, I = lm, l=m; aik, and 6 a r e  ex- 
change integrals, p and j3' a r e  the anisotropy constants, 
~ 1 , ~ ~  a re  the magnetostriction constants, H is the con- 
stant field and h(t) is the alternating field. 

Orientational transitions in such a model were con- 
sidered inc12' at h = O  (and in the presence of a constant 
external pressure). If, for example, the field H i s  di- 
rected along the n axis and f i  - p ' > 0, then the collinear 
phase L Il n i s  stable in the field interval 0 < H  < HI, and 
the noncollinear phase (M +O) i s  stable in the interval 
H2 <H <I.I,, with L ln and M II H in this case. A state 
L = O  is produced at H> HE. The field HE i s  usually 
strong (-10' Oe) and greatly exceeds the anisotropy and 
the magnetostriction fields, and 

II,=IIL- ( H , H , )  , II,=2Sm, 

where H A = @ -  P')m. 

We estimate now the effect of the alternating field at 
H =  (H, H,)"~.  The transition a t  this point is of first  
order and i s  close to second order at HA <<HE. In this 
transition, the speed of the transverse sound with k II L 
and k 1 L vanishes. As k - 0 in such waves, i t  can be 
easily verified from (12) and (13) that the oscillations of 
M, L, and u about the ground state a re  connected by the 
relations 

where 

The main contribution to the nonlinear part of the cou- 
pling energy of the soft magnetoelastic modes with the 
inbomogeneous precession m,,, i s  made by the term - yl 
in (13). Taking (14) into account, we obtain for %,,, an 
expression of the form (9) 

where l,,, a r e  the components of the homogeneous oscil- 
lations of L. As a result, we arrive after the averaging 
to expression (lo), where H, p, and c,,,,, must be re-  
placed respectively by x,, &, and 

Thus the picture of the deformation of the transition 
by the field h(t) is the same as in the previously analyzed 
case of a ferromagnet. Now, however, i tmust  be rec- 
ognized in the estimates of the intensities l;,, and i& 
that two spin modes, rather than one, have now nonzero 
gaps at the transition point. Their activation energies 
a re  

where H, = x, rn. When the alternating-field frequency 
is tuned to either of these frequencies, the stabilizing 
action of the field will increase in resonant fashion. For 
the particular case when 8- p' = O  (i. e., HI,, =0) we have 
51, =52, and we obtain exactly the estimate ( l l ) ,  where S2, 
and r now characterize the homogeneous antiferromag- 
netic resonance. 

We note in conclusion that not only in magnets but also 
in ferroelectrics and in other systems, in the vicinity of 
the "order-order" transition, an alternating field that 
excites oscillations of a spontaneous polarization whose 
symmetry changes during the transition, should lead to 
stabilization of the ground state and to the onset of the 
associated hysteresis. If the natural frequency of the 
polarization oscillations i s  different from zero at the 
transition point, then a resonant amplification of the ef- 
fect is possible, and the alternating field stabilizes each 
time the initial symmetry of the system. 
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One can expect to observe this phenomenon in mate- 
rials that a re  perfect in the sense that the resonances of 
the polarization oscillations is of high Q, and the transi- 
tion is not masked by the domain structure (i. e., the 
strong decrease of the speed of sound in the vicinity of 
the transition is well pronounced). 

"In addition, in the analysis i t  was implicitly assumed that h 
< hp, where hP is the field amplitude at which parametric oscil- 
lations a re  produced in the syst6m. At h l m o  and 51= no the 
threshold of the parametric excitation of the spin waves is ac- 
cording toCi3' hp - (AH/4rm)"'AU, AH = r/g. At h = hp we ob- 
tain from (11) & / s t -  AH/47rm. 

"1t is assumedfor the sake of argument thatthe system is in a col- 
linear phase, LI1 nll 1. For anoncollinear phase, choosing a s  be- 
fore the axis 1 in the direction of the equilibriumvalue of L, we 
have (14), where Pi must be replaced by pz= (Hz -H:)/mHE. 
All the calculations that follow must be correspondingly modi- 
fied. 
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An analytic solution is obtained of the problem of diffraction of an electromagnetic wave by a domain wall 
in a ferroelectric. It is shown that the picture of the interference fringes is observed only in diffraction of 
light of sufficiently small wavelength. The distance between the interference fringes is determined not only 
by the geometrical dimensions of the wall, but also by the difference between the values of the refractive 
index inside the wall and far from it. 

PACS numbers: 78.20.Ls, 77.80.Dj 

1. INTRODUCTION 

We solve here the problem of diffraction of an elec- 
tromagnetic wave by a ferroelectric domain wall. This 
problem arises in connection with the possibility of using 
the diffraction of light for a direct measurement of the 
domain-wall thickness. In addition, the solution of this 
problem i s  also of independent interest, since analytic 
solutions of diffraction problems encounter a s  a rule 
great mathematical difficulties. 

The use of optical methods to measure domain-wall 
thicknesses is particularly pressing because of the sub- 
stantial discrepancies that exist between the a priori 
theoretical estimates and the data obtained from x-ray 
scattering. Theoretical estimates lead a s  a rule to a 
domain-wall thickness on the order of 10"-lo-' cm. 
Yet measurements made onsodium nitratec4] and tri-  
glycine sulfateC2' yield values larger than 10'~ cm. 

The general solution of the diffraction problem poses 
no fundamental difficulties. The formulas for the dif- 
fracted-wave amplitudes in quadratures a re  derived in 
Sec. 2. An investigation of these formulas, however, 
for the purpose of deriving expressions useful to experi- 
menters, entails great technical difficulties. This in- 
vestigation i s  the subject of an appreciable part of the 
paper. In the last section we discuss the form of the 
diffraction pattern in various cases and the possibility 
of extracting from it  information on the structure of the 
domain wall. 

We consider a plane 180" domain wall in a cubic uni- 
axial ferroelectric, or  one belonging to  a rhombic sys- 
tem, and exhibiting no piezoelectric effect in the para- 
phase. The wall thickness is assumed tobe much larger 
than the lattice structure, s o  that i ts  structure is de- 
scribed by a phenomenological theory. The length of the 
electromagnetic wave i s  also assumed to be much larger 
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