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The equation of state and thermodynamic potential of the metallic phase of hydrogen are analyzed in a 
wide range of megabar pressures. The previously described perturbation-theory procedure with the 
electron-ion interaction as the perturbation parameter is used. The terms of the series are considered in 
their explicit form up to the fourth order inclusively. A correlation is established between the perturbation 
series and the series in r, found in the Wigner-Seitz approximation, and the sum of the remaining terms 
of the perturbation series is estimated. A direct computation of the phonon spectrum in the entire 
Brillouin zone is carried out at all densities in the course of the determination of the dynamic part of the. 
total energy. As a result, the thermodynamic potential and the equation of state of the metallic phase are 
found with a high accuracy, and the scale of the error that can be introduced by the assumptions made in 
the theory is established at the same time. The obtained results are compared with the experimental data 
given by F. V. Grigor'ev et al . ,  [JETP Lett. 16, 201 (1972); Sov. Phys. JETP 42, 378 (1975)] for the 
equation of state of hydrogen and with the thermodynamic potential of the molecular phase found on the 
basis of these data. The phase transition region is analyzed in detail. 

PACS numbers: 64.30. + t, 65.50. +m 

1. INTRODUCTION 

Great interest has of late been aroused by the prob- 
lem of the metallic state of hydrogen. The uniqueness 
of the predicted properties, the feasibility of realizing 
the transition into this state under laboratory conditions 
(see Refs. 1 and 2, where the first  experiments a r e  
described), the transparency a t  f irst  glance of the basic 
physical picture, all this stimulated to a considerable 
degree theoretical and experimental investigations in 
this field. It should be said that, from the standpoint 
of theory, the range of problems under investigation 
interlocks with the more general problems of the me- 
tallic state, and here metallic hydrogen is of special 
interest, since i t  is the only substance in which the ions 
do not possess an electron shell and the form factor of 
the electron-ion interaction is exactly known before- 
hand. 

Beginning with Wigner and Huntington's pioneering 
work, 13' the theoretical investigations of the metallic 
state of hydrogen have been concentrated largely on 
three problems: the analysis of the possibility of the 
existence, and the properties, of a metastable state of 
metallic hydrogen, the determination of the critical 
pressure of the transition from the molecular to the 
metallic phase, and the study of the properties of me- 
tallic hydrogen at ultrahigh pressures. . - - - 

The problem of the metastable state is, apparently, 
most fully considered in Ref. 4 (see also Ref. 5) in the 
framework of the many-particle theory of metals (for 
references to earlier papers, see  Caron's review 
notece1). In the indicated paper the authors used per- 
turbation theory in terms of the electron-ion interaction 

The results of the analysis confirmed the fact that me- 
tallic hydrogen possesses a metastable phase which is 
dynamically stable, and to which corresponds a pres- 
s u r e s P  close to zero a structure with a strongly pro- 
nounced anisotropy. As P is increased to the transition 
pressure P,, the crystal lattice becomes more and 
more symmetrical. ['I 

In this problem there still remains open the impor- 
tant question of the lifetime of the metastable metallic 
state and i ts  dependence on pressure in the range 0 QP 

P,. As is well known (see Ref. 8), this lifetime is 
finite even at the temperature T =  0 because the forma- 
tion of the nucleus of the more stable phase (molecular 
hydrogen) i s  a purely quantum subbarrier process. 

The question of the value of the critical pressure for 
the transition from the molecular into the metallic phase 
has been considered in a large number of papers (see, 
fo r  example, Refs. 3, 7, 9, 10). The range of the re- 
sults turned out to be extremely wide: from 250 kbar 
to 15 Mbar. Such an enormous spread was primarily 
a consequence of the difficulty of the theoretical predic- 
tion of the equation of state and the thermodynamic po- 
tential +(P) of the molecular phase at high pressures, 
when the distances between the hydrogen molecules a r e  
already relatively small, and of the virtually complete 
uncertainty in the estimation of the accuracy of the as- 
sumptions made. Moreover, the e r ro r  in the deter- 
mination of the equation of state of the metallic phase 
also has quite a considerable effect on the estimate for 
P,, especially i f  we take into account the relatively 
small  difference in the slopes of the +(P) curves for the 
two phases in the megabar pressure region. 

with allowance for terms up to the third order inclusive- The possibility of theoretically determining the equa- 
ly (thereby taking into account not only the pair inter- tion of state of the molecular phase from "first princi- 
action, but also the leading term in the nonpair, conduc- ples" with a verifiable evaluation of the approximations 
tion-electron-mediated, indirect ion-ion interaction) in is at present quite problematical. Therefore, i t  is 
a scheme with possibly complete allowance for  the elec- natural to aim at providing an approximate description 
tron-electron interaction in all the terms of the series. with free parameters, and to use the available experi- 
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mental data for finite pressures to determine these 
parameters. c1*171 However, the extrapolation of these 
data into the megabar region has to a considerable de- 
gree an uncontrollable character (see Sec. 9). 

A new situation arose in connectionwith the publica- 
tion by Grigor'ev, Kormer et  al. ['I of results of exper- 
iments on the determination of the equation of state of 
hydrogen in the pressure range from -0.4 to - 8 Mbar 
in explosion experiments performed under quasiadiaba- 
tic conditions. There arose for the f i rs t  time the pos- 
sibility of determining the experimental equation of 
state of the molecular phase in the entire pressure 
range of interest to us, including the negabar region. 
The obtained data allows us to also find directly the 
thermodynamic potential of the molecular phase as  a 
function of the pressure (see below). Thus, there 
ar ises  the possibility in principle of determining the 
phase-transition pressure on the basis of the experi- - 
mental data for the molecular phase and the theoretical 
results for the metallic phase. For this purpose it is 
necessary to determine the equaion of state and the 
thermodynamic potential of the metallic phase of hydro- 
gen in the megabar pressure range with a sufficiently 
high and, above all, estimable accuracy. The solution 
of this problem is the object of this paper. 

The most adequate procedure for  finding the equation 
of state in the pressure region under consideration is 
a many-particle formalism similar to the one used in 
Refs. 4 and 7, which is especially effective exactly at 
high pressures, since for pure Coulomb systems an in- 
crease in the density leads to a more rapid convergence 
of the perturbation series and the high-density limit is 
directly determinable. Moreover, this formalism is 
very convenient in that it enables us to find within the 
framework of the approximations alone not only the 
static, but also the dynamic (the phonon spectrum) 
characteristics of the metal (for greater details, see 
Ref. 18). 

In the present paper, which is actually a develop- 
ment of the work published in Ref. 7, we go outside the 
limits of third-order perturbation theory, compute in 
their explicit form the fourth-order terms, including 
those connected with the distortion of the Fermi sur- 
face (the earliest estimates of the fourth-order terms 
were made by Hammerberg and ~ s h c r o f t ~ ' ~ ~ ;  an esti- 
mate of the role of the distortion of the Fermi surface 
was first made in Carr's paperL201), a s  well as estimate 
the sum of the entire remaining "tail" of the perturba- 
tion series. This allows us, in particular, to establish 
the nature of the convergence and the accuracy of the 
obtained results in one o r  another truncation of the 
series. Special attention is given to the accuracy of 
the determination of the zero-point vibration energy. 
For this purpose we undertake a direct determination 
of the phonon spectrum in the entire Brillouin zone for 
all density values. The equation of state and the ther- 
modynamic potential a re  determined for all the com- 
peting-in terms of energy-structures (see Ref. 7). 
This allows us to establish the scale of the sensitivity 
of the two equations to structure. 

The results of the analysis carried out allow us to 
determine the band within whose limits the equation of 
state and the thermodynamic potential of metallic hy- 
drogen clearly lie. It is interesting that the relatively 
high accuracy achieved in the determination of the in- 
dividual contributions leads to a situation in which the 
main uncertainty in the megabar region turns out to be 
connected with the e r ro r  in the determination of the 
correlation energy of the homogeneous electron gas. 
As a result, there ar ises  here the possibility of carry- 
ing out a controlled-with respect to accuracy-com- 
parison of the experimental data obtained by Grigor'ev, 
Kormer et  al. "'with the theory and of performing an 
analysis of the phase-transition region. The pertinent 
analysis is carried out in Sec. 9. 

2. THE ENERGY OF THE METALLIC PHASE 

The energy of the metallic phase of hydrogen at the 
temperature T =  0 depends on the density (or the stan- 
dard characteristic, r,, of the electron liquid) and the 
parameters, y,, determining the structure of the unit 
cell: 

Here E, is the energy of the ion lattice, which is im- 
bedded in a homogeneous negative background, E, is the 
energy of the electron liquid perturbed by the interac- 
tion with the ion lattice. 

The electron energy of a normal crystal can be rep- 
resented in the form of a series in powers of the elec- 
tron-ion interaction (for greater details, see Ref. 18): 

(2.3) 
where in the case of hydrogen 

In the expressions K, is a reciprocal-lattice vector, 
S(K) is the structure factor, is the total volume of 
the crystal, and no is the volume per ion (in the sum 
(2.3) there a r e  no terms with K, = 0). The multipolar 
function figuring in (2.3) is a universal characteristic 
of the electron liquid. 

The first  term of the expansion (2.2), E''), is the 
energy of the homogeneous electron gas. In the ab- 
sence of an ion core, which is characteristic of only 
hydrogen, the structure-dependent terms in (2.2) be- 
gin with E"). The two-pole function r"') correspond- 
ing to this term is uniquely connected with the static 
polarization operator, II(q), for the electron gas: 

Starting from n = 3 the multipolar functions entering 
into (2.3) can be transformed into the form (see Ref. 
18) 

51 2 Sov. Phys. JETP 46(3), Sept. 1977 Kagan et  al. 512 



a b c 

FIG. 1. n-Pole diagrams: a) fo r  n = 2 ,  b) for  n = 3, and c) for  
n = 4. 

where A(") is a multipolar function not possessing po- 
larization parts, which could have been transferred to 
the external-field lines. 

At the densities of interest to us, to determine the 
Acn), we can use the approximation corresponding to 
allowance at each external vertex for the exchange and 
correlation of the electron with the cloud screening the 
ion (see Refs. 18 and 21). Then 

Here Ad") is a simple ring diagram with n external-field 
vertices. The adopted approximation corresponds to 
the replacement of all the simple vertices in a ring 
diagram by effective T(Q) (the heavy vertices in Fig. 
1, b and c). 

All the modern results on the successive allowance 
for the electron-electron interaction in the determina- 
tion of approximations that a r e  practically 
equivalent to the replacement of the exact-for n(q)- 
diagram in Fig. l a  with the true heavy vertex by an 
approximate diagram that depends only on the trans- ' 

ferred momentum (and the replacement of the Green 
functions by free ones). In this case 

where IIo(q) is the polarization operator for the free 
electron gas. The expressions obtained for ~ ( q )  in all 
the analyses have the formcz7' 

and the various approaches differ only in the form of 
the function ~ ( 9 ) .  

Thus, by choosing the appropriate form of the func- 
tion G(@, we can uniquely determine within the frame- 
work of the adopted approximation and c(q), (2.51, 
and A'"), (2.7. The expression for 4') is well known 
(see, for example, Refs. 4 and 18), and E(') can be 
determined directly. 

In determining the terms of fourth and higher orders 
in the electron-ion interaction, it is necessary to take 
into account the resulting distortion of the Fermi sur- 
face. The use a t  T = 0 of ordinary perturbation 
theory tacitly presupposes a situation in which the Fer- 
mi surface is fixed, and i ts  application requires addi- 
tional variation of the energy with respect to the shape 
of the Fermi surface. The determination of the extre- 

ma1 value of the energy of the system simultaneously 
leads to the determination of this surface. In this case 
the corrections, AEps, to the energy due to the non- 
sphericity begin precisely with the terms of fourth or- 
der in VX/cF. As a result, we obtain 

where E:') is the value corresponding to the spherical 
Fermi  surface. It is evident that 

The most direct way of determining E(") for n >  4 is 
to use the thermodynamic theory of perturbations,C283 
which selects the lowest energy states and therby auto- 
matically ensures the variation with respect to the 
shape of the Fermi surface. We find the thermodynam- 
i c  potential fi (the chemical potential, p, is fixed) 
within the framework of this method, the diagram tech- 
nique for which coincides at T- 0 with the perturbation- 
theory technique for T = 0  i f  the free-electron Green 
function is taken in the form 

G , ( p ,  a) = [ U - - E , ( P ) + ~ ~  sign ( u - p )  I-'. (2.11) 

The fourth-order diagrams computed with the aid of the 
two methods differ, in the case when the poles of the 
Green functions coincide, in the so-called anomalous 
contributions. cz91 Together with the additional contri- 
bution from the renormalization of the chemical poten- 
tial they constitute AEw. 

As a direct analysis shows, the contribution from the 
renormalization of p to Ec4) is determined by an expres- 
sion of the type (2.6) with 

(2.12) 
(n is the electron density). Here and everywhere below 
6 ( ~ & ,  q,) is the Kronecker symbol. If we adopt the ap- 
proximation used in going over to (2.7) and (2.8), then 
the determination of 42'') practically amounts to the de- 
termination of the ring diagram with four external-field 
tails, &('),a technique, based precisely on the form 
(2. l l ) ,  for computing which was developed in Ref. 30. 
The separation of the anomalous contributions is carried 
out directly (see Refs. 18 and 30), and for AEkg we ob- 
tain an expression of the form (2.3), (2.6), (2.7) with 

where A::) is obtained from (2.12) by making the sub- 
stitution n(q) - IT&). The values of the anomalous con- 
tribution A:" and the normal contribution A:') corre- 
sponding to E:~) in (2. 10) will be considered in detail in 
Sec. 6. 

Below, in determining the equation of state of the me- 
tallic phase of hydrogen in the megabar region, we 
shall, by directly estimating the sum of the entire re- 
maining tail of the series (2.2), demonstrate the pos- 
sibility of limiting ourselves to the explicit considera- 
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tion of only the first  four terms of the expansion. 

Finally, for the energy of the ion lattice we have1) 

where is the Madelung constant. 

3. THE CORRELATION ENERGY 

In analyzing the accuracy of the determination of the 
total energy of the metallic phase, we encounter from 
the very beginning the classical problem of the correct 
determination of E,, the correlation contribution to the 
energy, E('), of the homogeneous electron gas. 

Substantial progress has been made in recent years 
in the study of the properties of the electron liquid at 
intermediate densities. Quite different approaches, 
based on the selection and summation of a definite class 
of diagrams (Geldart and Taylor (GT)~']), the use of 
the technique of uncoupling the equations of motion for 
the Green functions (Toigo and Woodruff (TW)'~']), and 
the self-consistent allowance for the corrections to the 
local field (Singwi et al. (STLS)'~~], Vashishta and Sing- 
wi (VS)'~~]), led to comparatively close results for the 
static permittivity and the correlation energy in the 
density range of interest to us. 

It is natural to assume that the spread in the E, values 
that arises in these essentially different analyses pre- 
cisely reflects the scale of uncertainty characteristic 
of the approximate determination of this quantity in the 
density region in question. In Fig. 2 we have construct- 
ed in the interval 1 < Y, <4  the dependence c,(r,) obtained 
in the above-cited papers, a s  well a s  the curve corre- 
sponding to the well-known NoziBres-Pines (NP) inter- 
polation relation. 'Szl We show in the same figure the 
asymptotic dependence for E,(Y,) a t  small r,, 

first  obtained by Car r  and Maradudin, '311 who found the 
next two terms of the series in the well-known Gell- 
Mann-Brueckner asymptotic form. '"' 

Of greatest interest to us is the pressure range from 
1 to 10 Mbar, to which corresponds the density rangez' 

FIG. 2. The correlation en- 
ergy ~,(r,)  of a homogeneous 
electron gas, found in various 
approximations: CM-Carr 
and Maradulin, 1311 VS-Vash- 
ishta and Singwi, C221 TW-Toi- 
go and Woodruff, L241 and NP- 
Nozi6res and Pines. ["I 

The results presented force us to presume that in the 
interval (3.2) the e r r o r  in the determination of E, has 
the order of magnitude 

It should be noted that, judging from the value of the 
first  terms of the ser ies  (3. I), the 'error made when 
the next terms of the ser ies  a re  discarded has, in the 
interval (3.2), the same order of magnitude (3.3). 

It is noteworthy that the curve &,(r,f found by Vashish- 
t a  and Singwi is extremely close to the aympototic curve 
(3.1) for r,< 1.5. This circumstance is quite impor- 
tant, and we used precisely this dependence for the cor- 
relation energy in the final computations of the total en- 
ergy and the thermodynamic potential. The uncertainty 
in the value of the correlation part of the pressure in 
the r, range under consideration is 

6/', (r4=1.43) -0.02 Mbar, 61J, (r.=i.o5) ~0 .m ~b~~ , (3. 4) 

This is roughly 10% of the correlation pressure, which 
has at the ends of the interval (3.2) the values PC 
= - 0.17 and - 0.50 Mbar respectively. The estimate 
(3.3) is very important for the subsequent analysis, 
since it gives the starting error ,  which cannot be elim- 
inated without a fundamental advance in the theory of 
the electron liquid. 

In the just published article by Ross and ~ c ~ a h a n [ " ~  
the assertion is made with reference to atomic compu- 
tations that the correlation energy of an electron gas is 
determined up to a factor of 2 o r  3. However, this as- 
sertion by the authors is based simply on a misunder- 
standing. It has long been found (see, for example, 
Ref. 35) that the cause of the discrepancy in the value 
of E, lies in the discreteness of the energy spectrum of 
the atom and, consequently, in the inadmissibility of 
the application of the results obtained for a homogene- 
ous electron gas to a finite atomic system. 

4. THE ROLE OF THE STRUCTURE AND THE 
SCREENING IN  THE INDIRECT INTER-ION 
INTERACTION 

The real  parameter of the energy expansion a t  high 
densities is not r,, but a much smaller quantity: -r,/4 
(see Sec. 7). Therefore, considering the range of den- 
sities (3.2) (and of higher densities), we can establish 
the character of the behavior of the energy and the in- 
dividual contributions to i t  by analyzing the asymptotic 
relations, which can be found exactly. The correspond- 
ing expansions for E(n) have the form (n > 2) 

The E ( ~ )  expansion begins with the constant 5 " ) ,  to 
which corresponds the substitutions II(q) - IIo(q) and 
&(g) = 1 in (2.5). The dependence on r, appears only when 
the electron-electron interaction is taken into account, but 
this interaction turns out to be quite weak because of 
the fact that all the quantities enter into (2.3) with q 
=K. This can clearly be seen from Table I, where 
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TABLE I. TABLE 11. 

Energy in Rylatom 

Lattice 

FCC 
BCC 

values of t C 2 )  and q'2) are  given for three symmetrical 
structures that a r e  energetically the most favorable at 
the high-density limit (see Ref. 7). In computing the 
coefficient Q ' ~ )  we used the results obtained in Ref. 23, 
where corrections, represented by diagrams of the type 
shown in Fig. 3, to the simple polarization loop were 
found. 

The E") expansion begins with a term linear in r,, 
the coefficient 5 " )  (see Table I) exceeding 7") by more 
than an order of magnitude. 

Among the structure-dependent terms in E,, the lead- 
ing role is played by the ion-1at;ice energy (2.14). For 
the symmetrical structures the difference in (Y, turns 
out to be so  small (see Table I) that the differences in 
the ionic energy is negligibly small in comparison with 
(3.3). This applies also to E,, a s  can clearly be seen 
from the results given in Table I. 

However, a s  was shown in Ref. 7, the more favor- 
able-from the standpoint of E,, -and the more dynam- 
ically stable turn out to be the anisotropic lattices, at 
least at lower densities. On going over to the interval 
(3.2) and to higher densities, we find the energy differ- 
ence between the various structures to decrease signi- 
ficantly. This tendency can be clearly seen from the 
illustrative results given in Table II for the optimal 
anisotropic lattices['1: for the primitive hexagonal (PH) 
and rhombohedra1 (RH) and concurrently for the FCC 
lattice, the first  of the symmetrical structures to be- 
come dynamically stable under pressure (see Ref. 7). 
In the calculations we found for each Y, the extremal- 
with respect to energy-value of the parameter (c/a) 
and correspondingly determined the value aM(c/a), 
which turned out to be equal at the ends of the interval 
(3.2) to: for Y, = 1.45 

and for Y,= 1.05 

The function G(Q) in (2.9) was chosen in the approxima- 
tion used in Ref. 22. 

053 FIG. 3. Diagrams of the 
corrections of f i rs t  order  
in the electron-electron in- 0 + 0 - 0 teraction to .('). ,. - ,' 
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El:) 

Lattice 

*The energies are given in Rylatom. 

As can be seen from the results presented, a s  n in- 
creases, the change in energy, 6E("', a s  we go from 
one structure to another decreases, and even 6 ~ ' ' )  turns 
out to be substantially smaller than (3.3). The estimate 
for the magnitude of the term with n = 4 (see the follow- 
ing section) lets us think that 6~'') does not exceed 
-10" Ry. Therefore, the scale of the difference in the 
total static energy should be determined by the values 
given in the last two columns of Table II. 

It follows from these data that the difference in E,, 
fo r  r,= 1.45 can yet have a value of the order of (3.3) 
in favor of the anisotropic structures, becoming signif- 
icantly smaller even at Y, = 1.05. It should, however, 
be noted that this difference decreases considerably in 
the total energy (2.1) since to the anisotropic structures 
corresponds a zero-point vibration energy that is great- 
e r  precisely to the same extent. However, in this case, 
a s  is quite evident from Table 11, an accuracy equiva- 
lent to, o r  better than, (3.3) can be attained only when 
we take into account the next terms of the series (2.2), 
terms which in all the cases need to be computed'only 
for the cases of the symmetrical structures. 

A similar conclusion can be drawn on analyzing the 
corresponding contributions to the pressure, the only 
difference being that now P'') is very small because of 
the nondependence of the leading term in E(') on ray so 
that the structure-dependent terms in the perturbation 
ser ies  (equivalent to (2.2)) for P, which make a sub- 
stantial contribution to the total pressure, practically 
begin with p t3 ) .  In this case the neglect of the actual 
structure for terms with n 2 4 introduces an e r ro r  6P 
certainly not exceeding (3.4). 

Furthermore, we can conclude on the basis of the 
values of the coefficient q") for the symmetrical struc- 
tures (Table I) that the entire contribution of the elec- 
tron-electron interaction to the structure-dependent 
(via II(Q), ~ ( q ) ,  and A'"); see  Sec. 2) terms in the ener- 
gy is small compared to (3.3). This applies all the 
more to the difference between the energy values ob- 
tained in the various schemes of analysis of the elec- 

TABLE 111. 

I E O .  Ry/atom El3). Ryjatom . I I 

Lattice I GT 1 S 1 I !  1 (.T ( \ S  I l'K 

I I I I I I 
PH (c/a=1.1385) -0.2217' -0.1233 -0.223i -0,0336 -0.0338 -0.03(13 
LH = 2 1 )  I -0.1201 / -o.lllR 1 -a1?21 -0.0333 (-0.0336 1-0,0340 
FCC -0.0896 -0.0897 -0.0900 -0.02Sct -0.0284 -0.0288 

*The E(') and E(3)values are given for rS = 1.45. 
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tron liquid (i. e. , obtained with different G(Q) in (2.7), 
(2.8), and (2.9)). This assertion is also valid for the 
anisotropic structures, as  can easily be verified from 
the results of the computation of and E(') for the 
for the three different types of screening (VS, C221 G T , [ ~ ~ ~  
and T W ~ ~ ~ ~ )  given in Table III. The difference in screen- 
ing leads to-fluctuations in the energy not exceeding 1 6 '  
Ry. Notice that the contribution to E(') from the elec- 
tron-electron interaction is at least an order of magni- 
tude smaller than the E") value itself, which value is 
dictated by the first asymptotic term, 4'')r,, in (4.1). 

5. DETERMINATION OF E t4' 

As follows from the relations given in Sec. 2, the 
determination of Ec4), (2. lo), can be reduced to the de- 
termination of the normal, A:'), and anomalous, A:'), 
parts of the four-point ring diagram by the technique 
developed in Refs. 36, 18, and 30 for computing ring 
diagrams. 

The analysis of Ec4)was first undertaken in Hammer- 
berg and ~shc ro f t ' s  paper. '''] Unfortunately, it is im- 
possible to use the results of this paper, since the over- 
crude approximations made in the computation of some 
of the contributions and the insufficiently justified ne- 
glect of others led to incorrect quantitative estimates 
(see below). 

For the anomalous contributions we can derive explic- 
it analytic expressions. '303 Thus, upon the coincidence 
of the poles of the two Green functions, 

(.I mod 1 A+(A2-B?)' 
At,. (K,. KZ, K,. K.) = - - 

8n2kr ' .I ,'xJ2 (A'-U') 

where 

(Here allowance has been made in the coefficient for the 
fact that the conditions for the coincidence of the poles 
a re  fulfilled in the summation of the general expression 
for two sets of arguments: (K,, &, -K,) and (-K~, (-K,, 
IS2, K,, -K,). ) lfpon the coincidence of the two pairs 
of poles, there remains in the expression for the ener- 
gy a sum over a single reciprocal-lattice vector: 

( & )  
mu3 1 

.\a8* (K,, K,. Ks, Kt) = - S(&, -Kt) 6 (Ka, -KJ 6 (Ki, -IG: 
8n2kP3 xiL (I-5,') 

(5.2) 

The sum of the contributions (5.1) and (5.2) determines 
the value of Ai4) in (2.13). The explicit form of A?) in 
the approximation in question is as follows: 

Using these expressions and relations of the type (2.7) 
and (2.6), we can find the contribution, A E ~ ; ) ,  to the 
energy connected with the distortion of the Fermi sur- 

TABLE IV. 

face. Direct 'calculations indicated very strong cancel- 
lation of the contributions from Ah4) and A:'), a process 
which can, generally speaking, be followed analytically. 

Lattice 

If we neglect the screening, then the expression for 
EC4) can be written in the form (4. I), with 

la-- RY 

In Table N we give for the FCC and BCC lattices the 
values of the individual contributions to i$i, values 
which demonstrate the extent of the cancellation. 

FCC -2.576 ?..XI -0.015 
BCC 1 - 1 . 4 3  12.4&!4 1 -".IN4 

The total value of A E ? ~  turns out to be very small 
(and negative), and the obtained results allow us to 
come to the important conclusion that the deformation 
of the Fermi surface does not play a role and that, to 
determine the fourth-order contribution, we need to 
know only the value of Eta), or, which is the same 
thing, the normal part of the four-pole function 4'). 

Let us note that the first estimate of the role of the 
nonsphericity of the Fermi surface was made as far 
back as 1962 by Carr, L201 using a variational approach, 
and led to a result that is in qualitative agreement with 
the result obtained above. 

We begin the determination of A,!') with particular 
cases corresponding to the same values of the argu- 
ments a s  in (5.1) and (5.2). Using the results of Ref. 
30, we have for the total (the normal and anomalous 
together) multipolar function, which can be computed 
directly, the expression 

moS I (x,x3) .z +I (x,x.) .r+1 
A,!:' (K,, K2. K:, KL) = -- lbn-ksa ,S {y1"1kl+~''I~ / 

xG(Kt, -Kz)G(Ki, -K,) [ 1-6(K1. -KO 1; (5.5) 
here 

S=.c,'.rrP- (xIxz)', D= (x,'.rl?xSZ--S) 

This result is valid for S +  0, i. e., for Kt r &. In the 
S = 0 case we have 

The expression for A A ~ )  corresponding to the coinci- 
dence of the two pairs of poles of the Green functions 
on the ring was first obtained (together with (5.2)) by 
Hammerberg and Ashcroft. C1gl In the notation adopted 
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here (in the expression for the energy there is one 
summation over K) 

mO3 1 I -  x , + l  .I,'."! (K,, K?. K,. Kc)  = - In 
l 3  - x  [ I  - I x.--  1 I ]  

The normal part  can be found in both cases a s  

where A!') is determined by the relations (5.1) and 
(5.2). 

The computation of the contribution to the energy 
from arbitrary combinations of the wave vectors (i. e., 
without coincidence of the poles) meets with great dif- 
ficulties. This is primarily connected with the fact 
that now it is not possible to express the four-pole func-- 
tion in terms of elementary functions. In view of this, 
in computing q4) in the general case, we used an ap- 
proximate "splitting" scheme, which, as can be estab- 
lished, is of sufficiently high accuracy. In this case we 
shall restrict  ourselves to the lattices of cubic sym- 
metry (see Sec. 4). 

For this scheme, it is convenient to use the repre- 
sentation for q4) obtained after integrating the ring 
diagram over the frequency: 

~ l o ( " ( ~ , ,  K?, K,, Ki) =y3(K,, K,+& K+Kz+Ks) 
x[1-6(KI, -K,) ] [I-6(K,, -K2) 16 (K., -(K,+K?+Ks) ), (5.9) 

Simple transformations allow us to reduce ym to the 
form 

where yo= E = ( ~ ) ~ / 2 m ~ ,  and the dimensionless 
function pm is 

For the K, configurations occurring in (5.9), the con- 
ditions %, # 0 and xi  # %, a r e  fulfilled. In this case I y, l 
> 1 in a crystal of cubic symmetry (which was tacitly 
assumed in writing y,,, in the form (5.9a)). 

The "splitting" approximation consists in the replace- 
ment of the mean-over a unit sphere-value of the 
product figuring under the integral sign in (5.11) by a 
product of mean values of the form 

In the concrete calculations of &, we optimized this 
procedure by choosing for  each {xi) set  the appropriate 
"splitting" vector y,, for which we determined the i val- 
ue at which the quantity 

which is the difference, computed up to the terms - Y",, 
between P3 and the product (/Iz, A), assumed its mini- 
mum value. 

The resulting approximation is quite exact. This can 
be verified directly if we compute the contribution to 
E(') of the degenerate {K,} configurations, i. e., of those 
for which the condition det l K1, I$, K, I = 0, which leads 
to a situation in which all the K, vectors lie in one 
plane, is valid. The explicit form of 4') for this case 
was found in Ref. 30. Computing this contribution 
exactly, and using the approximation (5.12), we find that 
the difference does not exceed 2%. The e r ro r  made in 
the computation of the entire energy E") can only be 
smaller, since the contribution of the random {K,} con- 
figurations predominates and the approximation (5.12) 
for such configurations is better. In this case the de- 
generate configurations were, of course, taken into ac- 
count by exact formulas. 

In Table V we give the results of the computation of 
the contributions to E:~) (more exactly, to ti4)-see 
(5.4)) coming from the normal parts of 4') that corre- 
spond to the coincidence of the two poles of t/,!) (see 
(5.5) and (5.6)), o r  of the two pairs of poles of t:! (see 
(5.7)), a s  well as the results for the general case when 

(" does not possess multiple poles (the approximation 
(5.12) for the nondegenerate configurations). Again, 
we give only the dominant term in ~ ( ' 1 ,  which corre- 
sponds to the neglect of the electron-electron interac- 
tion. 

As follows from these results, the quantity E(') turned 
out to be quite substantial and comparable in magnitude 
to (3.3), although it  is appreciably smaller than EC3) 
(see Sec. 4)-smaller precisely by a factor equal to the 
parameter (VK/cF) of the theory. The value of Ec4) is 
determined virtually entirely by the contributions from 
the random {K,} configurations in the triple sum, con- 
figurations which do not give r i se  to coincident poles in 
Ad4). Notice that the contribution from the distortion of 
the Fermi  surface turned out to be almost three orders 
of magnitude smaller. 

Let us  note that Hammerberg and Ashcroft's result"Q3 
which leads to a much smaller estimate for E ' ~ )  is a 
consequence of the extremely crude computations of the 
individual contributions and the neglect of the anomalous 
contribution (5. I), which led to the accidental mutual 
canceling out of the quantities. 

It is not difficult to compute Et4) with allowance for 
the electron-electron interaction, using the relations 
(2.6), (2. 7), and (2.9). Let us give here only an in- 
terpolation expression for EC4)(r,) that is valid for r, 
s 2: 

TABLE V. 

'" ("'34 I "I!" I"" 1-4." 
BCC 0.125 O.0')U -' 41 -4.25 
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6. DETERMINATION OF THE TAIL OF THE 
PERTURBATION SERIES. CONVERGENCE OF 
THE SERIES 

An analysis of the results obtained above for E'2), 
E('), and Ec4) indicates that the first terms of the 
series (2.2) decrease with increasing n roughly like a 
power of the dimensionless parameter 4 r k / K ~ , $ , ~ ~  

0. 11(2kF/K,,,)e~,. This allows us a p i o r i  to estimate 
that E(')- 10-'r: [ R ~ ] ,  and this quantity in the interval 
(3.2) is already smaller than (3.1). However, since 
we are  interested in the result for r, 21, there arises 
the question of the convergence of the series (2.2) and 
of the total estimate for its tail: 

As follows from the result of the preceding sections, 
the terms of the series with n 3 5 can be considered in 
the approximation in which they are considered to be 
structure independent and with the neglect of the 
screening role of the electron-electron interaction. 
But in this case the use of the Wigner-Seitz methodt373 
becomes adequate. The accuracy of this method, which 
was used to analyze metallic hydrogen in earlier papers 
(see Wigner and Huntington, c31 Kronig, c381 and , 
 arch^^^^), is not sufficient for finding the total energy 
of metallic hydrogen, but it is quite reasonable for the 
purpose of estimating the behavior of the tail of the 
series (2.2). We used the Wigner-Seitz (W-S) method 
within the framework of Bardeen's improved 
scheme,tw1 which allows the determination of not only 
the value of the bottom, coy of the band, but also the 
effective electron mass, m*, near k = 0, and thereby 
the electron-gas energy in the parabolic-band approxi- 
mation. The problem then reduces to that of solving 
the radial Schddinger equation with a Coulomb poten- 
tial for s and p waves. 

A relatively simple procedure, developed for the 
solution of this problem, enabled us to determine co, 
m*, and the total energy Ewes a s  a function of r, for the 
entire domain of variation of this parameter. Leaving 
out the details of the calculation (they will be published 
separately), let us give here only the results essential 
to the analysis carried out in the present paper. 

1. If we expand EW,,(r,) in powers of r,, then in the 
region r,< 2 of interest to us the series converges well. 
The radius of convergence of the series is roughly 
equal to r,- 4.2. 

2. If we compare the coefficients attached to r :  for 
m = 0, 1, 2 in this series with the corresponding coef- 
ficients [(2), 5('), and 5") found respectively for E ( ~ ) ,  
E('), and E") in the absence of screening (see Tables 
I and V), we can establish the fact that these quantities 
clearly correlate with each other. For a quantitative 
agreement it is necessary to decrease the coefficients 
of the series for EW_, by factors of 0.80-0.87. 

3. For r, < 2, the total value of all the terms of the 
series with n 3 5 (m 2 3) can be approximated with a 
relative error smaller than 1% (this also applies to the 

~ r e s s u r e )  by the expression 

The transition to the tail of the series (2.2) corre- 
sponds approximately to 

where the numerical factor corresponds to the relation 
between the coefficients for n = 4 (m = 2) in the two 
series. From (6.1) and (6.2) we can infer that the sum 
of the entire tail of the series (2.2) with n 2 5 in the 
interval (3.2) is less than (3.3), although it is compa- 
rable in magnitude. 

7. THE VIBRATIONAL PART OF THE ENERGY 

We have thus far  considered only the static part (E,,) 
of the total energy (2.1). However, for such light par- 
ticles a s  hydrogen the role of the vibrational contribu- 
tion is quite important, and therefore a sufficient accu- 
racy in the determination of Evib should be secured. 
The magnitude of the vibrational energy in the density 
range (3.2) exceeds (3.3), and is - 0.015-0.035 Ry. 
It is  significant here that in this density region the con- 
duction-electron-mediated indirect interaction between 
the ions very drastically decreases E,,, (roughly by a 
factor of two), and any estimates of this quantity based 
on the computation of the energy of the zero-point vi- 
brations of the ion lattice imbedded in a homogeneous 
electron gas lead to large errors  in the determination 
of the total energy. 

An especially large correction to the pressure is 
needed to allow for the vibrations. For r,= 1.45, the 
quantity P,,, can constitute - 20% of the static part, Pa, ,  
of thepressure, decreasing to - 6% by the time r, = 1.05. 
This is connected with the critical dependence of E,,, 
on r,. It is, however, important that this dependence 
is dictated to a considerable degree by the contribution 
of the ion lattice and that this immediately reduces ap- 
preciably the possible errors  in the determination of 

Eli,' 

In Ref. 7, in the course of the determination of the 
vibrational energy in the harmonic approximation 

the phonon spectrum was determined in a comparatively 
crude approximation based on the use of the elastic 
moduli. This led to an overestimation of the contribu- 
tion from the longitudinal branch, and, hence, of 
EvIb(isY,), as  r, was decreased. 

In the present paper, bearing in mind the need to ob- 
tain results with a sufficiently high degree of accuracy, 
we undertook a direct determination of the phonon spec- 
trum in the entire phase volume for all values of r,. 
The integration over the Brillouin zone was performed, 
using a scheme developed in Ref. 41. In the dynamical 
matrix we took into account the indirect inter-ion inter- 
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bP,,,/P,,,oO.lZ for 1,=1.45, bP,,b/P.e=0.03 for r,=l.OJ. (7. 4) 

I 
I 

FIG. 4. The zero-point vi- 
bration energy, Evib(rs) ,  for 
different structures. 

I 

action corresponding not only to E'*), but also to E ' ~ ) ;  
The latter turned out to be quite important for the hy- 
drogen problem. 

In Fig. 4 we show the r, dependence of E,,, found for 
the three optimal-for r, 21-lattices: RH2, PI&., FCC, 
a s  well a s  for the PHI and RHl lattices (the designations 
a re  the same a s  in Ref. 7). The curve for the FCC lat- 
tice has been drawn only in the r, region where this lat- 
tice is stable in the harmonic approximation. The re- 
sults presented correspond to choosing the function G(g) 
in (2.9) in the VS form. [221 

In the case of the phonon spectrum the sensitivity to 
the choice of the screening is much higher than in the 
determination of the static indirect interaction, since 
now the behavior of ~ ( q )  and T(q) is important at small 
q, and not only at q = K. However, consideration of the 
various types of screening leads to oscillations in the 
energy of the zero-point vibrations within limits not 
exceeding 2 x lom3 Ry. In the interval (3.2), E,,, has 
practically the same value for the optimal anisotropic 
structures and can be described with a high degree of 
accuracy by the following interpolation relation: 

For  the FCC lattice the results for r, S 1 can be repre- 
sented by the following interpolation formula with as- 
ymptotically exact f i r s t  two terms: 

Notice the closeness of the coefficients in the first  
terms of the representations (7.2) and (7.3), which, 
apparently, is not accidental, for the RH lattice goes 
over into the FCC lattice as r,- 0. Let us note that 
the obtained dependence E,,,(r,), (7.3), turned out to 
be relatively close to the dependence that was found by 
Caron. 

Because of the large magnitude of P,,,, the difference 
in character of the screening introduces an appreciable 
uncertainty into the value of the total pressure P. 
Thus, a s  a fraction of the vibrational pressure obtained 
from (7.2) for the same family of G(q) functions, this 
uncertainty is 

8. THE THERMODYNAMIC POTENTIAL AND THE 
EQUATION OF STATE OF THE METALLIC PHASE 
OFHYDROGEN 

The results obtained in the preceding sections allow 
us to determine the total energy E, (2. I), of the metal- 
lic phase, find the equation of state, and compute the 
thermodynamic potential at T = 0 

rn ( P )  =E+PQ (8.1) 

for the various crystal structures. If we analyze the 
density region r, s1.05, where the FCC lattice is 
stable in the harmonic approximation, then i t  turns out 
that the optimal anisotropic structures and the FCC 
structure have very close thermodynamic potentials, 
the uncertainty here being much smaller than (3.3). 
(It should be noted that the uncertainty, 6@, in the ther- 
modynamic potential for fixed P is equal to the uncer- 
tzinty, BE, in the energy for fixed a.  ) caronce' and 
Straus and Ashcroft in a just published note"31 assert  
that the allowance for the anharmonicity in the simplest 
self-consistent phonon model leads to the re-establish- 
ment of stability in the FCC lattice in the density range 
(3.2). If, not discussing the authenticity of this asser- 
tion as  applied to the case when full allowance is made 
for the anharmonicity, we use Caron's result for E,,, 
in the FCC latticet"]or extrapolate (7.3) into the region 
(3.2) (this gives nearly the same result, for allowance 
for the anharmonicity can activate the low-frequency 
modes, but will change the energy of the stable phonons 
in the main part  of phase space very little), then 
again the difference between the thermodynamic poten- 
tials for the various structures (FCC and others) turns 
out to be smaller than (3.3). A similar result is con- 
tained in Ref. 43, where the FCC- and the anisotropic- 
FCT-lattice energies with allowance for only E '~ ) ,  but 
with the anharmonicity taken into a ~ c o u n t , ~ )  a re  com- 
pared a t  the point r, = 1.36. 

Thus, bearing in mind the uncertainty (3.3), we can- 
not, in the interval (3.2), distinguish between the ther- 
modynamic potentials pertaining to the minimal-in en- 
ergy terms-competing structures. 

In Fig. 5 we have plotted the found dependence @(P) 
(the curve 1) and have specified the corridor (the cross- 
hatched region) in which the true @(P) curve may lie. 
As i s  clear from the above-performed analysis, this 
corridor is dictated by the uncertainty, (3. 3), in the 
value of the correlation energy, an uncertainty which is 
clearly greater than all the e r ro r s  connected with the 
determination of the individual contributions to the en- 
ergy. In determining the energy, for E") we used the 
value of E, found by Vashishta and Singwi, C223 the terms 
E,, E ( ~ ) ,  E('), and E,,, were found for one and the same 
structure (for definiteness, the RH2 structure), using 
everywhere the function G(q) given in Ref. 22, EC4) was 
found in accordance with (5.13), while the tail of the 
ser ies  was computed in accordance with (6.1) and (6.2). 
An analysis of the results shows that, for the structure- 
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P, Mbar 

FIG. 5. The thermodynamic potential, *(PI, of hydrogen: 
curve 1) result of the present investigation for the metallic 
phase (the vertical strokes indicate the scale of the uncertainty 
in the *(P) values), 2) the thermodynamic potential of the mo- 
lecular phase, reconstructed from the zero isotherm of Ref. 1 
with the use of the formula (9.1); the curve 2a is a plot of 8(P) 
also reconstructed with the aid of (9.11, but from the experi- 
mental zero isotherntl' drawn through the upper limits of the 
density-measurement errors (on the side of lower densities 
(see Fig. 6)) at the points of the isentrope with the thermal 
contribution subtracted. 

dependent part of E,,, we can write, with an e r ro r  cer- 
tainly smaller than (3.31, the following approximate 
representation (0 < r ,  1.5): 

The first  two terms in this expression give the correct 
asymptotic form for 7,- 0 (see Table I). For E,,, we 
have the formula (7.2). 

It should be especially noted that, since the value of 
the phase transition pressure is very sensitive to the 
shape of the @(P) curve (see the following section), the 
contribution to the thermodynamic potential from E") 
and the tail of the series with n 3 5 turns out to be im- 
portant. 

Notice that the uncertainty in the determination of the 
total energy without E, is several times smaller than 
(3.3), and therefore if Vashishta and Singwi's result 
for   differs from the true dependence by a quan- 
tity appreciably less than (3.31, which is quite possible 
(see Sec. 3), then the found value of * actually posseses 
a greater accuracy than is indicated in Fig. 5. 

In Fig. 6 we have plotted the equation of state of me- 
tallic hydrogen, P(n0), or, more exactly, the inverse 
dependence aO(P) (the curve I). 

On the basis of an analysis of the results obtained in 
the preceding sections, we can come to the conclusion 
that the main e r ro r  in the determination of the total 
pressure ' is  connected with the limited accuracy attained 
in the determination of P,,, and PC. It follows from 
(3.4), (7.21, and (7.4) that, for r,- 1.45, when the total 
pressure P- 1 Mbar, this e r r o r  may constitute - 4%. As 
the pressure increases, the relative error  decreases 
and, at r,- 1.05 (P- 10 Mbar), constitutes just 0.5%. 
The absolute e r ro r  in this interval varies little, and 
does not exceed 50 kbar. 

Notice that the %(P) and ao(P) curves canbe easily con- 
tinued into the region of higher pressures if we use the 
above-obtained relations, whose accuracy increases 
with increasing pressure. 

It must be emphasized that the thermodynamic poten- 
tial and the equation of state of metallic hydrogen in the 
megabar region have thus been established with quite 
a high degree of accuracy. To actually raise the accu- 
racy in the determination of @(PI will be possible only 
after significant progvess, guaranteeing the determina- 
tion of the correlation energy with a high and estimable 
accuracy, has been made in the theory of electron liq- 
uid with intemediate Y ,  values. 

9. THE MOLECULAR PHASE. THE PHASE 
TRANSITION AND THE EXPERIMENTAL RESULTS 

As has already been noted in the Introduction, in con- 
t ras t  to the metallic phase, the equation of state and the 
thermodynamic potential of molecular hydrogen a t  high 
densities cannot be reliably established at present on 
the basis of purely theoretical considerations. The only 
judicious course is to use, even if partially, the experi- 
mental data. 

The f i rs t  such attempt was made by T r ~ b i t s y n , " ~ ~  
who introduced a simple analytic representation for the 
short-range and long-range parts of the intermolecular 
interaction and determined the f ree  coefficients in this 
representation by comparing with Stewart9s datar"' on 
SZo(P) measurement for solid molecular hydrogen. The 
dashed curve (the curve 3) in Fig. 6 is the curve 
obtained by Trubitsyn for T =  0. However, the mega- 
bar-pressure region where the phase transition occurs 
is too remote for ~ r u b i t s ~ n ' s  curves to be extrapolated 
there, since stewart's results a r e  restricted to an in- 

~ , / a >  atom 

I " ' " ' ~ ' ~ 1  

FIG. 6. Equation of state of hydrogenP(Qo): 1) the metallic 
phase's zero isotherm found in the present work (the horizontal 
strokes indicate the scale of the uncertainty in the theoretical 
equation of state), 2) the zero isotherm of the molecular phase 
from the experiment by Grigor'ev, Kormer, et al., ['I 3) the 
zero isotherm of the molecular phase, computed by Trubit- 
syn. '"I The dark circles are points, taken from Ref. 1, of the 
isentrope of hydrogen; the light circles are points of the isen- 
trope"' with the thermal contribution subtracted. 
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terval of only 20 kbar (the measurement region was 
recently extended to 25 kbarn5]), and the very nature of 
the intermolecular interaction may change appreciably 
when the density is substantially increased further. 

Attempts were later made to go outside the pressure 
range investigated by Stewart, using the methods of 
shock compression. Van Thiel and Alderc1e1 have ex- 
perimentally obtained a solitary density value corre- 
sponding to a pressure - 40 kbar, while results have 
comparatively recently been publishedL161 of molecular- 
deuterium density measurements performed a t  two 
pressures: - 200 and - 800-900 kbar. 

On the basis of these experimental data, including 
Stewart's results, ~ o s s [ ' O ~  made an attempt to deter- 
mine more accurately the equation of state of molecular 
hydrogen right up to pressures of 1 Mbar. In doing 
this he used the same functional representation for the 
pair potential of the intermolecular interaction used by 
Trubitsyn, considering the equation of state of the mo- 
lecular phase within the framework of some liquid mod- 
el. (for greater details, see  Ref. 10). 

To describe simultaneously both the results of the 
shock experiments, which contain quite large errors ,  
and those of Stewart's experiments, Ross was forced to 
consider a certain family of pair  intermolecular poten- 
tials. The equations of state determined with the aid 
of these potentials reproduce with varying degrees of 
accuracy the low- and high-pressure experimental re-  
sults. Some of these equations of state a re  quite close 
to Trubitsyn's curve. Others depict an appreciably 
"softer" behavior of the zero isotherms, so that the use 
of these equations in the megabar pressure region 
should lead to significantly higher values for the critical 
pressure of the transition of molecular hydrogen into 
the metallic phase. As the lower bound of the magni- 
tude of the transition pressure,  Ross gives the value 
2.2 Mbar, wheras one of the family of equations of 
state obtained by him gives a transition pressure - 20 
Mbar. Thus, the analysis based on the use of the re- 
sults of the shock experiments did not, in fact, lead to 
any significant progress in the determination of the 
equation of state of molecular hydrogen and in the esti- 
mation of the transition pressure. 

The first  direct measurement of the equation of state 
of hydrogen in the megabar pressure region was carried 
out by Grigor'ev, Kormer, et al,  ['I a t  pressures rang- 
ing up to 8 Mbar. This was accomplished in an explo- 
sion experiment in the quasi-adiabatic regime, which 
ensured relatively minimal warming up of the material, 
In Fig. 6 we show a plot of the experimentally obtained 
points (designated by dark circles) and the same points 
after recalculating the pressure to correspond to T = 0 
(light circles) in accordance with the data given in Ref. 
1. It can be seen that the points for P >  3 Mbar lie on a 
curve with an appreciably smaller slope, and this al- 
lowed the authors to suggest that there occurs a phase 
transition into the metallic state at P , -  3 Mbar. Using 
the data for P  6 3 Mbar, the authors found the equation* 
hydrogen at T = 0. The dot-dash curve (the curve 2) in 
Fig. 6 is a plot of this equation of state. 

The availability of an experimentally determined zero 
isotherm allows the direct determination of the thermo- 
dynamic potential of the molecular phase of hydrogen 
with the aid of the usual relation 

P 

m,-, (PI = u ~  (0) + J (PMP. 19.1) 
0 

The thus-found'thermodynamic potential has been plot- 
ted in Fig. 5 (the dot-dash curve, i. e., the curve 2) 
with allowance for the fact that +,,(0)= - 1.1645. 

As can be seen from Fig. 6, the experimental equa- 
tion of state for the molecular phase turned out to be 
appreciably "softer" than Trubitsyn's extrapolation 
curve (the curve 3). A consequence of this is a shift 
in the transition pressure toward the region of higher 
P in Fig. 5. Taking into consideration the above-found 
accuracy in the determination of the thermodynamic po- 
tential, dP), of the metallic phase, we find for the 
transition pressure the value P,-  8 * 2 Mbar. The in- 
clusion of the experimental points for P >  3 Mbar in the 
determination of the equation of state of the molecular 
phase would only further increase the transition pres- 
sure. On the face of it, this result indicates an inher- 
ent inconsistency in the experimental data, since the 
experimentally determined equation of state of the mo- 
lecular phase leads to a value for P ,  significantly ex- 
ceeding the value of 3 Mbar, in the vicinity of which an 
anomaly was found in the no(P) curve. 

If, however, we direct our attention to Fig. 6, then 
i t  is easy to observe that the experimental points for 
P> 3 Mbar l ie below, though on a curve parallel to, the 
.theoretical curve. Since i t  i s  difficult to imagine the ex- 
istence of a phase denser than the metallic phase, this 
compels us to suppose that some systematic overesti- 
mation of the density occurred in the experiment. And, 
indeed, it is sufficient to shift all  the experimental 
points to the upper e r ro r  boundary (see Fig. 6) to get 
the points for P> 3 Mbar to lie on the theoretical curve 
for  the metallic phase and the resulting thermodynamic 
potential of the molecular phase (the curve 2a in Fig. 5) 
to intersect a,, at P ,  - 3 Mbar (the corridor boundaries 
contribute * 1 Mbar). In consequence, we can, in so 
doing, re-establish the intrinsic consistency of the ex- 
perimental data. 

The independent agreement between the theory and 
experiment for the behavior of the equation of state in 
the metallic-phase region on the one hand, and the val- 
ue of the transition pressure on the other, compels us 
to think that the anomaly recorded in Ref. 1 apparently 
corresponds to a transition into the metallic state, with 
the transition pressure lying near P ,  - 3 Mbar. How- 
ever, a more reliable judgment can be made only after 
an experimental verification of the suggestion that some 
systematic overestimation of the density exists in the 
published data. 

 ere and below energies are given in rydbergs per atom. 
')or the volume range per atom: 5ai  6 no < 1 3 4  (ag is the 

Bohr radius). 
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ÿÿ he assertion made in Ref. 43 that the conventional self-con- 
sistent procedure for taking the ion vibrations into account 
when we go outside the limits of the harmonic approximation 
leads to the result that E3 does not play a role is erroneous. 
We can easily convince ourselves of this right away if we 
remember that the zero-point vibration energy, which, for 
r, = 1.36, is equal to 0.017 Ry , is determined more accurately 
within the framework of this procedure ( (u2)/a2 - 0.03, ac- 
cording to the estimate in Ref. 43, whereas I E "' I - 0.03 Ry 
(see Table I)). 
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