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FIG. 3. Curve 1) the ratio T ~ ( % ) / T $  of the Curie tempera- 
tures of ideal quasi-two-dimensional and isotropic ferromag- 
netic crystals according to ~ i n e s [ ' ~ ] ;  2) the ratio T F ( ~ ~ ) / @ ~  
of the Curie temperatures of the amorphous isotropic and ideal 
isotropic ferromagnets; 3) the ratio Tc(ho)/T$of the Curie 
temperatures of the amorphous isotropic FM (in the approxi- 
mation of an average a and the ideal isotropic FM; 4) relative 
increase T c ~ ~ ) / T $ ( ~ )  of the Curie temperature on amor- 
phization of a quasi-two-dimensional FM. 

ferromagnets with anisotropically distributed exchange 
couplings, such as  quasi-two-dimensional magnets. 
We have shown, e. g., that the amorphization of a quasi- 
two-dimensional FM leads to a substantial increase of 
Tc, especially for small values of the i n t e r p h a r  ex- 
change. In real substances we must, of course, also 
take into account the decrease of the quantities KO and 
Jo themselves, which leads to a certain lowering of the 
curve 2 in Fig. 3. F01" example, for Xo =l  the ratio 
T ?/T will be less than unity. However, the results 
are  not qualitatively changed. A similar remark can 
also be made concerning the magnetization of an amor- 
phous FM. It is clear, of course, that the amorphiza- 
tion of a quasi-one-dimensional FM is not qualitatively 
different from the case considered. As already stated, 
the situation is considerably more complicated in the 
case of amorphization of quasi-two-dimensional anti- 

ferromagnets. However, we may expect that for small 
values of IX,I the amorphization of systems with Jo>O 
and Ko<O can lead to ferromagnetism with a relatively 
high Tc. In view of the fact that quasi-low-dimensional 
magnets constitute a broad class of magnets, we may 
suppose that their amorphization could turn out to be an 
important way of obtaining new magnetically ordered 
substances. 
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Contribution to the theory of electromechanical forces in 
metals 

M. I. Kaganov and V. B. Fiks 
Physical Problems Institute, USSR Academy of Sciences 
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A mechanism is considered for production of electromechanical forces caused by electric current and 
concentrated near crystallite interfaces. The order of magnitude of the forces is ascertained for simple 
models of the interface and of the dispersion law. 

PACS numbers: 73.40.Jn 

An electric field E applied to a metal produces an the external field, acting on the ions of the "skeleton" 
electron current and motion of lattice defects: atoms, of the metal, a r e  exactly compensated by the forces 
dislocations, inclusions, grain boundaries. It does not produced on scattering of the electrons in the lattice 
disturb the mechanical equilibrium of an ideal crystal (the electronic windc"). The observable manifestations 
lattice. This is a dynamic equilibrium: the forces of of the force of the electronic wind depend on the mech- 
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anism of transfer and redistribution of the momentum 
given up to the lattice by the electronic subsystem, and 
they always are connected with a disturbance of the local 
equilibrium. In all defective regions of the crystal, the 
equilibrium is certainly disturbed, and electromechani- 
cal forces necessarily appear. The disturbance of the 
lattice structure occurs with special intensity in the 
process of plastic deformation, and the electromechani- 
cal forces are concentrated where structural inhomoge- 
neities have arisen. It is perhaps for this reason that 
ele~tromechanical forces play a comparatively impor- 
tant role in plastic def~rmation.~'"~ The purpose of the 
present article is to point out several mechanisms of pro- 
duction of the electromechanical forces and to estimate 
their magnitude. 

We consider the simplest situation: passage of cur- 
rent parallel to an intercrystallite boundary that serves 
to produce additional scattering of electrons. Assuming 
that the dimensions of the crystallites are  considerably 
larger than the length I of the free path of the electrons, 
we suppose that each crystallite occupies a half-space. 
The plane z = O  serves as  the boundary. We shall attach 
the index s = 1 to all quantities related to the left crystal- 
lite (z < 0) and the index s =2  to all related to the right. 
To avoid preoccupation with effects caused by unimpor - 
tant anisotropy of each crystallite, we shall suppose that 
the direction of the current (of density j) coincides with 
principal directions of both crystallites. In this case 
the electric field intensity E is  parallel to j in both 
crystallites. We take the x axis along E and j (E, = E, 
j, =j). With such geometry, the electromechanical force 
density 9 is also directed along the x axis, F, =F. 
According to Ref. 5, calculation of .P requires knowledge 
of the dependence on the coordinate z of the nonequilib- 
rium correction fs(p, z)  to the Fermi distribution function 
F(E) of the electrons: 

p is the quasimomentum, and E =E,@) is the energy of a 
conduction electron in the s-th crystallite. The tensors 
~j;'(p) can be determined only by a model calculation of 
the electronic energy spectrum of the metal. For or- 
der-of-magnitude estimates, we shall use the expression 

vs(p) = aas(p)/ap is the electron velocity, and the parame- 
ter & ~ m ,  where mo is the mass of a free electron. 

In an invariant description (in a coordinate system at- 
tached to the crystallographic axes), the dispersion laws 
E,@) and the tensors A:,@) are  of course the same in 
both crystals (independent of s); but in the coordinate 
system that we have chosen, they differ from one to 
another (see below). We shall omit the index s when 
this can cause no misunderstanding. We shall further- 
more write v, =u, v, = w. Thus 

Because of the neutrality of the metal, the total force 
exerted on it by the electric field must be zero. If 

then this means that the intercrystallite boundary is 
acted upon by a concentrated force .?Fa,,&3(z), such that 

For lz I>> 1, the role of the intercrystallite boundary 
is insignificant, and f i s  asymptotically independent of 
Z : 

r is the free-passage time of an electron. The electric 
field intensity E, from the irrotationality condition 
(curl E =O), is  independent of the coordinates. 

On both sides of the boundary, the function f is a so- 
Iution of Boltzmann's kinetic equation 

for which the boundary conditions at z =koo are the equal- 
ities (3). The conditions on the boundary (at z =0) a r e  
of course wholly determined by the structure of the in- 
tercrystallite layer, whose thickness is of the order of 
the interatomic distance. They cannot be formulated in 
general terms. But it is easy to imagine two limiting 
situations. 

A. A diffuse boundary, scattering of the electrons on 
which is accompanied by complete loss of directed mo- 
tion": 

We have written f F' for fs(z, ~ ~ 3 0 ) .  

B. A specular boundary, on which the tangential pro- 
jection p, of the quasimomentum of an electron is con- 
served. An electron wave passing through the boundary 
is refracted and reflected. The possibility of assigning 
electron states with a value of the quasimomentum paral- 
lel to the boundary means that the bicrystal is periodic 
in planes parallel to the boundary (Fig. 1). Since the 

b I  w 
FIG. 1. a, Structure of a specular boundary. b, Isoenergetic 
surfaces E =  eS(p). An electron with quasimomentum pi has, on 
reflection from the boundary, quasimomentum pi1; and on pas- 
sage across the boundary, quasi-momentum P ~ ~ ( P ~ " P ~ ~ .  PZ;). 
Analogously, pz--pz', pip. As are limiting points of the Fermi 
surface, corresponding to the asymptotic behavior of the elec- 
tromechanical force. 
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energy as well as  p, is conserved in passage of the elec- 
tron across the boundary, a relation can be established 
between the quasimomenta and velocities of an electron 
in the two crystallites. Figure l b  shows how to accom- 
plish this. We remark that in the case of an anisotropic 
Fermi surface, there must always be electrons that un- 
dergo total internal reflection at the boundary of the 
crystallites. The boundary conditions for the distribu- 
tion functions f F) a re  consequences of the law of conser- 
vation of the number of particles on passage across the 
plane z = 0, on which 

The coefficients R, (0 GR, 1) describe properties of the 
boundary; their physical meaning is clear from equa- 
tions (6), which a re  a natural generalization of the Fuchs 
condition for specular reflection. When R, =R, = 1, the 
electrons of both half-spaces a r e  specularly reflected, 
without crossing the plane z = O  (two separate half-spaces 
with specular boundaries). If the two crystallites a re  
identical, then R, =R, = O  (then, of course, V, =v2, 7, = T ~ ,  

and in equation (1) there is no term at all containing Bf/ 
'Jz). For electrons that undergo total internal reflection, 
ReO. 

Calculation of the coefficients R, in the general case 
is a complicated problem, not yet solved (as far a s  we 
know). We shall hereafter treat the R, as  phenomeno- 
logical parameters; but at the end of the article, we 
shall calculate the R, by assuming that on both sides of 
the boundary the approximation of effective anisotropic 
masses is valid. 

A. Diffuse boundary 

The solution of equation (4) with the boundary condi- 
tions (3) and (5) has the form 

On substituting the expressions (7) in formula (I), we 
have 

2eE a~ Ti= - - R L , I L , ' - O X ~ ( ~ )  dap. i<O, 
*w,co ae a l w , l  

2eE dF 
(8) 

T,- - - J f i l , ~ , ~ ~  exp 
(2nb) 

In the general case (for an arbitrary dispersion law), i t  
i s  of course impossible to calculate the integrals that en- 
ter in (8). But it is possible to make an estimate with- 
out specializing the dispersion law. For example, it 
follows from (8) that 

dimensionless parameters (yS = ( GS /m.+,), the mean 
(over the band) ratio of G, to the effective mass m, ,  

' 

= Pus /ap,)-'). 

The surface force Fn, in this case is nonzero. Ac- 
cording to (2) and (7) 

We shall hereafter use the simplest anisotropic disper- 
sion law, which in the invariant description has the 
form 

and we shall suppose that in the first crystallite 

whereas in the second crystallite 

Then, SUPpljosing that - aF/a& =ti(& -&,), we get from 
(10) 

where 11(2, = rlcz, (2cF/rn~ (,,,)'" is the free-path length in 
the first (second) crystallite. In the calculation it was 
assumed that 7, and GS are  independent of p. 

The structure of the electromech~ical  force corre- 
sponding to the expressions (8), (9), and (12) is repre- 
sented in Fig. 2. An important characteristic of the 
electromechanical force is its asymptotic behavior for 
lz I>> 1. According to (8), the asymptotic behavior of 
F(z) i s  determined by those sections on the Fermi sur- 
face where I w 1 attains maxima, i. e. , sections near 
a limiting point (the points A, and A, in Fig. 1). At a 
limiting point, as a rule, us vanishes. As a result, the 
electromechanical force attenuates faster than an ex- 
ponential function. By using the expressions (lla) and 
(llb), one easily obtains from (8) 

FIG. 2. Electromechanical force 
density with a diffuse boundary. 

where n is the eleqtron density, and where the y, are  
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FIG. 3. Electromechanical force 
density with a specular boundax. 

B. Specular boundary 

From the boundary condition (6) it follows that the 
force concentrated on the boundary of the crystallites in 
this case vanishes. This is in agreement with the "spec- 
ularity" of the boundary, on which the electrons do not 
lose the component of momentum along the field. Thus 
around the intercrystallite boundary there arises, on 
passage of current, a peculiar force dipole (see below 
and Fig. 3). 

The nonequilibrium part of the distribution function 
of electrons flying away from the boundary of the crys- 
tallites-the solution of equation (4) with the boundary 
condition (6)-has the form 

where 

The distribution function of electrons flying toward the 
boundary is  no different from the distribution function in 
a homogeneous metal. We recall that the values of v, 
and v2 are not independent: in calculating the electro- 
mechanical force for z >0, we must, by use of the laws 
of refraction of electron waves, determine vl =v1@), 
where p i s  the quasimomentum of an electron in the 
right crystallite; and conversely, in calculating 9 for 
z <0, we must determine v2 =v2(p) as  a function of the 
quasimomentum of an electron in the left crystallite (see 
below). 

If we do not specialize the dispersion law of the elec- 
trons, then f l  and & (like R1 and Re) must be considered 
phenomenological parameters describing the boundary. 
We shall estimate the value of the electromechanical 
force near the boundary of the crystallites (at z =*0). 
From (14) and (1) we have 

If the relative anisotropy of the crystallites is such that 
I ( f l )  I = I  ( &) I =  1, then the values of F(*  0) coincide in 
order of magnitude with 6(* 0) on a diffuse boundary. 
It must be borne in mind that, as  a rule, ( f l )  and ( fz )  
a re  of opposite signs and much smaller than unity (see 
below). The asymptotic behavior of F k )  (for lz I--) 
in this case also is determined by a limiting point of the 
Fermi surface (see above) and for the most part has a 

dependence on lz I in agreement with (13). 

We shall carry out a calculation of the reflection co- 
efficients R1 and R2 by using the simplest model (ll), 
(lla), and (llb); for definiteness, we shall take m,, >ma. 
The wave function *(r) of an electron according to ( l la)  
and (llb) satisfies the following Schriidinger equations: 

The boundary conditions express the continuity of the 
wave function and of the probability current density: 

We shall consider reflection and refraction, from the 
boundary of the crystallites, of an electron wave going 
from left to right, for which we shall seek *(r) in the 
following form: 

Y ( r )  = e x p [ i  ( rz+p,y)  l h ]  Y (z), (19) 

where 

Y ((z =exp  (iq,z/h) +a e x p  (-iq,z/h) , z<0 

Y (z)  =b  e x p  (iq,z/h), z>0 . (20) 

We have written p,=+, fi. =q. 

The coefficients a and b a re  determined from the 
boundary conditions (1 8): 

But ql and 9, are  connected by the relation that ex- 
presses the laws of conservation of energy and of p,: 

Knowledge of the coefficient a enables us to determine 
the coefficient R,: 

The coefficient R1 can of course be determined also by 
use of the coefficient b. 

In accordance with what was said above, electrons lo- 
cated inside the cone q :: - (m,, /ma - 1) r2 = O  (for them 
q: - (m,, /mL - l ) r 2  <O) undergo total internal reflection 
at the boundary of the crystallites. For them, R1 = 1. 
By considering incidence of an electron wave from the 
right on the boundary of the crystallites, we can show 
that R2 is  also determined by formula (23). In calculat- 
ing characteristics related to the first crystallite, we 
must by means of (22) express q2 in terms of ql, while 
in calculating characteristics related to the second 
crystallite we must, conversely, express 9, in terms of 
42. 

We note that electrons of the second crystallite do not 
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undergo total internal reflection. According to  (ll), (15), 
(22), and (23), we have for r1 = re 

We recall that by hypothesis m,, >ml . Therefore & f 0 
for all Y and q, whereas El # 0  only for those values of 
the quasimomentum for which (m,, /ml - 1) * (re/qe) < 1 
(see above). We note that El and tZ a r e  of opposite 
signs, whence i t  follows that the electromechanical 
force density in the two crystallites also has opposite 
signs (Fig. 3). Calculation of ( and ( &) for arbi- 
trary m,, /ml (see (26)) is possible only by numerical 
integration. We shall restrict  ourselves to calcula- 
tion of the limiting values for m,, /ml >> 1 and for m,, =ml 
If m,, >> ml , then 

and for m,, =ml, 

The estimate of ( 5,) shows that the electromechanical 
force density, as was to be expected, is smaller in the 
case of a specular boundary than in the case of a diffuse 
one. 

The sensitivity of 9k) to the electronic energy spec- 
trum of the metal should be  noted. The electromechani- 
cal  forces naturally have their maximum value on a dif- 
fuse crystallite interface (.%;,,). It is convenient to ex- 
press  this force (see (13)) in terms of the current densi- 
ty. On omitting dimensionless factors (usually close to 
unity), we get 

whence FaU, [dyn/cmz]= j [A/cme]. In some experi- 
ments the current density reaches a 10' A/cme; in such 
cases Fa., 10' dyn/cme. 

"1n the case of two different metal specimens with diffusely 
scattering surfaces, the boundary conditions would coincide 
with (5). 
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The threshold, contrast, and time characteristics of the cholesteric-nematic phase transition induced by an 
electric field have been studied in compensated mixtures of cholesteric liquid crystals with nematic-liquid- 
crystal admixtures (up to 10%). A storage effect has been observed which consists in the prolonged 
preservation of the homeotropic orientation of the molecules near the cholesteric-nematic transition 
temperature. Judging by the principal electro-optical parameters, the investigated system surpasses the 
well-known nematic-cholesteric system in which the storage effect is due to texture transformations under 
conditions of dynamic scattering of light. 

PACS numbers: 64.70.Ew, 78.20.Jq 

The twistedness of the hypomolecular structure deter- on the structure of the individual molecules of the cho- 
mines the unusually strong optical activity of the choles- lesteric compound. By mixing in definite concentration 
teric liquid crystal (CLC). In this case the plane of proportions dextro- and levo-rotatory CLC, we can 
polarization of polarized light passing through the CLC compensate the optical act i~i ty .~"  The compensation 
may rotate either clockwise or  anticlockwise, depending occurs a t  a definite-for each mixture-temperature 
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