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The problem of a phase transition in an anisotropic compressible lattice is considered. Solutions to the 
"fast" parquet equations rke found. Anomalies in the elastic constants at the transition point are 
computed. 
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1. INTRODUCTION 

Near a second-order phase transition point the fluctu- 
ations exert a decisive influence on the behavior of the 
system. In this case i t  may turn out that the stable-in 
the self-consistent field approximation-Hamiltonian 
loses its stability when allowance is made for the fluc- 
tuations. Such an instability obtains in the case when 
there is a strictive coupling between the order parame- 
ter of the transition and the elastic degrees of freedom. 
This question has been considered by various authors. cl'sl 

In the case of an elastically isotropic crystal, the prob- 
lem is rigorously soluble, and, a s  has been shown by 
Larkin and ~ikin,"] the transition is of f i rs t  order when 
a nonzero shear modulus is present and the specific heat 
C, diverges. In the case of anisotropic elastic proper- 
ties Khmel'nitskii and shneersonc2] have shown that the 
renormalization-group equations describing the transi- 
tion do not possess stable solutions. The physical causes 
of the two instabilities a re  different. In the present pa- 
per we obtain the general form of the solutions to the 
"fast" parquet equations "that have been investigated for 
stability by Khmel'nitskii and ~ h n e e r s o n , ' ~ ~  when the 
equations depend not only on a slow logarithmic variable, 
but also on fast angular variables. This allowed the 
computation of those anomalies in the elastic properties 
that arise a s  a result of the fluctuations in the order 
parameter. Since in the case under consideration the 
transition is of first  order (though close to a second- 
order transition), as the transition point is approached 
from above, the elastic constants (the stiffness) first  
decrease according to the specific-heat law and then 
undergo a finite jump downwards. 

In the paper we compute the values of the elastic con- 
stants a t  the transition point both before and after the 
jump. The obtained values a re  determined by the vari- 
ous angle-averaged bare  values of the elastic and stric- 
tion constants, a s  well a s  by the fourth-order constants 
in the expansion of the thermodynamic potential. Rela- 
tions between the anomalies of the various constants a re  
also obtained. Approximate computations a re  carried 
out for the specific example of the uniaxial ferroelec- 
tric: triglycine sulfate (TGS). 

2. THE RENORMALIZATION-GROUP EQUATIONS 

Let us consider the simplest example of a phase tran- 
sition with a scalar order parameter in a compressible 
anisotropic lattice. The phase transitions in the uniaxial 

ferroelectrics can serve as an example. The Hamilto- 
nian for the transition has the form 

Here the s,, characterize the anisotropy of the gradient 
term; the a,,, the striction constants. In them only two 
indices have been written out since the other two a r e  
determined by the orientation of the order parameter in 
the lattice; the 

a r e  the elastic deformations and P is the order parame- 
ter. 

In the approximation under consideration the elastic- 
deformation Hamiltonian is quadratic; therefore, the 
corresponding functional integral is Gaussian, and can 
be integrated over all the elastic variables. As a re-  
sult, there arise two different interactions of the fluc- 
tuations via the phonons: via the homogeneous deforma- 
tions, i. e., with momentum q equal to zero, this inter- 
action being isotropic; and via the inhomogeneous de- 
formations. The latter depends on the angles in the case 
of an anisotropic lattice. 

Let us now analyze the behavior of the system in the 
presence of such interactions within the framework of 
the parquet approximation in the four-dimensional mod- 
el.c41 The results can be extended to the three-dimen- 
sional situation by Wilson's &-expansion method.'5' In 
addition, below we shall analyze the case of uniaxial 
ferroelectric crystals, which a r e  effectively four-di- 
men~iona l .~ '~  

It is convenient to  write out the parquet equations for 
each of the interactions separately. Let X be the vertex 
corresponding to the point interaction, v the vertex cor- 
responding to the interaction via the homogeneous de- 
formations, and p the vertex corresponding to the inter- 
action via the inhomogeneous deformations. The equa- 
tions a re  represented graphically in Fig. l. The heavy 
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FIG. 1. The renormalization-group equations. 

lines correspond to the P field; the dashed lines, to the 
homogeneous deformations; and the wavy lines, to the 
inhomogeneous deformations. Thus, the analytic ex- 
pression for the equations has the form 

Here G ( q )  =g/d  ', 5 = ln(max( 7, 'I), q is the momentum, 
A([ = 0) =Ao, p([ = 0) = po, v([ = 0) = vO, and the symbol 
( ) denotes averaging over the angles. 

As is well known, usually in the theory of phase tran- 
sitions the Green function is renormalized in the sec- 
ond approximation. The presence of the long-range in- 
teraction connected with the acoustic phonons leads to a 
situation in which the renormalization appears even in 
the first  approximation." However, Eqs. (2)-(5) have 
been constructed such that this circumstance will not 
play any role below, although Eq. (5) must be taken into 
account when carrying out the averaging in specific cal- 
culations. Let us first  consider the Eqs. (2) and (3). 
Let us divide both sides of Eq. (3) by pa. We obtain 

Let us now average (6) over the angles and subtract 
the averaged equation from (6). We have 

It is clear from (7) that 1/p-( l / p )  =qq, where q de- 
pends only on the angles and does not depend on 5,  while 
q does not depend on the angles. 

Thus, the angular and logarithmic variables separate. 
This allows us to  rewrite the Eqs. (2)-(5) in the follow- 
ing form: 

-dh/df=36h2<g2)-48h< pgZ)+16<p2g2) ,  (8) 
-dvl@=24hu<g2)-16u<pgZ)-4uZ<g2>, (9) 

d z / @ = 4 ( 1 - z )  v ( g 2 > ,  (10) 
-dv/dE=24hv(g2>-16v(pgz)-4v2(g2), (11) 

8G-* aG,-' -=-- dQ ( 1 - z ) ~  g2p. 
aq aq 

8 dE v j  --7- (2n) l - z y  

Here p =v(l -2) y/(l -z  y); z and v do not depend on the 
angles; z (5 =0) = 0; and y characterizes the dependence 
on the angles: y = p(5 =O)/v([ =O), where v([ =O) 
= ~ , ( 5  =O). The angular factor y is chosen such that 
y,, = 1; then the factor (1 -2) in the numerator will 

eliminate the singularity in the denominator a t  zy,, =l. 
Since i t  follows from Eq. (10) that z < 1, pole singular- 
ities will not ar ise  in the angular integrals. 

It is convenient to go over to the variables x = A/v and 
z. As a result, for the Eqs. (8)-(10) and (12), we have 

Notice that the angular integrals can be assumed to  be 
known functions of the parameters z and g, since the 
angular dependence of y is determined by the bare  stric- 
tion and elastic constants, while the angular dependence 
of g is determined by the point symmetry of the crystal. 
Therefore, the system (13)-(14) can easily be integrated 
numerically. The behavior of the vertex v is completely 
determined by the variable z. Let us introduce y = v/v. 
Then for y we have the equation 

Now, using (15) and (lo), we obtain 

In ~hmel 'nitskil  and Shneerson's paperc21 it is shown 
that the system (8)-(12) does not have stable solutions 
if y depends on the angles. The question of the behavior 
of the solutions is closely tied with the question of the 
stability of the thermodynamic potential. 

It is customarily assumed that stability is lost when 
the effective interaction between the fluctuations changes 
sign and becomes negative. If we a r e  discussing a tran- 
sition to a homogeneous state and we leave out the ques- 
tion of the influence of the boundary conditions, then the 
quantity X - v can be assumed to be the effective interac- 
tion, since the vertex p corresponds to  a nonzero mo- 
mentum transfer. The Larkin-Pikin effectc1] corre- 
sponds, in the formulation under consideration, to the 
growth of the vertex v=v( l  -z)/(l -zyo), since yo> 1 
(yo = (KO ++L,)/K, in the isotropic case, where KO and 
Lo a re  the bulk and shear moduli). There is therefore 
a pole at z =y;l, which leads to the loss of stability. 

In the general case the system (13)-(16) is solved 
numerically. It makes sense to analyze such a solution 
for a specific experimental situation. However, if ( y) 
and ( y2)  vary slowly right up to the transition point, 
then we can obtain an analytic solution approximating the 
solution to the system (13)-(16). If the coupling between 
the fluctuations and the acoustic phonons is strong, then 
stability is lost even in the case of weak renormalization 
of the interaction, and therefore ( y) and ( y 2 )  almost do 
not change. Apparently, i t  is precisely such a situation 
that is realized in the uniaxial ferroelectrics: triglycine 
sulfate and triglycine selenate (TGSe). Assuming ( Y) 
and ( y2)  to  be constants, we obtain from Eq. (13) 

The solution (17) has meaning only when 48(y2) 
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FIG. 2. Temperature dependence 
of the stiffness. 

T 

> (8( y )  - I)', i. e., mder cofiditions of sufficiently strong 
anisotropy . 
3. COMPUTATION OF THE ELASTIC-CONSTANT 
ANOMALIES 

Let us now consider the question of the elastic-con- 
stant anomalies. Figure 2 shows a typical behavior of 
the stiffness. The behavior of the stiffness along the 
segment 0-1 corresponds to the temperature dependence 
of the specific heat, since, owing to the strictive cou- 
pling, the equations for the fluctuation anomalies of the 
stiffness and for the specific heat coincide up to a con- 
stant factor. At the point 1 there occurs a first-order 
transition, and the stiffness decreases discontinuously 
to the point 2. We can compute in terms of the bare 
values of the elastic and striction constants and the 
fourth. order constant in the expansion of the thermody- 
namic potential the values cl and c2 of the stiffness at 
the points 1 and 2. 

Let us  consider as an example the elastic modulus 
c,. Because of the striction, the fluctuations in P 
will make a contribution to c,. A calculation shows 
that the fluctuation contribution is determined only by 
the striction constant a,. The equations for the quanti- 
ties v, =i&/c, and c, =c, a re  represented graphi- 
cally in Fig. l c  and Fig. 3. Their analytic expression 
corresponds to the equations 

Using Eqs. (9), (lo), (18), and (19), we easily obtain 

Here co, is the bare value of c, and VQ i s  the bare value 
of u,. 

It can be seen from (20) that, first, to determine the 
elastic-modulus anomalies at the point 1, we need to 
know only the parameter z. Secondly, we have the fol- 
lowing invariant for the anomalies of the various elastic 
moduli : 

Since the dimensionality of the space in no way enters 
explicitly into (21), we should expect that such a simple 
relation will obtain also in three-dimensional space. 

The computation of the magnitudes of the elastic con- 
stants after the jump is closely tied with the problem of 
the computation of the condensate that separates out dur- 

--0- - FIG. 3. Fluctuation correction to the stiffness. 

FIG. 4. Examples of ring - A J., fi Gagrams. 

ing the fluctuation instability of a second-order transi- 
tion. The instability is connected with the fact that the 
coupling constant attached to the fourth power of the 
parameter in the expansion of the thermodynamic poten- 
tial becomes negative. In the case of the self-consistent 
field theory a sixth-order positive constant r was usual- 
ly added, which restored the stability at large values of 
the condensate. However, near a second-order phase 
transition point the behavior of this constant is deter- 
mined by the behavior of the fourth-order constant and, 
as it  turns out, r decreases rapidly in the case of a 
second-order transition.c51 

In the case of an unstable behavior of the fourth-order 
constant, this constant can also change sign. Therefore, 
the question arises of the stabilization of the thermody- 
namic potential at large values of the condensate. It 
has been shownc6] that of greatest importance a re  the 
anharmonicities represented by the ring diagrams con- 
structed from the fourth-order vertices. Some of the 
diagrams making contributions to the sixth-order vertex 
are shown in Fig. 4. Summing the diagrams of all or- 
ders higher than the fifth, we easily obtain the result 
for the additional contribution to the potential from the 
ring diagrams: 

Here p depends on the angles and the symbol ( ) denotes 
averaging over the angles. Let u s  show that the quantity 
X - v -$ p arising here i s  positive. As was noted above, 
the transition occurs at X" v, so that we obtain 

We have set here X = v and x =yo(l -z)/(l -zyo). Since 
y,, = 1 and yo> 1, the quantity X - 4  v -$ p is always pos- 
itive. 

Equating the thermodynamic potential and its deriva- 
tive at the transition point to,zero, we can obtain two 
equations from which we can determine the value of x 
at the transition point, as well as the magnitude of the 
condensate: 

It is clear that, to find the transition point, it is neces- 
sary to simultaneously use the relations (22) and the so- 
lutions to the system (13)-(16). Using the obtained re- 
sults, we can compute the jumps in the elastic constants 
due to the condensate. Thus, for the stiffness c,=c, 
we have 
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Here the indices 1 and 2 respectively correspond to 
the points 1 and 2 in Fig. 2. Thus, we can derive sim- 
ple expressions for the jumps in the elastic constants. 
The most attractive for comparison with experiment is 
the relation (21), since for its verification it is neces- 
sary to know only the elastic moduli and the striction 
constants. This relation is not trivial and arises from 
the renormalization-group equations. In contrast to this, 
the analogous expression obtained from the formula (23) 
will express a trivial fact that follows from the presence 
of the strictive coupling. Besides the indicated verifi- 
cation of the relation (21), we can carry out calculations 
directly for the magnitudes of the jumps, but this re- 
quires either a numerical, o r  an approximate, integra- 
tion of the system (13)-(16). 

4. ELASTIC ANOMALIES IN  TGS 

As is well known, an effectively four-dimensional sit- 
uation obtains in uniaxial ferroelectrics owing to the 
dipole-dipole interaction.'" Therefore, the considered 
theoretical ideas can be verified on these materials. 
The most suitable objects for comparison are  TGS and 
its analog TGSe. According to the experimental results 
obtained in Ref. 7, the fluctuation correction to the 
elastic constants in TGS behaves like lnr,  which should 
testify to the effective four-dimensional nature of the 
fluctuations (strictly speaking, the dependence should 
have the form ln11sr,C41 but this is difficult to detect 
experimentally). The elastic and striction constants 
have also been mea~ured '~"~ below the transition point. 
An estimate for the magnitude of the effective constant 
X - u in the ferroelectric phase is given in Jona and 
Shirane's book.c101 

This allows us to estimate the fluctuation corrections 
at the transition point. Naturally, using, instead of 
data above the transition point, data measured in the 
ferroelectric phase, besides far from the transition 
point, we can obtain only order-of-magnitude estimates. 
The inaccuracies in the determination of the elastic 
moduli are an important source of errors here. Thus, 
for the moduli ~ 1 5 ,  ce5, cQ5, and cs4 the error can be of 
the order of the constants themselves. Such is  the er- 
ror  for the striction constants, for they are computed, 
using the elastic moduli. 

Therefore, it is reasonable to perform only approxi- 
mate computations. As is well known, TGS bebngs to 
the monoclinic system, and the spontaneous moment in 
it is  directed along the Y axis. Therefore, a logarith- 
mic divergence will occur in the case of momenta lying 
in the XZ plane. A s  noted above, the averaging over 
the angles should be done with some weight connected 
with the anisotropy of the Green function. Since in the 
present case the calculations are approximate calcula- 
tions, it is reasonable to consider the Green function to 
be isotropic. Let us now compute the bare values po 
and vo. The computations are carried out by an elemen- 
tary Gaussian integration over the inhomogeneous and 
homogeneous deformations, respectively. Unfortunately 
the literal expression, especially for pO, i s  too unwieldy 
to give here, especially a s  the integration i s  trivial. 
Numerically, these quantities have the following form: 

The quantity p0 has been expressed in units of 10'" 
cme/dyn, porn=- 15 x 10'" cm2/dyn, vow 25 x 10'" cm2/ 
dyn. The computation of the mean values of po is also 
performed numerically and yields (po)"8X 10'" cm2/ 
dyn, ( y)-0.53, ( ye)-0. 35. The value of the effective 
constant Xo - vow 5x 10'" cm2/dyn. Hence we obtain xo 
-2, 1 0 - 3 .  

Thus, the situation in TGS corresponds to the case of 
strong coupling. Therefore, we can assume that xn at 
the transition point differs little from xo and that z, at 
the transition point will be small. In that case ( y) and 
( ye) will be almost constants, and we can use the ap- 
proximate solution (17). Substituting the values of xo, 
( y), and ( y2), we obtain from (17) the stability condi- 
tions: 

From here we find ~ ~ " 0 . 0 5 ;  xnMl .  7. The correction to 
( Y), A( Y) =zn(( Y) - (ye))  =O. 01, so that the initial as- 
sumptions are correct. 

Knowing zn, we can estimate the fluctuation correc- 
tions to the elastic constants. We have kll /ell "0.005, 
Acee /cze "0.01, and Ac,, /c, " 0.003. The experimen- 
tal value for AcS3/cS, (-0.05), determined from the cll 
and tee anomalies, is  considerably higher. In compar- 
ing with experiment, we should take into account the 
fact that, for the reasons indicated above, the above- 
used relations between the striction constants bear no 
relation to reality, although the order of their magnitude 
should be substantially closer to the experimentally 
measurable order. Therefore, the greatest experimen- 
tal value should be compared with the greatest computed 
value, i. e., the experimental value for Ac,, /c,, should 
be compared with the computed value of Ace2/cz2. On 
the whole, on account of the above-indicated reasons, 
the question of comparison with experiment remains 
open. 
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The amorphization of a crystalline ferromagnet with anisotropically distributed exchange parameters is 
investigated. The amorphous ferromagnet is treated in the framework of a lattice model with fluctuating 
exchange couplings. With the use of the single-site approximation in the coherent-potential method, 
equations are found for the parameters of the coherent exchange matrix by means of which the magnon 
states of the amorphized ferromagnet are described on the average. The case of the arnorphization of a 
quasi-two-dimensional ferromagnet with intraplanar (Jo) and interplanar (KO)  exchange parameters when 
the exchange interactions become isotropic is investigated. The coherent exchange parameter and the 
modified density of magnon states are found by using a distribution function corresponding to the mixing 
of the Jo and KO couplings on amorphization. It is shown that the Curie temperature increases 
substantially on amorphization of a quasi-two-dimensional crystal. 

PACS numbers: 75.5O.Kj, 75.30.Et 

1. INTRODUCTION 

The problem of magnetic order in amorphous mate- 
rials was raised by ~ubanovl'l and has undergone con- 
siderable development since then. Important results 
have been obtained in the papers of  andr rich,^'' Mont- 
gomery et ~ l . , ' ~ '  Foo and ~ose, '"  Gubernatis and Tay- 
lor,"] and others. A characteristic feature of these 
theoretical papers i s  that they treat magnetically and 
structurally stable systems of the cubic-ferromagnet 
type. In the crystalline state, such substances a re  char- 
acterized by only one exchange-coupling parameter, the 
magnitude of which is fixed over the whole crystal. The 
amorphization of such crystals is accompanied by the 
appearance of fluctuating exchange. Therefore, the re-  
sults of the aforementioned papers reduce principally to 
a decrease of the magnetization and Curie temperature 
T, of the ferromagnets as they become amorphous. An 
important aspect is that the ferromagnetism can disap- 
pear completely when the exchange fluctuations reach a 
certain critical size.'" For this class of substances the 
existing experiments basically confirm the theoretical 
ideas .'"'I 

It has been postulatedCQ1 that the strongest effects will 
arise in the amorphization of magnetic crystals whose 
magnetic structure is determined in an essential way by 
the geometry of the distribution of exchange couplings. 
Such a situation obtains, e. g., in quasi-low-dimensional 
magnets. The description of such magnets requires the 
introduction of at least two different exchange parame- 

ters. The type of magnetic order and the temperature 
of the magnetic phase transition in quasi-low-dimension- 
a1 magnets a re  determined by the weak exchange that 
couples the magnetic chains o r  At the same 
time, the same characteristics of the amorphized sub- 
stance are  more likely to be determined by a certain 
averaged exchange. Consequently, i t  is reasonable to 
expect that the amorphization of quasi-low-dimensional 
systems can lead to both a change in the type of magnet- 
ic order and a sharp increase in the temperature of the 
magnetic phase transition. Of course, the traditional 
effects of amorphization will remain,"' but in a number 
of cases their role becomes secondary. 

The most important consequence of the amorphization 
of a substance i s  the disappearance of the periodic crys- 
talline structure. This i s  the reason why the theoretical 
description of the magnets encounters great difficulties 
of a fundamental character. Because of the absence of 
translational invariance in the amorphous substance, 
the traditional methods developed in the theory of solids 
for perfect crystals do not work. 

For an approximate description of the properties of 
an amorphous substance we can start  from the assump- 
tion that, after averaging over all possible realizations, 
translational invariance is re-established on the aver- 
age. The substance can then be described in terms of a 
certain ideal crystal with certain effective parameters. 
The procedure for averaging over the realizations should, 
in the general case, take into account fluctuations of the 
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