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A coupled system of equations is obtained for the fluctuations of the electron and phonon distribution 
functions with allowance for the phonon-phonon interaction. The correlation function of a Langevin source 
of fluctuations that are connected with three-phonon processes is calculated subject to the same 
approximations as the corresponding phonon-phonon collision integral. The current-density correlation 
function S, in the sample is investigated. It is shown that an additional dispersion takes place in S, at the 
characteristic long-wave phonon relaxation frequency, when the phonons are "heated" by the 
nonequilibrium electrons. 

PACS numbers: 71.36. +c 

Nonequilibrium fluctuations in semiconductors have 
been dealt with theoretically in many papers,L1'51 in 
which equations were derived for the temporal evolution 
of the fluctuation component 6f of the carr ier  distribu- 
tion function or  of i ts  correlation functions. In a num- 
ber of the developed t h e ~ r i e s , " ' ~ ~  however, the effect of 
the fluctuations 6N of the phonon distribution function on 
the electronic fluctuations is neglected. As a result, 
these theories do not take into account local fluctuations 
of the sample temperature, a particularly important 
factor a t  low temperatures.cs1 In addition, i t  is well 
known that at low temperatures and in strong electric 
fields the distribution of the long-wave acoustic phonons, 
from which the electrons a r e  scattered, can deviate sig- 
nificantly from equilibrium.c7*81 As a result, a change 
takes place in the dissipative properties of the semicon- 
ductor, meaning also in i ts  noise characteristics. A 
coupled system of equations for 6 f and 6N was obtained 
inC4,51 but the mutual influence of the phonon and electron 

fluctuations was not analyzed. Furthermore, the equa- 
tion for 6N did not contain the phonon-phonon collision 
integral and the corresponding Langevin source of fluc- 
tuations. In the present paper we take the phonon-pho- 
non interaction into account and calculate the correlators 
of the extraneous fluxes connected with three-phonon 
processes. We shall calculate the correlation function 
of the current-density fluctuations in the sample under 
conditions of electron heating. When frequencies vff of 
the collisions between the long-wave and short-wave 
phonons a re  comparable with o r  lower than the phonon- 
electron collision frequencies (i. e., when the long-wave 
phonons a re  also heated), the current fluctuations can- 
not be calculated correctly without taking 6N into account. 

EQUATIONS FOR THE FLUCTUATIONS 

The fluctuations of the distribution functions are, by 
definition, equal to 

6 N ( r , q .  t )  =C e - ' k r ( b ~ + f i k 1 2 b q - l k , 1  - ( b & n k l z b l - n r ~ * ) )  
(1 

k - N  ( r ,  q ,  t )  - ( N  (r, q ,  t )  ). 

Here a:, a,, bz, and b, a r e  the respective creation and 
annihilation operators for electrons with momentum p 
and phonons with momentum q. The kinetic equation for 
6f can be obtained in an approximation linear in the 
fluctuating quantities by the method of the equations of 
motion for the Heisenberg operator f (r, p, t )  (seec4'): 

here w and k a r e  the frequency and the wave vector of 
the fluctuation; 6E and E a r e  the fluctuating and con- 
stant electric fields; Cie, 3:i, ;if a re  linearized colli- 
sion operators (electron-electron, electron-impurity, 
and slectron phonon, respectively); Uk = V4,(bik+ b,J; 
V, is the matrix element of the electron-phonon inter- 
action; K, is the Langevin fluctuation source connected 
with the foregoing types of electron collisions. 

Equation (2) holds in the quasiclassical case, i. e., 
when fiw <<Z and lik <<p and a re  the average energy 
and momentum of the electrons). In addition, we assume 
for simplicity that our system is stationary and homoge- 
neous (the electron and phonon distribution functions will 
be designated f, and N,, respectively). 

In (2), Uk is the long-wave Fourier component of the 
potential produced by the lattice a t  the electrons. This 
part of the electron-phonon interaction is described 
classically, i, e., i t  reduces to introduction into the ki- 
netic equation of an additional force proportional to the 
lattice deformation. Such bound acousto-electric fluc- 
tuations were investigated in detail inc&''' and will not 
be considered here. 

The equation for 6N is obtained in the same manner 
as  for 6f. It takes the form 

where c:f and p:e a re  the linearized integrals of the pho- 
non-phonon and phonon-electron collisions; Kff and Kfe 
a re  the Langevin sources corresponding to these colli- 
sions; w, is the phonon energy. 
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The explicit form of $,!"{bN, 6f} and the correlators 
(Kfe(r, q, t ) ~ ~ ~ ( r ' ,  q t ,  t t ) )kw were obtained while 
%{6N} and (Kff (r, q, t) Kff (I", ql ,  t '))kw can be obtained 
in similar fashion after specifying concretely the mech- 
anism of the phonon-phonon collisions. Assume that the 
main contribution to the phonon relaxation is made by 
three-phonon processes. In the quasiclassical approxi- 
mation we then obtain Zf by linearizing with respect to 
6N the following collision integral: 

4n 1 
{ N }  {21 W ( q p ;  p') I z 6 ( o q  + op - u p , )  [ N q N p ( N p ,  + 1 )  

P P '  

- ( N ,  + 1 )  ( N ,  + l ) N p ~ l + l  W ( p p ' ;  q )  l 2 6 ( o ,  + ope - o , )  
X [ N q ( N p +  I )  ( l ip. + 1 ) - ( N q +  l ) N p N p * ] ) .  (4 ) 

The matrix element W(qqt; Q) differs from zero when 
q + q t  = G + Q ,  where G is the reciprocal-lattice vector. 

The correlators of the extraneous fluxes a r e  obtained 
in the same approximation a s  (4), and a r e  equal to 

2  
( K , , ( r , q ,  t ) K , t ( r ' ,  q', t ' ) ) k , .  = kx { I W ( p p f ;  q )  I 2 6 ( o p  + copr - w q )  

P P '  

X [ N q ( N p  + 1 )  + l ) + ( N q  + l ) N p N p ~ l  (6 , , ,  - 26, , , )  
+ 2 1 W ( q p ;  p') I Z 6 ( o ,  + o, - u p s )  [ N , N p ( N p ,  + 1 )  

+ ( N ,  + 1 )  ( N ,  + l ) N p * ]  (6 , ,*  + 6.,* - 6 , * , , ) ) .  (5 

The quasiclassical-approach condition for the frequen- 
cies takes here a somewhat different form than before, 
tiw <<w, 6, a r e  the characteristic phonon energies). 

It is impossible to solve actual problems with an ex- 
act phonon-phonon collision integral. To find the dis- 
tribution function of long-wave phonons with character- 
istic momenta on the order of (these a r e  precisely the 
phonons from which the electrons a re  scattered) it is 
therefore frequently assumed that the main contribution 
to the relaxation of the long-wave phonons is made by 
their collisions with short-wave phonons with character- 
istic energies on the order of T ( T  is the lattice temper- 
ature). It is assumed that the short-wave phonons con- 
stitute a thermal reservoir for the long-wave phonons 
and a re  not perturbed by the latter. Naturally, a ther- 
mal reservoir is meaningful only if T >> sp' (s is the 
speed of sound), and we therefore assume T>> w,. We 
retain in (4) only terms proportional to 6(w, + w, - w;), 
since the remaining terms do not contain collisions with 
short-wave phonons. We then obtain 

8% 
GI,' ( 6 ~ ~ )  = I W  ( q p ;  p') 1'6 ( o ,  + op - o , , )  [ 6 N , ( N p  - N , , )  

PP' 

+ N ,  ( 6 N p  - SN,.)  - 6N, f  ( N ,  + 1 )  - N p 9 6 N , ] .  (6 

Equation (6) includes the fluctuations of the short-wave 
phonons. To find them it  would be necessary, generally 
speaking, to solve equations such a s  (3). The situation 
is simplified, however, i f  the characteristic relaxation 
frequency $f of the short-wave phonons is high enough: 
4f>;vff(q), w,  ks. Then 

where is the Planck function, and the lattice-temper- 
ature fluctuations a r e  determined by the heat-conduction 
equation. Substituting this expression in (6), we readily 

obtain 

where 

I W ( q p ;  P ' )  I 2 6 ( o n  f op - u p . )  ( N p  - N p f ) .  
P P '  

Taking into account in the correlator of the extraneous 
fluxes only collisions with short-wave phonons, we ar- 
rive a t  the expression 

Thus, when the assumptions made above a re  valid, 
the correlation function (Kff Kff)bu is determined, just 
as the phonon-phonon collision integral, by the parame- 
t e r  vff(q). So far we have spoken of only one sor t  of 
phonons. All the formulas given above can be general- 
ized to include the case of interaction of phonons of dif- 
ferent branches. For this purpose it is necessary to 
define the phonon momentum as representing two quan- 
tities, the momentum proper and the number of the 
branch. 

The foregoing transition from the complicated for- 
mulas (4) and (5) to (8) and (9) makes i t  easy to  take into 
account the influence of the phonon fluctuations on the 
electron fluctuations. 

CONNECTIVE NOISE UNDER CONDITIONS OF 
HEATING OF LONG-WAVE PHONONS 

When current flows in a sample, a distinctive noise 
due to fluctuations of the average carr ier  energy can be 
observed in the direction of the electric field E. This 
noise is caused by the fact that the fluctuations of the 
average energy of the carr iers  cause fluctuations of 
their mobility C( (if the latter depends on the average en- 
ergy) and in final analysis fluctuations take place in the 
flowing current (or in the voltage). Convective noise 
has been investigated in detail in a number of stud- 
iesc'2*151 but the question of how it can be influenced by 
phonon fluctuations has nowhere been considered. To 
solve this problem, we make a few simplifying assump- 
tions: 

1) Since phonon heating is most probable at low tem- 
peratures, it can be assumed that the electron momen- 
tum is scattered by the impurities (with frequency vei) 
while the energy is scattered by acoustic phonons. 

2) Electron-electron collisions a re  so frequent, that 
the symmetrical part of the electron distribution func- 
tion f,(~) is Maxwellian with an effecti%~. temperature 
Te. 

3) The asymmetric part  of the phonon distribution 
function is much smaller than the symmetric part, and 
this takes place either when v ~ < < s  (vD is the electron 
drift velocity) or when the elastic collisions of the pho- 
nons with the impurities a re  frequent enough.'81 

4) The calculation will be made for spatially homo- 
geneous fluctuations (i. e., for the case k =0) and of not 
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too high frequencies (o << v,, vee is the characteristic 
frequency of the electron-electron collisions). Then 
the fluctuation 6f,(&) is equal to (in analogy with (7)) 

The temperature fluctuation 6Te is determined from the 
balance equation, which is obtained after multiplying 
the left- and right-hand sides of (2) by E, and summing 
over p: 

3 6T. 
- 2 i o n 6 ~ .  - z, [v,.  ( 6 ~ ~ -  -) 

0. 

Here vfe is the frequency of the phonon-electron colli- 
sions, Kef is the extraneous energy flux, and 6j is the 
current fluctuation. Their values are: 

(n is the carrier density and m is their effective mass), 

v 1 

and finally 

The second term in the square brackets of (12c) takes 
into account the influence of the temperature fluctuation 
6Te on the current fluctuation 6j. 

Equation (11) includes the fluctuations of the. symmet- 
ric part 6N, of the phonon distribution function, which 
satisfies the equation 

a 
( i o +  v,,+v,,) 6Ns - - v , ,  - [ ( ) - 6T.=K!:+K,,l (13) 

Equation (13) follows directly from (3) when the assump- 
tions listed above are satisfied. 

By determining 6Te and 6N, from (11) and (13), we 
readily obtain the following expression-for the fluctua- 
tions of the current in the direction of the field E: 

+ ( p f + p )  ( ~ Z ? I } =  enp '6~~+6 i :" f '  (14) 

where enp' is a function of the linear response of the 
system to an external perturbation: 

The system is stable at not all values of the field E. 

Obviously, the mobility $ must be finite at all frequen- 
cies. Hence the necessary condition for a stable state 
is the inequality 

If the right- and left-hand sides of (15) become equal, 
then superheat instability sets in. The approach to the 
boundary of this instability with increasing E manifests 
itself in an increase of the low-frequency noise. When 
the external circuit is shorted to the ac component of 
the current, then 6jB = 6jgl1. The quantity i3j:l1 is the 
total source of current or voltage fluctuations in the 
sample, and in contrast to 6EB does not depend on the 
external circuit. 

Let us calculate the correlation function of the fluc- 
tuations of the extraneous current S,: 

~.=(6j:O'(t) bjfoU(t') - - T' {en ~a pf + (j')a 
lA.,-j'E12 

x z v f .  [ T . - ~ ( T V ~ ~ + T . ~ ~ . )  T.vI.+ (2T.-T)vlf 
T ~ ~ I I  [ a'+ (v, ,+vI,)  '1 1). (16) 

1 

In the derivation of (16) we used expression (9) as well 
as the correlators (Kf,(% t)Kfe(ql, tt)), calculated inc". 
It is easily seen from (16) that when yff >> vfe the spec- 
t ral  function S, consists of a low-frequency and a high- 
frequency plateau with a transition region at frequencies 
on the order of the frequency of the carrier energy re- 
laxation on the phonons: 

The condition vff >> vfe means that there is no phonon 
heating, for in this case the energy outflow from the 
long-wave phonons to the thermostat is much faster than 
the energy inflow from the heated electrons. If vff >> vfe 
formula (16) coincides fully with the formula obtained by 
Kogan and ~hu l 'man~"~  for a short-circuited sample. 
We note that they used Langevin method employed in the 
present paper. 

On the other hand if ifff J: vt,, then S, contains two 
characteristic frequencies near which noticeabledis- 
,persion takes place: 

For nondegenerate carriers o1 is of the order of wl/ 
fa@), i. e., ol >> o,. The quantity wl, just as in the 
case mentioned above, characterizes the rate of the 
outflow of the electron energy to the thermostat, while 
the frequency v represents the relaxation rate of the 
long-wave phonons. The additional dispersion'at the 
frequency w2 is due to fluctuations of the phonon distri- 
bution function 6Ns. The interpretation follows from the 
fact that the additional dispersion vanishes i f  we put bNs 
= O  in (11). 

It is interesting to note that in the case of the strong 
inequality vff << vfe the dispersion at frequencies on the 
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FIG. 1. Qualitative depen- 
dence of the current corre- 
lation function on the fre- 
quency in the case of heat- 
ing of electrons and long- 

I wave phonons. 

wz 01 w 

order of wi vanishes. The long-wave phonons and elec- 
trons behave here as a single system with a common ef- 
fective temperature T,. T, can fluctuate only on ac- 
count of phonon-phonon processes. Therefore the fre- 
quency vff is the only characteristic frequency. 

Thus the following situations are possible in a heating 
electric field: a) vff >> vfe-dispersion takes place in the 
noise spectrum at frequencies on the order of vef; b) vff 
<< vfe-dispersion at frequencies on the order of vff; C) 
vff" vfe-dispersion at frequencies on the order of v and 
v/f,$) (see Fig. 1). &-I all these cases the relative dif- 
ferences between the low-frequency and high-frequency 
plateaux are of the order of the relative heating (of the 
order of (T, - T)/T,). In case (a) the difference S, -Sl 
is of the same sign as the derivative Bp/BT,. In cases 
(b) and (c) there is no such simple rule, but in the case 
of weak heating ((T, - T)/T, << 1) the signs of S, - S1 and 
S, - S, coincide with the sign of the quantity 

When the carriers are scattered by ionized impurities 
and B p/BTe > 0, then the plot of S, is the same as in the 
figure. 

We note in conclusion that phonon fluctuations can in- 
fluence strongly the spectral function S,, so that an ex- 

perimental investigation of the noise is of considerable 
interest in the study of the kinetic properties of long- 
wave phonons as they are heated. 
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