
6. Figure 1 shows the total cross section for the 
breakup of the negative ion of hydrogen, calculated from 
( l l ) ,  together with the experimental and theoretical re- 
sults obtained by other authors. The parameters for 
IT were taken from the book by Demkov and Ostrov- 
skii t51 (61.4). They were: d = 2 . 7  a.u., x=0.231 a.u. 
(6 = x2/2). The classical model is valid, in this case, 
for incident electron energies of 4.20 eV. 

It is important to note that no adjustable parameters 
a r e  used when the cross  section is calculated from ( l l ) ,  
whereas the data reported by Narain and Jainyt3I which 
a r e  at present in better agreement with experimental 
results than any other calculations, were obtained a s  a 
result of a very complicated semiempirical calculation. 
Nevertheless, near the threshold, our simple model of 
ionization provides good agreement with experiment. 
Unfortunately, there a re  no experimental data for other 
negative ions near the ionization threshold, so  that i t  is 
difficult to establish the validity of this conclusion. 

The reason why the simple classical calculation gives 
roughly the same result a s  the relatively sophisticated 
quantum-mechanical analysis is probably that, a s  noted 
by ~mirnov,['l Narain and ~ a i n ,  and others, the ion- 
ization cross section near the threshold depends criti- 
cally on the choice of the trajectory of the incident elec- 
tron. In the quantum-mechanical calculation, it is dif- 
ficult to take the Coulomb interaction rigorously into 

account, whereas, in the classical approach, this can 
be done simply and naturally. 

The author is indebted to I. V. Komarov for constant 
interest and valuable sugfjestions, and to Yu. N. Dem- 
kov and V. N. Ostrovskii for discussing the results. 
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Excitation of autoionization states by electrons near the 
threshold 
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The theory of the interaction of a slow quantum particle with a system having an autoionization state is 
considered. The theory is used to describe a recently observed phenomenon [P. J. Hicks et a1 ., Vacuum 
24, 573 (1974)], namely "interaction after the collision" in the excitation of an autoionization state of an 
atom by an electron. The roles of various quantum effects in the formation of the resonant structure and 
in the spectra of the electrons and in the excitation functions of ttie Rydberg states of the atom are 
investigated. The possibility of further refining the theory is discussed. 

PACS numbers: 34.80.Dp, 32.80.D~ 

1. lNTRODUCTION E i  = E,, but at a higher incident-electron energy. This 

Hicks et al. have observed in 1974'" a new phenome- 
non, which occurs when electrons with energy Ei  some- 
what higher than the energy E, of excitation of the auto- 
ionization states (AS) of an atom a r e  scattered by the 
atom. An AS manifests itself a s  a resonant contour in 

new effect was therefore called the "shift of the thresh- 
old" in the excitation of AS. Of course, the position of 
the threshold can be determined only accurate to the 
level width r, but the observed threshold shifts greatly 
exceed this value. 

the energy distribution (spectrum) of the electrons In the cited paper, this phenomenon was attributed to 
knocked out of the atom. It has turned out that the con- energy exchange that occurs between the slow scattered 
tour shifts towards higher energies with decreasing E i  . electron which has excited the AS and the atomic elec- 
Therefore the AS begins to be excited effectively not at tron when the two particles move apart. If the lifetime1' 
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of the AS T = l/r is smaller than o r  comparable with the 
characteristic scattering time, then the decay of the AS 
takes place in the field of the charge, a s  a result of 
which the autoionization (fast) electron can be emitted 
with a larger energy. The resultant decrease of the 
energy of the slow electron leads to a shift of the corre- 
sponding AS structure in the spectrum of the scattered 
electrons, and can be registered in e~per iment . '~ '  The 
energy of the slow electron can decrease to such an ex- 
tent that it becomes insufficient to leave the field of the 
positively charged atomic core. In this case the elec- 
tron is captured by some state of the Rydberg ser ies  of 
the atom (this being the analog of the associative ioniza- 
tion in the case of the collision of heavy atomic parti- 
cles). A similar resonant population gives r ise  to the 
structure simultaneously observed by two groups of 

in the excitation functions of sufficiently 
high-lying states of the atom. 

Bearing the foregoing explanation in mind, the rather 
inconsistent term "interaction after collision" is fre- 
quently used in the literature. The experimental data 
and the discussion can also be found in[541. 

When the inelastically scattered electron and the atom 
move slowly apart, the fast  atomic electrons have time 
to adjust themselves to each position of the slow elec- 
tron. It is the ratio of the corresponding velocities 
which constitutes the small parameter whose existence 
serves as  the basis of the scattering theory proposed 
below. The theory is thus adiabatic, and this makes i t  
possible to use, in the problem of the electron-scatter- 
ing, the concept of adiabatic terms of a quasimolecule, 
customarily used in the theory of slow collisions of 
heavy atomic particles. In our case the quasimolecules 
a re  made up of an atom and an immobile electron, and 
the possibility of the decay brings about a situation 
wherein the state becomes quasistationary and the term 
becomes complex. 

The general problem of the interaction of a slow quan- 
tum particle with a system having a discrete level that 
interacts with the homogeneous continuum is solved in 
Sec. 2. Section 3 deals with the simplest choice of the 
interaction potentials (terms) and the role of the quan- 
tum effects in the formation of the contours of the auto- 
ionization lines. In Sec. 4, using as  an example the ex- 
perimentally investigated AS ( 2 p 2 ) ' ~  in He, the results 
of the quantum theory and of the Berry f~rrnula ' '~ '  a re  
compared for a resonant structure both in the excitation 
functions of the Rydberg states of the atoms and in the 
spectra of the electrons, and the possibilities of further 
refinement of the theory a r e  discussed. 

Berry's classical which is used by Hicks 
et  a1 .[" for a quantitative explanation of the effect of 
interaction after collision, was initially proposed for 
the description of the shapes of the autoionization lines 
of atoms excited in collisions between heavy atomic 
particles, which broaden a s  a result of their Coulomb 
interaction in the course of scattering. The starting 
point in this theory["' is the phenomenological equation 
that describes the change of the probability P of finding 
the atom in the AS a s  a result of the decay after a time 

dt :  

which can be rewritten in the form 

where w is the energy of the emitted electron. 

To establish the connection between w and t i t  is nat- 
ural to assume that at the instant t the electron is emit- 
ted with an energy exactly equal to the real part of the 
energy of the autoionization term of the quasimulecule: 
w = Eo(t). In particular, in the case of a Coulomb term 
Eo( t )=  l / u t  + E ,  ( v  is the velocity in the scattering) with 
a constant width r, integration of Eq. (1.2) yields the 
Berry formula-the electron spectrum normalized to 
unity 

vre-' exp (- I'lev) , o 4 E., 
de 0, o < E.. 

We have introduced here the quantity E = w - E,, which 
is the electron energy reckoned from the position E, of 
the autoionization level, i. e., the energy transferred 
to the outgoing electrons a s  a result of the interaction 
after scattering. 

The derivation of expression (1.3) actually presup- 
poses a classical description not only of the moving- 
apart of the particles, but also of the autoionization sys- 
tem. Actually, however, each section of the line con- 
tour in the spectrum is made up of contributions of both 
the center and of the wings of the initial unbroadened 
line. Since the emission of the electron is coherent, 
the corresponding amplitudes should be additive. An 
analysis with allowance for this circumstance, but for 
a classical description of the scattering, is given in''71. 

In the case of excitation of AS by electron impact, the 
assumption that the slow scattered electron moves after 
the scattering along a classical trajectory with constant 
velocity no longer holds. The classical theory is par- 
ticularly unsuitable for the analysis of the capture of a 
slow electron in a Rydberg-series state. The quantum- 
mechanical description of the interaction of a particle 
with an autoionization system encounters certain diffi- 
culties. c121 

2. INTERACTION OF A QUANTUM PARTICLE WITH 
AN AUTOIONIZATION SYSTEM 

The Hamiltonian of the quantum system with one AS 
and a continuous spectrum can be represented in a dia- 
batic basis in the formc1S' (see a l ~ o [ ' ~ * ' ~ ~  and the refer- 
ences therein) 

where I w) a r e  diabatic-continuum states with energy 
w, and I cp) is a diabatic discrete state with energy Eo 
against th: background of the continuous spectrum. The 
operator V is responsible for the interaction of the dia- 



batic states, which makes the discrete level quasista- 
tionary with width r=2n l ( rp lv l  w ) ~ ~ , ~ ~ .  For the sake 
of brevity we shall use the name atom for such a sys- 
tem. 

We assume further there is one other quantum parti- 
cle (we call i t  the incident o r  external particle) with 
mass M and coordinate R, which interacts with the atom. 
At any fixed position of the external particle, the atom 
has a Hamiltonian of the type (2. I), in which, all the 
quantities (I cp), I w )  , Eo,  ?) depend on R a s  a parameter. 
The total Hamiltonian 2ti is obtained by adding to H the 
kinetic energy ? and the potential energy U of the par- 
ticle 

The solution of the SchrZidinger equation (Z - &)I Q) 
= 0 for the total energy of the system 8 is sought in the 
form 

The formulated theory has been adapted to the descrip- 
tion of the adiabatic case, when the velocity of the ex- 
ternal particle is small. Accordingly, we neglect in the 
equations for the functions a(R) and b(w, R) the matrix 
elements of the operators V, and V: between the dif- 
ferent basic states I rp) and I w) 

Obviously, the energies w of the continuum states a r e  
reckoned now from the lower limit of the continuous 
spectrum, the role of which is played by U(R). 

We write down the formal solution of Eq. (2.5) in 
terms of the Green's function G' corresponding to out- 
going waves a t  large R: 

t [ -- VR' + u(R) -  E G+ (R,  R'. E)=6(R-R') ,  1 

In the right-hand side of (2.7) we could add the solution 
of the homogeneous equation, which would mean that 
initially the populated states were those of the diabatic 
continuum. It will be assumed henceforth, however, 
that only the state I 9) was initially populated. Substi- 
tuting the last  equation in (2.4), we obtain in the general 
case an integro-differential equation for the function 
a(R), in the form of a Schr6dinger equation with a com- 
plex nonlocal potential 

- dRra (R') j do V" (R) V.' (R') G+ (R ,  R', 8 -o )  --&a ( R )  =O. (2.8) 

In the case of interest to us we can reduce this equa- 

tion to a differential equation, whereby greatly simpli- 
fying the investigation of the actual problems. Indeed, 
we shall assume that the matrix element V,(R) of the 
interaction depends little on w, and take it outside the 
sign of integration with respect to dw. In addition, if 
the energy region of interest to  us is fa r  from the lower 
boundary of the continuous spectrum, then we can ex- 
tend the integration with respect to dw in (2.8) to include 
the entire axis (we emphasize that the foregoing approxi- 
mations a r e  perfectly analogous to those used in the non- 
stationary quantum problemc'3'""73). We can then use 
the known general identity for the Green's functions (see, 
e. g., the book of Baz', Zel'dovich, and ~ e r e l o m o v ~ l ~ ~ ;  
our definition of the Green's function differs in sign 
from that assumed in formula (3.3), Chap. 4 of that 
monograph): 

1 dE G? (R,  R ,  E)  =nib (R-R') , (2- 9) 

so that (2.8) takes on the form of the SchrCldinger equa- 
tion for a(R) with a complex local potential E(R) that 
represents the energy of the quasistationary term: 

We note that the dependence of V,(R) on w can be re- 
garded a s  approximately taking into account if we calcu- 
late in the expression for r (R)  the value of V,(R) a t  w 
= E~(R).  In addition, the shift of the position of the term, 
due to i ts  interaction with the continuum, can be re- 
garded a s  included in E(R). 

Solving Eq. (2.10) with the corresponding boundary 
conditions and substituting the result in (2.7), we obtain 
the wave function of the system. Its asymptotic form 
gives the amplitudes of the different processes. To find 
them it is convenient to use an integral representation 
for the Green's function in terms of the eigenfunctions of 
the discrete @,(R) and continuous @,(R) spectra for  the 
potential U(R): 

(additional summation over the omitted quantum num- 
bers, for example the orbital angular momentum, is 
implied here). In the final state, the atom is always 
in the continuum, i. e., it becomes ionized, and the in- 
cident particle may turn out to be bound in the potential 
U(R) o r  f ree  with energy E.  The scattering amplitudes 
for these cases a r e  respectively 

where the function a(R) is assumed to be normalized 
relative to the incident wave of the incoming particles. 

At f i rs t  glance, the results  appear to be in the form 
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of a perturbation theory in the interaction V(R) = (r(R)/  
27r)'l2 that leads to the decay of the AS. Actually, how- 
ever, they have a different meaning. Assuming adia- 
batically, the derivation of Eq. (2.8) for the function 
a(R) is exact. Further simplifications, which lead to 
(2. lo), a r e  likewise not connected with the smallness 
of the interaction, and make use of the fact that the auto- 
ionization level is far  from the end point of the continu- 
ous spectrum. The transition to a perturbation theory 
in terms of V is connected with the neglect of the width 
r (R)  in Eq. (2.10). If, in addition, we assume in for- 
mulas (2.13) and (2.14) that the width is independent of 
R, then we obtain in these expressions the same matrix 
elements which ar ise  in the "jolting" theory, where in- 
stantaneous removal of the autoionization electron from 
the atom is assumed.c51 We note, however, that the 
method proposed in that paper for introducing the damp- 
ing into the function a(R) is correct  (cf. Sec. 3). 

3. COULOMB INTERACTION IN SCATTERING 

The theory developed in Sec. 2 could in principle have 
been included in the more general description of the en- 
t ire process of excitation and decay of an AS of an atom. 
In the present paper it is assumed that the process can 
be broken up into two independent stages.[61 The first, 
the excitation of the AS, will be characterized by a cer- 
tain cross section o,,, which is not calculated in the 
present paper. For the second stage-the moving part 
of the excited electron and atom, accompanied by the 
decay of the AS-we confine ourselves to consideration 
of only the s-wave radial motion of the scattered elec- 
tron. Indeed, since the potential of the interaction of 
the electron with the atom in the AS decreases with in- 
creasing distance more rapidly than the Coulomb poten- 
tial, an inelastically scattered electron in the near- 
threshold region is mainly in the s state.[lS1 When the 
particles move apart, exchange of angular momentum 
takes place between the scattered and atomic electrons, 
but i ts  probability is small.L41 Thus, for the scattered 
electron we arrive at the one-dimensional problem con- 
sidered in Sec. 2. 

Inasmuch a s  the scattered electron is slow and the 
autoionization electron is fast, exchange of electrons in 
scattering would mean a large energy transfer between 
them, but this has low probability and can be disre- . 
garded. 

At large distances, a Coulomb attraction ( U- - I/R) 
acts between the scattered electron and the ionized 
atom, and the potential of the interaction of the electron 
with the atom in the AS decreases much more rapidly 
(like 1/R4). In the simplest approximation, the latter 
interaction can be neglected, a s  well a s  the distortion 
of the Coulomb potential at short distances 

U ( R )  =-IIR,  E ( R )  =E.-',$ir. (3.l)  

We shall assume also that the width of the term is con- 
stant and equal to the width of the AS of the isolated 
atom: r (R)=  r. 

Under the foregoing assumptions, the one-dimension- 
a1 equation (2.10) has a solution that decreases at large 

R, in the form of a damped plane wave; we normalize 
this solution at R = 0 (we put henceforth M = 1): 

a ( R )  =exp ( ik'R),  (3.2) 
k'2/2=8-E.+1/2iI', k,'=Re k', y=lm kl>O. (3.3) 

Using the well known expressions for the Coulomb wave 
functions of the continuous spectrum, we calculate the 
integral (2.14): 

The differential cross  section (with respect to  the 
energy transfer) of the atom ionization via an inter- 
mediate resonant state is equal to 

~ u s t  a s  in Sec. 1, i t  is convenient to introduce the prob- 
ability density of the energy transfer in scattering, dP/  
dc  = (do/d&)/o,, for which we obtain, taking (3.3) into 
account 

The values of k; and y can be obtained from (3.3) 

Let us consider a case of practical importance, when 
the difference between the energy of the incident elec- 
tron and the unshifted excitation threshold of the AS 
greatly exceeds the width: 8 - E, >> r/2. Then the 
quantity k;  = [ 2 ( 8  - E,)]"~ = v has the meaning of the 
electron velocity on a horizontal autoionization term. 
If furthermore (r/c)(k/k;) << 1, then we can replace the 
arctangent in (3. 5) by i ts  argument 

If we consider in the cross section that wing of the 
autoionization which is formed in the classically allowed 
region, i. e., if we assume that w - E, >> r/2,  and also 
put 1 - e-2r/k= 1, then (3.7) goes over into the Berry 
formula (1.3). The Berry formula cannot be used, how- 
ever, for the center of the line, nor for the other (clas- 
sically forbidden) wing w - E, << - r / 2  (a fact that follows 
also from the derivation of this formula-see Sec. 1). 
Indeed, it does not permit a transition in the limit into 
a Lorentz contour a t  large v and leads at c = 0 (w = E,) 
to a vanishing of the cross  section d o / d ~  with all i ts  
derivatives with respect to c. Actually, the cross  sec- 
tion vanishes exactly at w > 8, this being connected with 
the energy conservation law. The limiting value of the 
cross  section a s  o- 8,  which can be obtained by letting 
k tend to zero in (3.6), is different from zero, a s  is 
typical of a Coulomb interaction. Formula (3.6) is free 
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of the shortcomings of the Berry formula. 

It is of interest to trace in greater detail the role of 
the different factors in the formation of the contour of 
the autoionization line. We assume f i rs t  that k2/2 >> E, 

so  that the energy of the scattered electron changes rel- 
atively little a s  a result of the interaction following the 
scattering. In the region E >> r/2, both the autoioniza- 
tion system and the scattered particles can be regarded 
a s  classical (Sec. I), and the Berry formula is valid. 
The region I'/2 2 E >> ( r /2  v)' calls already for a quantum 
description of the autoionization system, but the scat- 
tered particle can still be regarded classically. In the 
corresponding theory, ["] to calculate the contour (for 
both wings) i t  suffices to specify the difference between 
the autoionization term and the boundary of the continu- 
ous spectrum, and not their absolute variations, so that 
the expression for dP/dt takes the form 

Finally, a quantum description of the entire system is 
needed in the region c s  (r /2v12,  and also a t  k2/2 - E, 

1. e., when the energy transfer is comparable with the 
energy of the slow electron. 

We proceed now to the cross sections for the capture 
of a slow scattered electron into a bound state. Calcu- 
lating the integral (2.13) with the wave functions of the 
bound s states in a Coulomb field and with the function 
(3.2), we obtain 

e=-- 2k ' in  
actg: 

7'-l /n2 

where n is the principal quantum number and Eb = 1/ 
(2n2) is the binding energy. The cross section for the 
excitation of the state of an atom with a principal quan- 
tum number n via an intermediate resonant state will 
be designated on. At large n, the density of the Ryd- 
berg states, in the energy scale, is equal to n3, so  that 
the quantity n3un at E  < 0 has a meaning analogous to do/ 
d e  at E  >O. The energy transfer in scattering is conve- 
niently characterized by the quantity dP/d& = n30n /om : 

1 1- v / n  
= - -2narth- 

k,' ~ ~ i r = / 4  =P{ & 

where now 

and the variable can be taken to be the energy 8. 

If we put 1 - e'2r/R= 1 in (3.6), then (3.10) can be ob- 
tained from (3.6) by analytic continuation in the final 
momentum of the slow electron (k = i/n), not only at 
large n but also at small ones. The Berry formula 
(with allowance for (3.12)) is obtained from (3.11) under 
the same assumptions a s  from (3.6). Thus, the Berry 
result describes approximately the transitions of the in- 

cident particle into bound states a s  well a s  into the con- 
tinuum. 

. . - - - - - 

4. DISCUSSION OF RESULTS AND CONCLUSION 

In measurements of the excitation functions of the 
Rydberg states, the final energy of the incident electron 
is fixed. Nienhuis and ~ e i d e m a n n ~ ~ '  have called atten- 
tion to the fact that in the experiment the spectra of the 
free electrons a re  also obtained a t  a fixed final energy 
of the scattered electron k2/2 = 8 - W .  The variable in 
both cases is the initial energy E ,  = 8 of the incident 
electron or, equivalently, the energy transfer E. 

The same authors have shown that, after a scale 
transformation of the energies, the Berry expression 
depends only on two real variables. The quantum result 
no longer permits such a reduction. We consider below 
by way of example the structure that can be connected 
with the ( 2 p 2 ) ' ~  state of the He atom ( E n =  59.90 eV, I? 
= 0.072 i 0.01 eV), for which there is the largest 
amount of experimental data. In Fig. 1, for a resonant 
structure in the cross sections for the excitation of the 
Rydberg states of the atom (Fig. l a )  and in the spectra 
of the emitted electrons ( ~ i g .  lb), a r e  compared the 
results given by the Berry formula (1.3) (dashed) and by 
the quantum-mechanical formulas (3.6) and (3.11) (solid 
curves). The larger difference occurs near the maxi- 
mum in the low-energy part  of the contour, correspond- 
ing to  below-the-barrier population. The positions of 
the maxima of the structure, calculated from these 
formulas, differ insignificantly. Thus, for the excita- 
tion of a state with n = 4, the maximum corresponds to 
a value E ,  - Ea = E - Eb = 0.0662 eV in accordance with the 
Berry formula, and 0.0599 eV in accordance with the 
quantum formula. Although the relative difference 
reaches here 108, for an energy transfer E = E t  - Ea 
- E l  it turns out to be small, since the latter is deter- 
mined mainly by the value of Eb . 

The structure width a t  half maximum, a s  a function 
of the final energy of the incident electron, is shown in 
Fig. 2 both for the spectra and for the cross sections 

dP/d~,at,u_n. 
a 

dP/do,at. un. 
b 

'"A 

0 0. or 0.02 
E- at. un. 

FIG. 1. The function dP/ds ,  which characterizes the prob- 
ability of transfer of energy e between electrons a s  a result 
of interaction in scattering after the excitation of the autoion- 
ization state; r = 0.072 eV = 0.00265 at. un. : a-upon excitation 
of the Rydberg states of an atom with principal quantum num- 
bers  n =4 and 5 ;  E ,=1 /2n2;  b-in the spectrum of the emitted 
electrons at  a fixed energy of the scattered electron E =O. 2 
and 0 .02  at. un. Solid lines-quantum theory (3.11) and (3.6); 
dashed-the Berry formula (1.3). 
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w,at. un. 

FIG. 2. Width W of the resonant structure at half height for 
the excitation functions (E < 0) and the spectra (E > 0) at l? 
=O. 072 eV. The final energy of the scattered electron E i s  
fixed. Solid lines--quantum theory, dashed-Berry formula. 

of the excitation. For the final states of an incident 
electron having a small absolute value of the energy 
(both in the discrete and in the continuous spectrum), 
the classical and quantum results a re  again close. At 
large E > 0, the Berry formula gives a width that tends 
to zero, whereas the quantum-mechanical result ap- 
proaches the width of the AS of the isolated atom. For 
n = 4, the difference between the results for the width 
is - 10%. 

The relatively small difference between the results of 
the classical and quantum theory is due to the smallness 
of the level width r. The characteristic energy param- 
eter ( l ? / 2 ~ ) ~ ,  which determines the importance of the 
quantum effects for the motion of the scattered electron 
(Sec. 3), turns out to be small even a t  the smallest v 
attainable in experiment (where the energy resolution is 
characterized by a quantity on the order of 0.01 eV). 
The quantum effects in the decay of AS a r e  more sub- 
stantial and determine the difference in the width and 
shape of the structure. For levels with larger width, 
the situation can change. It is also possible that when 
the variation of the terms is made more precise the 
quantum effects acquire a larger significance (see the 
discussion that follows). 

As shown by Nienhuis and Heidemann,16] the Berry 
formula does agree sufficiently with experiment. The 
quantum theory, when the simplest potentials a r e  chosen 
for the electron interaction with the atom, does not im- 
prove this agreement. However, the approach developed 
here admits of such an improvement and makes i t  possi- 
ble to take into account different physical effects which 
may turn out to be important for concrete atoms and 
AS. The results of Sec. 3 of the present paper should 
serve in this case a s  the starting point. Certain trends 
in the development of the theory will be briefly dis- 
cussed below. 

Besides providing a quantitative refinement, allow- 
ance for the distortion of the Coulomb potential U(R) a t  
short distances might be of interest also from the point 
of view of the general assessment of the role of quantum 
effects. It is known that the quasiclassical approxima- 
tion frequently yields exact results for  a pure Coulomb 
interaction, and this may be the cause of the relative 

smallness of the quantum effects for the scattered elec- 
tron. 

A refinement of the potential of the interaction of the 
electron with the atom in the AS uncovers an interesting 
possibility of taking into account the quasistationary 
state of the negative ion (if a quasibound state is present 
in the corresponding potential). Such states of the He- 
ion l ie  near the AS of the He atom, but their role has 
been discussed so  far  only qualitatively.["Q'123 Of 
course, the choice of the pseudopotential E(R)  is not a 
trivial question. 

As indicated by ~ e a d , ~ "  a slow electron knocked out 
from the internal shell of the atom by an x-ray photon of 
energy close to threshold can exchange energy effective- 
ly with a fast electron emitted by an atom a s  a result of 
the Auger effect. In this case, both the autoionization 
term E ( R )  and the end point of the continuous spectrum 
U(R) a r e  determined a t  large distances by the Coulomb 
interaction. A similar situation ar ises  when the AS of 
positive ions a r e  excited by electron impact. 

One can expect the width of the AS of the atom to in- 
crease  in the presence of a pointlike change, although 
in principle the opposite is possible, a s  shown recently 
by Dalidchik and ~ l o n i m , " ~ ~  who considered the Stark 
effect on AS in the zero-radius approximation for the 
interaction of an electron with an atomic system. Al- 
lowance for the r (R)  dependence can greatly alter  the 
shape of the contour of the autoionization line. 

The contours of the autoionization lines near the 
threshold a r e  substantially different from Lorentzian, 
making the interpretation of the experimental data dif- 
ficult. Allowance for the interference between direct 
ionization by electron impact and the resonant mecha- 
nism considered in the present paper could be useful 
here. 

The influence of several closely-lying autoionization 
levels can be taken into account in a manner similar to 
that used in the nonstationary we then obtain 
the multichannel problem for the slow scattered elec- 
tron. The transfer of orbital momentum in the scatter- 
ing can be described in similar fashion. 

" ~ t o m i c  units are used. 
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Feynman vacuum diagrams with a non-zero chemical potential renormalid in a manner are used 
to obtain relativistic and radiative corrections to the energy of the ground state of an atom. Corrections 
are obtained in the lowest (second) order of perturbation theory which are the sum of contributions of the 
Lamb shift, vacuum polarization and the Breit correction for the electrons of an atom in an effective 
external field. Numerical calculations are carried out for a number of neutral atoms using both the 
semiclassical and the nonrelativistic approximations. 

PACS numbers: 31.30.J~ 

8 1. INTRODUCTION and no one has succeeded in finding a simple algorithm 

~n connection with the increase in the accuracy of ex- fo r  calculating the corrections to the energy using Per- 

perimental investigations and the improvement of calcu- turbation theory. We note in this connection that the 

lational methods recently there has been a growth in the well-known Gell-Mann-Low formulasc4' contain differ- 

interest in relativistic corrections to the theory of a entiation with respect to the bare charge and the obvi- 

many-electron atom. In their simplest form they a r e  ously noncovariant time cut-off and a r e  therefore inap- 

taken into account by means of the relativistic equations propriate for use with renormalized quantities. 

of the ~ a r t r e e -  Fock self -consistent field based on the 
Dirac equation (cf., for example, Ref. 1). A further 
improvement in the calculation requires the solution of 
two theoretical problems. Firstly, i t  is necessary to 
have a convenient apparatus for the calculation of the 
energy of a many-electron relativistic atom taking into 
account the retarded interaction between electrons. 
Secondly, it is necessary to carry out a renormalization 
of the mass and of the charge of the electron. These 
problems a re  interconnected, since a convenient calcu- 
lation of the energy f i rs t  of all presupposes just the pos- 
sibility of carrying out a program of renormalization 
without operating in the intermediate stages with diver- 
gent nonphysical quantities. 

Earlier  ~ a b s o v s k i r  and one of the authors of the pres- 
ent paper proposed a method of calculating the renor- 
malized energy of the atom consisting of extracting 
from the renormalized many-electron Green's function 
the effective Hamiltonian for the interaction between 
electrons.L51 The interaction potential in this case 
turned out to be nonlocal and nonunique. The principal 
disadvantage of such a method, along with i t s  certain 
artificiality, is associated with the fact that in this case 
each Feynman diagram is in fact counted twice: once 
a s  a contribution to the potential, and a second time a s  
an iteration of the potential in the lowest order in deter- 
mining the energy. This leads to a sharp increase in 
the amount of calculation. However, this method also 

It should be emphasized that no difficulties of princi- has serious advantages-thus, i t  encounters no difficulty 

exist in carrying out the program of renormalization with degenerate ground states and enables one to deter- 

fo r  an atom. The corresponding many-electron Green's mine also the excited energy levels. 

function in an external field can evidently be renormal- For the calculation of the energy of a nondegenerate 
ized in the usual manner. However, to extract in a ground state of the electron shell of an atom a more 
simple manner from such a Green's function the value natural and simple method of calculation appears to be 
of the energy of the atom appears to be possible only in one based on the quantum-field-theoretic technique with 
the simplest cases of one- o r  two-electron atoms.[2v33 a given non-zero chemical potential p. The renormal- 
For a greater number of electrons the equations for  the ization and the determination of the energy for relativis- 
many-electron Green's function a r e  very complicated t ic Fermi-systems in the case of zero external field and 

1098 Sov. Phys. JETP 45(6), June 1977 00385646/77/4506-1098$02.40 O 1978 American Institute of Physics log8 


