
induced charge exchange effect discussed above. It is 
evident from formula (5) that Q,, must increase with 
increasing f ie (though not in direct proportion) since R1 
= y-l ln(y ' / x  o) while n o-~,n:13. In this case several 
iterations will be needed to determine the true value of 
R1. 

The r ise  of the cross  section Q,, essentially compen- 
sates the fall of the resonance charge exchange cross 
section due to Coulomb detuning. Figure 1 shows the 
charge exchange cross sections for a cesium plasma a s  
functions of the electron density: Q, is the cross sec- 
tion for two-body charge exchange with allowance for 
deviation from resonance,'23 Q,, is the electron induced 
charge exchange cross section, and Q = Q, + Q,,. The 
cross sections were calculated for the parameter values 
v,= 5 lo-' and ve= 0.3. Q,, will be 15 times larger if 
the atoms a r e  a t  room temperature. The behavior of 
the total cross section Q shows that the charge exchange 
cross section fo r  a one-component plasma varies little 
over a wide range of electron densities and is roughly 
equal to the resonance charge exchange cross  section. 

I? 

The effect of the plasma electrons on charge ex- 
change discussed above must be taken into account in 
measuring charge exchange cross sections for plasmas 
in the adiabatic velocity region. 

In conclusion the authors thank 0. B. Firsov, V. S. 
Lisitsa, and A. V. Chaplik for discussing the work. 
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The quantum mechanical problem of the behavior of a neutron in the magnetic field of a linear current is 
considered. An exact solution of this problem is found. It is found that the system possesses the hidden 
symmetry O(3). The generators of the symmetry group are constructed. The Schrijdinger equation is 
reduced to an explicitly invariant fonn. 

PACS numbers: 03.65.Ge, 11.30. -j 

Several quantum mechanical problems a r e  known in 
which the degeneracy of the energy levels is stronger 
than anticipated by starting from the usual spatial sym- 
metry of the system." The following pertain to such 
problems: the oscillator, the Kepler problem, the ro- 
tator, and several other problems which do not have an 
immediate physical interpretation. The additional o r  
"accidental" degeneracy which appears in these problems 
is associated with the existence of a so-called dynamical 
symmetry. For example, in addition to the usual rota- 
tional symmetry the hydrogen atom possesses the sym- 
metry O(4) (for the discrete spectrum) due to the exis- 
tence of the conserved Runge-Lenz vector.c21 

states whose spectrum is determined by the dynamical 
symmetry group O(3). The energy levels a r e  deter- 
mined by the quantum . .~ number n: 

where M and p denote the neutron's mass  and magnetic 
moment, I is the current, and the constant c depends 
on the system of units (c= 0.2 in the practical system 
of units). 

2. SOLUTION OF THE SCHRODINGER EQUATION 

A neutral nonrelativistic particle with a magnetic 
moment is described by the Hamiltonian 

Investigating problems in which the internal degrees %=pZ12M-pH, 
of freedom of a particle interact with an inhodogeneous 

(2) 

field, the authors discovered an example of such a sys- where H denotes the external magnetic field. Let us 
tem which possesses a dynamical symmetry: a neutron consider the field created by a linear current I directed 
in the magnetic field of a linear current forms bound along the z axis: 
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H=02I(y/r" -x/r2, 0 )  (3) 

(if Y is in centimeters and the current is in  amperes, 
H will be expressed in gausses). For such a configura- 
tion the motion along the z axis is free, and we imme- 
diately eliminate the part of the Hamiltonian associated 
with this motion. For a particle of spin $ the time- 
independent SchrSdinger equation can be written in the 
form 

It is convenient to change to dimensionless variables, 
having made the following scale transformation: 

xr=p, plxfc=n, x= (-2ME)'"lh (5) 

(we a re  oriented toward the discrete spectrum). In 
terms of the new variables Eq. (4) takes the form 

where n = - 0 . 2 ~  M I / X  A' and the components of the di- 
mensionless vector p'' a r e  denoted by x and y .  

Let us briefly describe the method of solution, the 
details of which a re  given in the Appendix. Multiplying 
the equation by the quantity o,y - o y x  and changing to 
the momentum representation, we obtain a system of 
first-order equations for the components of the spinor 
+. Then, by using the invariance of the Hamiltonian un- 
der rotations around the z axis one can separate vari- 
ables in polar coordinates. Upon the elimination of one 
of the spinor components we obtain a second-order dif- 
ferential equation which a certain change of variable 
reduces to the equation for hypergeometric functions. 
The wave functions of the discrete spectrum a re  char- 
acterized by two quantum numbers n and m. The ra- 
dial quantum number n takes positive integer values; 
m denotes the eigenvalues of the operator J , = L , + u , / 2 .  
For a level with quantum number n the value I rn I s n 

, -+. In the momentum representation the wave functions 
have the following form (m> 0  for the example): 

a 
y-ic",. (o=- - o,- f - )  

dn, an, 

where the C,, a r e  normalization coefficients. The 
wave functions of the continuous spectrum appear to be 
similar; however, the authors did not direct their at- 
tention to the problem of scattering. 

3. THE HIDDEN SYMMETRY 

The spectrum of the system under consideration is 
cited in the Introduction. It was found to be degenerate 
with respect to the projection of the total angular mo- 
mentum. In analogy with the quantum oscillator and the 
Kepler problem, one can imagine that the additional de- 
generacy in this case is related to the existence of new 

integrals of the motion. 

Let us rewrite Eq. (6) in the form (K + 1) J, = 0  where 
K is, apart from a constant factor, the Hamiltonian of 
our system, subjected to  the scale transformation (5): 

Let us consider the following set  of three operators: 

One of these operators represents the projection of the 
angular momentum on the z axis. The other two satisfy 
the following commutation relations: 

[A,,  I , ]=- iA, ,  [A , ,  J.]=iA., [A, ,  A,]=-iKJ,,  

[A,,  K]=O,  [A , ,  K]=O.  (lo) 

Redefining the operators according to the formula 

we obtain the dynamical symmetry group O(3) for the 
discrete spectrum. The following relationship, estab- 
lished by direct calculation, exists between the gener- 
ators of this group and the Hamiltonian K: 

An analogous relationship between the Hamiltonian and 
the Casimir operator of the dynamical symmetry group 
also exists in the Kepler problem.['l 

Equation (6) can be rewritten in the form (J'+ 
- n2)J, = 0 .  The properties of the irreducible representa- 
tions of the rotation group a r e  sufficiently widely known. 
We a r e  interested in the representations with half-inte- 
ger projections of the angular momentum. They a r e  
characterized by a half-integer positive number (the 
spin). One can easily see  that n = j + f .  The only ques- 
tion is whether all  such representations occur in the 

' spectrum of our system and in what multiplicity do 
they occur. From the results  of Sec. 2 it is known that 
all of the half-integer representations a r e  realized ex- 
actly once. A method of proving this fact independently 
of Sec. 2  consists in an examination of the functions 
which tend to zero under the action of the "lowering" 
operator J ,  - iJy . 
4. EXPLICITLY INVARIANT FORM OF THE 
SCHRODINGER EQUATION 

In the previous section we expressed the Hamiltonian 
for  our problem in terms of the operators J ,  which 
commute with the Hamiltonian and generate the algebra 
O(3). Based on this fact one can asser t  that the wave 
functions in the appropriate variables a r e  spherical 
functions of the complete angular momentum. In this 
section we shall indicate these variables and find an ex- 
plicitly invariant form of the SchrSdinger equation. 

Equation (4) can be rewritten by considering momen- 
tum space a s  a stereographic projection of a three- 
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dimensional sphere. For the Kepler problem this 
method was f i rs t  utilized by ~ o c k . ' ~ '  However, in con- 
trast  to the Kepler problem the necessity of an addi- 
tional transformation of the spinors ar ises  here. 

In momentum space Eq. (4) has the form 

The functions I/):\$ a re  also eigenfunctions for the oper- 
ator (1 + u . L), where 

Comparing Eqs. (21) and (23), we see  that 
where p i =  - 2ME and y = 0. 4 1 p ~ / i i .  Introducing coor- 
dinates on the sphere 

Let us return to Eq. (19). Since the quantum number n 
is positive, i t  follows from the expansion (22) that the 
wavefunctions a r e  #:,, and n = j + b. Thus, 

we obtain 

in dn 'dn ' ( ,+,, l+n 
(p2+p2)$(p)= - J+ n, -ol nt-nZr+) 

where the C,,, a re  normalization factors. 

5. CONCLUSION where n is defined in the comment associated with 
formula (6). By the spinor transformation We have examined various methods of solving the 

problem of the behavior of a neutral particle with spin 
$ in the field of a wire. The authors did not consider 
a number of questions associated with this problem. 
In particular, the continuous spectrum of the system 
remains uninvestigated. The dynamical symmetry 
group for this part  of the spectrum is O(2,l). In this 
case one can also write down an explicitly invariant 
equation of the type (18) where, just a s  in the Kepler 
problem, the compact region of integration changes into 
a noncompact region (the surface of a two-sheet hyper- 
boloid). The wave functions of the continuous spectrum 
form the basis of a representation of the second funda- 
mental ser ies  of the group O(2,l) and a r e  Legendre 
functions. c31 For problems involving a hidden symmetry 
one often introduces the so-called noninvariance group, 
one of whose irreducible representations describes all 
states of the system.'" For the modified "~amiltonian" 

$(n) =U-'(paz+p"$(p), 

where 

Eq. (15) reduces to the form 

The expression d%'/n: can be rewritten in the following 
form: 6(nr2- l)d3n' after which the rotational invari- 
ance of Eq. (18) becomes obvious. Let us represent 
Eq. (18) in the operator form 

$(n) =-nP$ (n) .  (19) 

By direct verification let  us make sure  that the func- 
tions I J ; ~  characterizing definite values of the operators 
f, J,, and L~ a re  eigenfunctions of the operator P. The 
superscripts 1 (2) correspond to L = J - $, L = J+ 4. 
We have: 

whose spectrum is linear but whose wave functions agree 
with the wave functions of the starting Hamiltonian 
with the factor u,y - u,x, the authors have found such a 
group. It turned out to be isomorphic to the complex 
form O(5); however, in the opinion of the authors this 
group is not very useful for solving physical problems 
because due to  differences in the eigenvalues the evolu- 
tion determined by the Hamiltonians and 2 is not 
the same. In other words, the connection between the 
generators of O(5) and the usual operators of the type 
coordinates, momenta, etc. , is only simple for fixed 
energies. For a detailed discussion of these problems 
in connection with the Kepler problem, see  the review 
by ~ o p o v . ~ ' '  

The eigenvalues of the operator P a re  given by the for- 
m ula 

One more property of the system is related to the 
degeneracy of the levels with respect to the quantum 
number m. If an additional constant magnetic field H, 
is imposed on the system, the levels of the system a r e  
split independently of i t s  direction, and moreover the 
splitting is linear with respect to I Hal . The analogous 

therefore the kernel of the operator P can be repre- 
sented in the form 
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phenomenon in the hydrogen atom is called the linear 
Stark effect. 

In conclusion the authors thank S. S. ~ e r s h t e h  for 
valuable discussions. 

- 

APPENDIX 

Let us consider Eq. (6). Let us make the substitution 
JI = (u,y - u,x)cp. Then in the momentum representation 
the equation can be rewritten in the form 

(A. 1) 

During the motion of a particle with spin in a field of 
axial symmetry, the projection of the total angular mo- 
mentum J on the z axis is conserved. We shall consider 
time-independent states in which J ,  has a definite value 
m; in this connection the spinor has the form 

Then 

By eliminating one of the spinor components, for exam- 
ple rp-, we obtain: 

and making the substititon w = #/(I + +), we arrive at 
w e  hypergeometric equation 

( I - w )  wcp+"+ ( m + 1 / ~ - ~ ) ~ + ~ - ~ 2 ~ + = 0 .  (A. 5) 

If n is not an integer, the general solution of Eq. (A. 5) 
for m > 0 may be written down in the form 

and the following expression is valid for m < 0: 

Let us consider the quantization procedure for m > 0. 
The case m < 0 is analogous. Let us investigate the 
asymptotic form of the wave functions for large values 
of I? which corresponds to w - 1. The second term in 
Eq. (A. 6) behaves like (1 - w ) ~ ' ' ' ~  which guarantees in- 
tegrability of the corresponding wave function. The 
f i rs t  term tends to the constant value 

rz (m+I/=)  
+ 0 ( 1 - w ) ,  

r (n+m+' / , )  r(-n+rn+'/,)  
(A. 8) 

that is, the corresponding wave function is not normal- 
izable. Considering the asymptotic behavior for small 
values of (this corresponds to w - 0) we obtain the 
opposite effect: the f i rs t  solution is regular, and for  
m > $ the second behaves like 

and for m = $ it behaves like 

(A. 10) 

For small values of # the total wave function corre- 
sponding to the second term is nonintegrable. 

It is clear that one can seek integrable (normalizable) 
solutions only for  integer values of n. In this case the 
general solution is given byts1 

cp+=C,F(-n, n, m+l/2, w )  
+ c , ( - ~ )  -.-"I-'" (I-w)"It'"F(n+l,  n + m f 1 / 2 ,  2n+l ,  l l w )  (A. 11) 

for m + $ ~ n  and 

cp+=D,F(-n, n, m+'/2, w )  
+Dzw'h-mF(-m-n+1/2, n-m+ '12, '/=-m, w )  (A. 12) 

for m + $ > n. Only the wave function corresponding to 
the f i rs t  term in Eq. (A. 11) is normalizable. The dis- 
crete levels of the system thus correspond to the follow- 
ing quantum numbers: n = l ,2 ,  . . . , where m + $ s n. 
Negative values of m are  treated in analogous fashion. 
To sum up, it is found that the energy level character- 
ized by the quantum number n has a 2n-fold degeneracy: 
l rnlsn-$.  

')For detailed knowledge concerning the concept of a hidden 
symmetry we refer the reader to a review article by 
Popov. 
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