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It is shown that, within the framework of the soliton model of J/$ particles, the (J/$)N interaction can 
be regarded as the scattaing of the nucleon by an external classical field. The phase shifts are then real 
and the total and elastic cross sections for this interaction are equal (if diffractional dissociation processes 
an negleckd). The model is in qualitative agreement with existing experimental data on the 
photoproduction of J/$ particles on nucleons and nuclei. The coherent and noncoherent cross sections for 
the photoproduction of J/$ particles on nuclei are calculated, and it is shown that measurement of these 
cross sections as functions of the number of nucleons in the nucleus, the momentum transfer to the 
nucleus, and the photon energy can be used to determine the real and imaginary parts of the amplitude 
for (J/$)N scattering and the dope of the d i E d  cross section. 

PACS numbers: 14.40.Pe. 13.90. +i 

1. INTRODUCTION 

The soliton model for  particles such as the J/$ 
bosons was proposed by one of us  inc'"]. The essence 
of this model is the proposal that particles of this kind 
can be described by a nonspreading wave packet of the 
classical boson field, i. e. ,  i t  is the soliton solution 
of a certain relativistically invariant nonlinear equa- 
tion. A one-dimensional equation, similar to the Ginz- 
burg-Landau equation for  a scalar field was discussed 
inc21 as a heuristic example. Kudryavtsev has shownc3' 
that this equation has localized soliton-like solutions 
of the quasistatic type (oscillating slowly andonly slight- 
ly attenuated inytime). Analogous solutions were found 
by Bogolyubskii and ~ a k h a n ' k o ~ ~ '  for the three-dimen- 
sional equation (see the note incs1 in this connection). 

In the case of weak nonlinearity, the field amplitude 
and energy for the solutions found incs1 turn out to be 
large. This leads us  to expect the existence of relative- 
ly heavy particles, the gross properties of which can 
be described by the classical solution o r  a quasiclassi- 
cal approximation to it. 

An approximate (quasiclassical) quantum solution in 
the form of a Glauber coherent state was used inc2] to 
consider the decay of J/J, particles on the basis of the 
wave packet (soliton) model of a classical field. This 
state is a boson condensate in which the mean number 
of light bosons ("pions") is F>> 1 and the pion number 
is described by the Poisson distribution around this 
mean. The example of a scalar field mentioned above 
was used inc2' to demonstrate that Z = N / ~ , ,  where M 
is the mass of a particle such a s  the J / $  boson and mo 
is the mass of a light boson which, in this example, 
plays the role of the pion. In this model, the decay of 
the J/$ particle into a small (n <<a number of pions is 
suppressed exponentially in n and, consequently, in the 
mass M of the J / $  particle. The distinctive feature of 
$ particles (J/$ and J ,  ') is thus the fact that the purely 
pion decay channels a r e  suppressed, and this restric- 
tion is organically related to their large mass. In 
other words, the stability of the J, particles is explained 
in the above model precisely by the fact that the field 

corresponding to them is quasiclassical. In fact, when 
n >> 1, the state vector is an eigenvector of the field 
operator, and the result of this is that the amplitude- 
phase uncertainty principle is minimized. This im- 
mediately leads to the Poisson distribution for the num- 
ber of pions, and hence to the suppression of the above 
factor which is exponential in i i  and suppresses the de- 
cay. 

It is shown below that these properties also lead to 
the "conservation" of $ particles when they collide with 
hadrons so that, in the f i rs t  approximation, the in- 
teraction can be looked upon simply a s  the scattering 
of a nucleon in a localized external classical field cor- 
responding to the soliton-like solution. Hence, i t  fol- 
lows that the phase shifts a r e  real (when diffractional 
dissociation is neglected), o r  the total c ross  section 
for  the interaction is equal to the elastic cross  sec- 
tion. This prediction will have to be verified by experi- 
ments on, say, the photoproduction of $ particles on 
nuclei. 

In accordance with the foregoing, we shall begin with 
a detailed analysis of the reasons for  the suppression 
of inelastic interactions involving J ,  particles in the 
soliton model (Sec. 2). In Sec. 3, we shall discuss 
the parameters of the J,, N interaction and, in Secs. 4 
and 5, we shall calculate the c ross  sections for the co- 
herent and noncoherent photoproduction of J, particles 
on nuclei and will discuss possible experiments that 
may verify the predictions of the theory. 

2. SUPPRESSION OF INELASTIC INTERACTIONS 
OF J /  PARTICLES 

By inelastic processes, we shall understand reac- 
tions involving the creation and annihilation of $ par- 
ticles, i. e. , processes in which the J, particle appears 
only in the ground state, initial o r  final. Reactions of 
the form 

where X # Y, will be called diffractional inelastic pro- 
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cesses. The latter will not be discussed in detail in 
the present paper (it will be assumed that their cross  
sections form a small fraction of the total interaction 
cross  section, just a s  in the case of the interaction of 
ordinary hadrons (see, for  example, ['I). 

~o l lowin&~ ' ,  we assume, for  simplicity, that the 
state I $) of the $ particle is a coherent state of a neu- 
t ra l  spinless boson field. If the operator for  this field 
in the Schroedinger representation is 

where 4 ''I and a re  the positive and negative fre- 
quency parts, respectively, then I $) is the eigenvector 
of the operator cp '+): 

The eigenvalue g(r)  should, in this case, be the solitoin 
o r  soliton-like solution of the nonlinear equation for  the 
classical field. An explicit expression for  the vector 

I $) in terms of the classical solution g, the field opera- 
tors,  and the vacuum state lo), which is reduced to 
zero by the operator $(+), is given inc2] [ ~ q s .  (1)-(3)]. 
The amplitude of the classical field g is proportional 
to (3 [seeC2', Eq. (12)]. 'If we use the normaliza- 
tion ($ I $) = 1, we have 

For  the scalar products of the coherent states 1 ) and 
I & ) ,  on the other hand, which a r e  described by the 

functions g ,  and g,, we have 

In this expression, w = (k2 + m  :)If and 5 (k) is the Fou- 
r i e r  component of the function g(r). The expansion of 
I #) into a ser ies  over the states I kl, . . . , I&,) with a 
given number n of particles with momenta k,, . . . , k,, 
i.e., 

llp)=Efl (2w.)-"*g,(k ,,..., k,) Ikl ,..., k.), 
k," I 

is such that 

i. e. ,  we have the Poisson distribution for the number 
of particles. 

It is convenient to write 

where a, are  normalized by the condition1) 

These functions can be expressed in terms of g (k) aB 
follows: 

where 

For  particles moving with velocity v along the z axis, 
the normalized single-particle density has the form 

We emphasize that the difference between the coherent 
state and the usual multiboson system l ies  not only in the 
undetermined number of bosons but also in the structure 
of the wave function @,,. The formula given by (8) in- 
dicates that all the particles a r e  in the same state with 
wave function; (k). The multiboson wave function, on 
the other hand (for the noncoherent state) should, in 
general, contain the symmetrized sum of products of 
different states 

If we have ann-boson state of the usual form 

the probability of the I $ )  - I a,) transition is propor- 
tional to 

where d ,  is the phase volume of the n -boson state I a ) 
and 

The equations given by (1)-(3) and (12) express the 
"conservation" of the state 1 $), and this leads, in par- 
ticular, to the fact that the elastic $N interaction pre- 
dominates over inelastic processes (which involve the 
disintegration of $). It is precisely this property that 
enables us  to consider the #N interaction a s  the scatter-  
ing of the nucleon N by the "external" (i. e., classical) 
field. In fact, the relation given by (1) ensures that 
any operattr  containing the normal product of the field 
operators cp, acting on the state I*), will generate this 
state. The element of the S matrix corresponding to the 
inelastic process I $N)  - I a,N I )  will always, there- 
fore, contain the scalar product (a, I $), and the c ross  
section will be proportional to the quantity given by 
(12). For  lz >> 1 and n << lz, the cross  section for this 
inelastic process will therefore be suppressed by the 
presence of the Poisson factor N 2, in I( a, I $) 1 '. 

It would seem at f i rs t  sight that the suppression of 
inelastic processes a t  sufficiently high energies (en- 
suring the necessary multiplicity of final particles) will 
not occur in this model for  n = E. Closer analysis will 
readily show, however, that this is not so for  the fol- 
lowing reasons. If the invariant mass  of the resulting 
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system of pions is close to the mass of the J, particle, 
M=Zm,, the inelastic cross  section for  n = E  is small 
because the phase volume of the final state is also 
small, i. e., fo r  the same reason for  which the pion 
decay $-6 is suppressed (seec2]). Insofar as large 
effective masses a r e  concerned, we have here two sup- 
pression factors: one is due to the unavoidable fact 
that the overlap integral for  the wave functions &, and 
a, is small, and the other is the necessarily large 
longitudinal transfer of momentum. In point of fact, 
Eq. (1) ensures that the element of the S matrix cor- 
responding to the inelastic process will, in addition to 
((1, I $), also be proportional to the integral 

which appears becaufe of the presence of the eigenvalue 
g(r)  of the operator cp'+'(r) in (1). In this expression, q 
is the transferred momentum and the function g'(r) de- 
scribes the final ~ t a t e . ~ '  When a mass M'> M is cre-  
ated, the minimum transferred momentum (in the res t  
system of the I)) is 

To avoid a small phase volume, the mass  M' must be 
appreciably greater than M, i. e., we must have q,, 
2M. When this condition is satisfied, the integral (13) 
is very small because the spatial size of the z) particles 
in our  model [i. e., the size of the region where g(r) is 
comparable with its mean] is determined by the mass 
m, which is necessarily much l ess  than M ( ~ , / M =  1/fi 
<< 1). 

Noncoherent processes involving the disintegration of 
the $, which do not contain the formfactpr, a r e  sup- 
pressed for  n ? E because the functiong(k) and, conse- 
quently, the single-particle density given by (10) in any 
reference frame, have in this model no singularities in 
the scaling variable 

This is equivalent to saying that the effective multiplic- 
ity of "partons" does not increase indefinitely in any 
reference frame (including the system with infinite mo- 
mentum) for  any x (0 I x I s I ) ,  and this is in contrast 
to ordinary hadrons for  which the distribution of soft 
partons has the form dx/x (see, for  example, "I). In 
the impulse approximation, the total c ross  section for 
inelastic processes (0,) involving the interaction of $ 
particles with hadrons o r  leptons is given by 

where N :  are  the normalizing factors given by (5) and 

These expressions a r e  obtained from (11) and (12) by 
replacing the final state I a,) by the product of plane 
waves an(kl, . . . , = 6(kl -ki). . .6(k,, -g) and by as- 
suming that the transverse momenta a re  bounded in the 

system in which the # particle moves a t  high velocity 
v - c  (as fo r  ordinary hadrons). We have, therefore, 
neglected in the 6 function, which corresponds to ener- 
gy conservation, the small transverse momenta (which 
remain constant a s  E/M increases) in comparison with 
the longitudinal momenta (which increase like E/M). 
We then have 

We also note that (15) does not take into account mo- 
mentum conservation because, in this case, the vector 
conservation laws impose a very weak restriction on 
the total c ross  section for high multiplicity [it leads to 
corrections - l/n; see  also the remarks follows (7)]. 

- 
Assuming that ih2(x,) =const for  x << 1 [for n >> 1 and 

sufficiently smooth m, the integral given by (15) is 
determined precisely by this region of small x , ] ,  we 
obtain 

x nN,2G,=e-xKZ, ( 2  ( i i )  'h)  -Ks' oxp (-?if 2 ( 6 )  "'1. (16) 

More realistic estimates could be based on the bounded- 
ness of the Fourier components of g(k) as k- 0 and on 
(a), which gives z) = 22.. We then have 

x n N n 2 6 , ,  w (K) '" exp { - K f  3 (612) '"1. 
(17) 

It is clear from (16) and (17) that the total cross  sec- 
tions for  inelastic processes involving +particle inter- 
actions a r e  suppressed exponentially in ii in the soliton 
model. 

We note, for  comparison with inelastic interactions 
of ordinary hadrons, that, if we substitute &'- l / x  
(which is used in parton models), then there is no ex- 
ponential suppression in K .  Instead of the quantities 
2(K)lr2 and 3(5/2)lr3, the exponentials in (16) and (17) 
contain simply i i  with the positive sign. 

Of course, the foregoing ideas on the expected sup- 
pression of inelastic cross  sections in the soliton model 
of z,b particles should, in principle, be augmented by a 
discussion of the validity of the quasiclassical approxi- 
mation, i. e. , the corrections which distinguish the 
exact solution of the quantum field equations from that 
based on the classical soliton of the Glauber coherent 
state. We a r e  unable, a t  present, to provide a quanti- 
tative solution to this problem. 

3. EIKONAL MODEL OF THE JIN INTERACTION 

At high energies (pa >> 1, where a is the interaction 
range), we can use the eikonal approximation for the 
small-angle #N scattering amplitude: 

where b is the impact parameter and q is the momen- 
tum transfer. Since the distinguishing feature of the 
soliton model of z,b particles i s  that the inelasticity of 
the #N interaction processes is small, i t  follows that 
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the imaginary part of the phase shift is small in com- 
parison with the real part: 

6 (6) +i6, (b), 6, (b) -z6z (b). (191) 

We then have 

where a, i s  the total @V-interaction cross  section. 

We must now consider how the predictions of the soli- 
ton model differ from the usual theoretical schemes 
for  the $N interaction. The JIN cross  section is usually 
determined from photoproduction data, assuming that 
the vector dominance model is valid: 

and that the amplitude for +V scattering is purely 
imaginary: 

Using (21) and (22), we find that ut = 1 mb and ue, = 10-~(,~. 
In the charmed quark model, one also expects that the 
ratio oe,/crt will also be small for the JI p a r t i ~ l e . ~ "  
Thus, for example, for  the cp meson, which is similar 
in the quark model to the t j  boson, this ratio is - 0.1. 

The expressions given by (19) and (20) a r e  thus quite 
typical of the soliton model, and a re  in clear conflict 
with the predictions that follow from (21) and (22). We 
note that the violation of (21) can be expected for a rela- 
tively extensive class of models (because of the inclu- 
sion of the dependence of the y - $ transition constant 
on the photon mass), including the charmed-quark mocl- 
el. However, the latter model necessarily predicts 
that the inelastic cross section for the disintegration of 
the J ,  particle into charmed D mesons should be large. 
This means, in particular, that the cross  section for 
the photoproduction of D mesons should be greater by 
a factor of approximately 30 than the cross  section for 
the photoproduction of J ,  mesons. L'''UJ However, the 
photoproduction of D mesons has not been established 
experimentally, whereas the photoproduction of $ me- 
sons has been reliably observed. Moreover, ex- 
periment reveals a small inelasticity in the photopro- 
duction of J I  mesons.c121 As noted inclsl, existing ex- 
perimental data on the photoproduction of J ,  mesons sug- 
gest that u,, - ut for the JIN interaction. These experi- 
mental results a re  naturally explained within the frame- 
work of the soliton model, whereas the charmed quark 
model requires additional assumptions even for a qua].- 
tative explanation of these facts. C1s'141 One of the varil- 
ants of this model, using the assumption of the domi- 
nance of nonreggeized axial exchange, C'sl is in conflict 
with existing experimental data on the presence of the 
coherent peak in the photoproduction of J ,  mesons on 
beryllium nuclei. c151 

Let us consider possible violations of (21) and (22) in 
the soliton model. As a f i rs t  approximation, let us 
adopt the Gaussian parametrization of the phases 

6 (b) =6 (0)e-'"", (23) 

and take the interaction length to be the value obtained 
from data on the photoproduction of $ on nucleons: 

In the soliton model, the amplitude f (0) may be purely 
imaginary, and (22) can be satisfied only for large phase 
shifts 6(0) >> 1. We then have (seec"]) 

where C =O. 58 is the Euler constant. When a =0.4 - 
- 0.6 F, the cross  section given by (25) is of the same 
order o r  even greater than the c ross  sections for the 
rN and NN interactions. Existing experimental data on 
the photoproduction of $ mesons on nuclei appear to 
exclude such high cross  sections for the $ N  interac- 
tiont12' and suggest that ot does not exceed a few milli- 
barns or, at any rate, is small in comparison with the 
cross  section for  the pN interaction. 

For  such small c ross  sections, 6(0) << 1 and we can 
confine our attention to only one o r  two leading terms 
in the expansion for  the scattering amplitude 

This will enable us to include the imaginary part of 
f (0). When ot = 1 mb, and the interaction range i s  given 
by (241, we have 6'(0) =O.  1 - 0.05 and 

i. e. ,  (22) is violated by a factor of 50-100. The vector 
dominance relation (21) is then also highly violated: 
the ratio of the left- and right-hand parts of (21) for 
ut - 1 mb and 6'(0) =O. 1 -0.05 is of the order of 100. 
The considerable violation of (21) is a natural conse- 
quence of the soliton model of J ,  particles. F o r  ex- 
ample, the photoproduction of the J ,  can be looked upon 
as consisting of two stages. Initially, the y-ray photon 
undergoes a transition to the coherent state of the cp 
field with zero mass, and this then goes over into the 
final coherent state of mass  M a s  a result of the inter- 
action with the nucleon field. The photoproduction 
amplitude then contains the formfactor (13) in which 
q,, = M. The square of this formfactor, present on 
the right-hand side of (21), leads to an important in- 
crease in the ratio of the left- and right-hand sides. 

Thus, both (21) and (22) may be strongly violated in 
the soliton model. To determine the +V interaction 
parameters, we must therefore use processes involv- 
ing the production of J ,  particles on nuclei. 

4. COHERENT PHOTOPRODUCTION OF J/ ON 
NUCLEI 

The quantum numbers of the $ particles allow them to 
be created in a coherent fashion on nuclear targets when 
the latter a re  exposed to high-energy photons. The de- 
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pendence of the cross sections for coherent photoprol- 
duction on the atomic number can, in principle, be used 
to determine the two parameters Imf (O), which deter- 
mines the absorption coefficient, and Ref (O), which 
determines the refractive index (see, for example, '"') 
for the interaction. As noted in Sec. 3, the fact that 
the $N interaction cross section is small indicates the 
validity of perturbation theory in 6(b) [Eq. (26)]. The 
real part of the scattering amplitude f (0) is  then large 
in comparison with the imaginary part. Let us con- 
sider in greater detail how data on coherent photopro- 
duction cross sections can be used to distinguish be- 
tween the cases of purely real and purely imaginary 
amplitudes. 

When A >> 1, so that the optical approximation is  
valid, the amplitude for the coherent photoproduction 
of J, on a nucleus can be written in the form 

Ph((Q -A f,, (q) jd'b dz exp (iqrz)exp {iq,b)p (b ,  z )  

where q, = ~ ' / 2 p  and f,, is the amplitude for the yN - $N reaction. Let us take into account the first two 
terms of the expansion of F 'Oh(q) in terms of the param- 
eter 

4n 
rl = - - f (0) p a ,  

iP 

where &=A/v  is the nuclear density, which is equal to 
0.17 nuc l eons /~~ ,  V =&TR', an&R =l. 1 2 ~ ' ' ~ ~ .  Thus, 
we shall use 

where 

G - 8 z e x  i z p  i b  [ p b d . (30) 
m! 2p R z  

At very high energies, when l~ =qLR is small, we can 
neglect longitudinal momentum transfer in (29) and (30). 
The formfactors G, then become real, and it follows 
immediately that the cross section for the coherent 
photoproduction is  linear in f (0) for a purely imaginary 
amplitude and quadratic in f (0) for a purely real ampli- 
tude. For small q (which probably occurs in the $ N  
interaction), the determination of the phase off (0) will, 
in general, require coherent production data for 5- 1. 

For approximate calculations, we may suppose that 
the nucleus is  a sphere of uniform density. In the first 
order in f (O), we obtain the following expressions for 
the zero-angle coherent photoproduction cross section 
and the cross sections integrated over the coherent 
peak, respectively: 

where q1 = utp$ and q2 = aut&R. The functions f t  and 
gi are  given by 

fa&)  =9E-'(sin 5-5 cos E)', 
f,(E) =l8g-'(sin t-g cos 5 )  [ 1-5 s in~+( ' / 2~Z- l ) cos  El, (33) 

fl(E) =9E-'(sin E-5 cos E) [(3-E2)sin E-35 cos El; 
go(5) =5-2[1-1/2E-2(~~~ 25+25 sin 2E-1) 1, 

g, (5) =-5-'{2/s-1/2E-3[25 cos 25+(2ES-1)sin Zj]), 
g, (9) =E-9 I+E2-25 sin 25+ (5'-l)cos 251. 

(34) 

The contribution of terms containing the real part of the 
amplitude f (01, which are proportional to f ,  and g,, may 
be appreciable for 5 2 1. The real and imaginary ampli- 
tudes can then be distinguished on the basis of the dif- 
ferent functional dependence of figl and f2g2 on 5 .  For 
5- 0, 

h-1, fI+-3/4, fi+%/5; 
ga+l, g,+-'/r, gz+2E/9. 

When 5 >> 1, 

It follows from our discussion of the properties of 
Fcoh(q) that the vanishing of f2  andg2'for 5 = O  is a gen- 
eral property which i s  independent of the nuclear model 
used here. Using (29) for the coherent photoproduction 
amplitude, we can easily show that gl/go - 1 and g2/go 
S I/[ for 5 >> 1. This is  again independent of the par- 
ticular model of nuclear structure. 

Let us consider the integrated cross section o*. For 
a purely imaginary amplitude f (O), the rescattering 
correction is  a relatively slowly-varying function of 5 
because the ratio gl/go i s  a very slowly-varying func- 
tion of 5 .  For example, when 5 changes from 1/3 to 3, 
this ratio changes from - 0.8 to - 0.6. At the same 
time, for a purely real amplitude, the rescattering cor- 
rection is  small both for 5 << 1 and 5 >> 1, and the ratio 
g2/go has a maximum for  5 - 1. These properties of the 
rescattering correction are naturally conserved even in 
a more realistic model of nuclear density (for ex- 
ample, the Woods-Saxon model). 

The parameter 5 is a function of both the atomic num- 
ber A and of the energy. Figure 1 shows the ratio 

FIG. 1. a) Ratio rCoh (A) a s  a function of the mass number A 
for p = 54 GeV/c. b) Ratio rCoh a s  a function of the photon mo- 
mentum in the photoproduction of @ on lead. Curves 1 cor- 
respond to at = 1 mb, (Y =O;  curves 2-a, =I mb, a = 6. 
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a s  a function of the atomic number and photon energy, 
where ucoh(0) is the coherent photoproduction cross 
section when f (0) =O. Curves 1 correspond to a purely 
imaginary amplitude (q2 = 0, ut =1 mb) and curves 2 to 
ut = 1 mb, cr = ~e f (0)/1m f (0) = 6. Of course, the use oE 
the energy dependence of F* for the determination of 
f (0) is valid only when f (0) is a slowly-varying func- 
tion of energy (as compared with the longitudinal com-. 
ponent of the transferred momentum q, which decreases 
linearly with increasing y-ray energy). 

We also note that the amplitude for coherent photo- 
production on heavy nuclei is a function of [ even at 
photon energies - 100 GeV. It follows that, when the 
JIN interaction parameters a r e  determined from the A 
dependence of the cross sections for the coherent photo- 
production of JI  mesons on nuclei, it is important to 
have data on beams of "labeled" photons so that the en- 
ergy of the photon producing a given event is known. 
Unless this is so, integration over the photon spectrum 
may introduce substantial uncertainties. 

5. NONCOHERENT PHOTOPRODUCTION OF J/ ON 
NUCLEI 

In order to establish whether u,, - ut o r  u,, << at, we 
can use the characteristic structure of the angular dis- 
tribution of the noncoherent photoproduction cross sec:- 
tion for J ,  on nuclei. The important point here is that 
the cross section for the noncoherent photoproduction 
on a nucleus outside the first diffraction peak is deter- 
mined by the rescattering of + in the final state and is 
proportional to u,, . 

Consider the amplitude for the noncoherent photo- 
production of JI  on a nucleus when the latter either re.. 
mains in the ground state, or  i s  excited, o r  breaks up, 
but without the production of a new particle. In this 
case, we can use the Glauber formalism, C181 general-. 
ized to particle production processes by a number of 
workers (see the review inc191). The photoproduction 
amplitude will be written in the form 

where 

A 

r(b, r,, . . . , r , ) = x  rrz(b-~l)exp(iq,z l )  [ l - O ( z i - z ~ ) ~ ( b - ~ ~ )  1. 
1-1 I+ 1 

in these expressions, S, is the projection of the nucleon 
coordinate r, onto the plane perpendicular to the initid 
momentum p and rl, and r a re  the photoproduction and 
+, N scattering amplitudes in the impact-parameter 
representation 

r(b) is thus expressed in terms of the elastic $ N  scat - 
tering amplitude f (q). Finally, we can use the following 
parametrization for the amplitudes: 

In the case of identical slopes by =be = b, the differen- 
tial noncoherent photoproduction cross section can be 
written in the form ( q 2 ~  >> 1): 

where B1-A for ut - 0, q; << q f .  The coefficients B, 
depend on the nuclear parameters and on ut. As a rule, 
they decrease relatively rapidly with increasing n so 
that, for q 2  S b-I, the main contribution is provided by 
the first  term. As q2 increases, there is an increase 
in the relative magnitude of terms containing powers of 
u,,. It is clear from the structure of (39) that the de- 
pendence of dunsc/3hl on q2 can, at least in principle, 
be used to determine u,, and b when ut i s  known (for 
example, from experiments on noncoherent photopro- 
duction). 

When ut is small, so that the parameter v l  = utpoR 
i s  also small, we can use the expansion of on*' in pow- 
e r s  of ql: 

where 

In deriving (40) from (36), we have neglected the effect 
of correlations between nucleons in the'nucleus. Esti- 
mates given inczo3 do, in fact, indicate that this effect 
is small. 

The slope of the curves corresponding to the third 
term in braces in (40) is proportional to uel and is al- 
ways less than the slope of the curve corresponding to 
the first  two terms for any ratio of b, to by. When by 
= b,, which occurs in the vector dominance model, this 
slope is smaller by a factor of 2 than the slopes corre- 
sponding to the first two terms. 

Figure 2 shows graphs of 

for lead with b, =be =4  GeV", at = 1 mb when u,, 

FIG. 2. Ratio pc(q2) as a f'unction 
of q2 for the photoproduction of J,  on 

2 
lead. Curve 1-at = 1 mb, ueI =O; 
curve 2-u,, = ut = 1 mb. 
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=O.Olu, (curve 1) and u,, =ut (curve 2). The coeffi- 
cient K, is set equal to 3/4, which is valid for  a sphere 
with uniform density. It is clear that the two curves 
are, in fact, different for transferred momenta g2 
2 1 Gev2. 

Measurement of noncoherent photoproduction cross  
sections fo r  $ particles on heavy nuclei for q, z 1-3 
Gev2 will therefore be decisive for  verifying whether 
u,, - 0,. When this experiment is performed, it wil l  be 
important to select events in which the photoproduction 
of J1 particles is not accompanied by the production uf 
other particles (other than nucleons from the breakup 
of the nucleus). At the same time, if the number of 
events involving the production of other fast  particles 
greatly predominates, this will mean that the inelastic 
cross  section for  the interaction is large and ui, 
>> u,, . 
6. CONCLUSIONS 

In summary, we may conclude that the above soliton 
model of J, bosons provides acceptable qualitative pre- 
dictions for interactions of J1 particles with hadrons and 
leptons. These predictions can be subjected to experi- 
mental verification on existing accelerators in the case 
of $-hadron interactions. Existing data on J,-hadron 
interactions a re  insufficient for a quantitative compari- 
son with the above theory. However, i t  seems to us  
that measurements of the c ross  section for the photo- 
production of J, particles on nucleons and nuclei, and 
the information on the J1N interaction that can be de- 
duced therefrom, a r e  in agreement with the predictions 
of the soliton model. In contrast to the popular quark 
models of $ particles based on the hypothesis of a new 
quantum number, i. e., charm, the soliton model does 
not encounter any difficulties in explaining the observed 
small inelasticities in J, production processes, o r  diffi- 
culties connected with the lack of experimental evidence 
for  charmed particles, for  which the production cross  
sections a re  predicted by charmed quark models to be 
greater by two orders  of magnitude than the c ross  sec- 
tions for  the production of $. 

The problem of the physical nature of $ particles is 
still experimentally unresolved, and time will show 
whether the soliton model is an adequate representa- 
tion of the information relating to $ particles. What- 
ever the outcome, we should like to emphasize that 
analysis of the coherent state constructed on the basis 
of the soliton-like solution of the classical field equa- 
tion leads theoretically to the existence of heavy par- 
ticles with the properties of the quasiclassical objects 
whose decay was considered inClsal and whose interac- 
tion with ordinary particles is discussed above. Verifi- 
cation of the existence of such states would be direct 
evidence for  the importance of nonlinear field equa- 
tions with weak coupling and spontaneous symmetry 
violations in the physics of elementary particles. Final- 
ly, we note that the soliton model of $ particles which 
we have used in this paper is technically incomplete, in 
particular, in relation to such questions a s  the inclusion 
of spin and of isotopic spin. The method used to con- 
struct the coherent state of the physical pion field with 

definite isotopic spin, which was applied to multiple 
production of pions seems to us  to be a means 
of removing these difficulties. 

The authors a r e  grateful to I. V. Andreev, K. G. 
Boreskov' , V. A. Karmanov, and L. E. Kudryavtsev 
for useful discussions. 

 he multiparticle wave functions +, (ki, . . . , k,J of the exact 
solution of the quantum equations in the schrb;dinger represen- 
tation should include 6 functions which ensure the conserva- 
tion of momentum. In the present case, the momentum 6 
function does not appear because the particular coherent 
state that we a r e  considering is an approximate (quasiclassi- 
call solution and is, therefore, not an eigenstate of the mo- 
mentum operator (momentum is ,  nevertheless, conserved on 
the average). When n >> 1, kinematic correlations due to mo- 
mentum conservation have very little effect on the particle 
distributions (energy conservation provides a more stringent 
restriction). The approximate functions a, can therefore be 
used to calculate the cross  sectiona f0r.n >> 1. 

2 ' ~ h e  formula (13) is obvious if the final state is coherent with 
eigenfunction gl(r). It is also valid for other final states 
although gf(r) may not then be the eigenvalue of the operator 
q"' (r) but the sum of a ser ies  of eigenvalues (this follows 
from the possibility of expanding an arbitrary state in terms 
of coherent states). The condition for the validity of (13) is 
that the convergence of this ser ies  is rapid enough. 
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Electron-electron weak interaction in atoms and ions 
V. G. Gorshkov, G. t. Klimehitskaya, L. N. ~abzovski, and M. Melibaev 

Leningmd Institute of Nuclear Physics, USSR Academy of Sciences 
(Submitted October 18, 1976) 
Zh. Eksp. Teor. Fiz. 72, 1268-1274 (April 1977) 

We discuss parity-nonconservation effects in twoelectron atoms and ions, arising as the result of electron- 
electron neutral weak currents. Calculations are presented for the energy levels and transition probabilities 
for excited states of twoelectron ions, and crossing of levels of opposite parity is observed in the region of 
charge 2- 37, which is the most suitable for observation of these effects. In the vicinity of this crossing 
the quantities characterizing the degree of parity nonconservation are of the order -lo-'. 

PACS numbers: 31.90. +s, 32.70. -n 

The observation of neutral weak currentsC'' has led 
to intensive searches for electron-nuclear weak inter- 
actions in atoms. ["" All methods of detection of weak 
interactions between an electron and a nucleus in an 
atom at low energies are  based on the assumption of 
nonconservation of parity in neutral currents. The e1.e~- 
tron-electron weak interaction in atoms should have, 
apparently, the same order of magnitude as the electi?on- 
nuclear interaction. In observation of electron-elec- 
tron weak interactions it i s  necessary to consider pro- 
cesses in which the electron-nuclear weak interaction 
is suppressed. Such processes are  the emission of pho- 
tons from atomic levels which have orbital angular mo- 
menta I greater than unity. ['I 

Because of the centrifugal barrier, the wave functions 
of the electrons go to zero as Y' as r -  0, where r  is the 
distance from the center of the nucleus. The weak in- 
teraction, which does not conserve parity, has zero 
range and i s  proportional to a. p, where a is some axial 
vector composed of the spins of the interacting particles 
and p is the momentum operator. The product of the in- 
itial and final wave functions of the electrons goes to 
zero as rr l ' ' 2 ,  where ll and l2  are the orbital angular 
momenta at the beginning and end of the process. The 
momentum p removes one power of r .  Therefore after 
integration over the nuclear volume the matrix element 
of the weak-interaction potential turns out to be propor- 
tional to (~/a)'2"1", where R and a are  the radii of t i e  

with S-P transitions by at least a factor R/a- lo5, while 
the matrix elements of electron-electron transitions 
have their previous value. l' This statement remains 
valid even for  large nuclear charges 2, where relativis- 
tic effects a re  important and it i s  necessary to use Dirac 
Coulomb functions. 

The weak interaction U,, which is invariant with re- 
spect to time reversal and which does not conserve spa- 
tial parity, can be constructed only from the product of 
vector and axial currents. ["'I The electron-electron 
interaction contains only two independent relativistic in- 
variants: 

Uw=2-"Gg(y,) I(7,~r)z 
+2-"Gh(owqv) !(7,71) 2 

+(l==2), 
(1) 

where G = 1. Ox l~"m;~,  mp is the proton mass, g and h 
are certain constants, and the subscripts 1 and 2 refer 
to the first and second interacting electrons. The iden- 
tity of the electrons i s  taken into account by antisym- 
metrization of the wave functions of the initial and final 
states. 

In the nonrelativistic approximation interaction (1) 
takes the form 

U, ,  =2-"Gg(o,-oz) (v,+--v,+)+2-"G(g+h) [a, X 1 

x (vt--v,-) + (I=-2), (2) 
nucleus in the atom. For interaction with the nucleurl where vi = (pi + p;)/2m; u,, pi, and pi are the Pauli spin 
the matrix elements between S and P states turn out t.o matrices and the initial and final momenta of the i-th 
be nonvanishing as R/a - 0. The matrix elements of %the electron. The second term of (1) contributes only to the 
electron-electron interaction include integration over second term of Eq. (2), while the first  term of (1) con- 
the entire volume of the atom and do not have parametric tributes to both terms of Eq. (2). Therefore for sim- 
smallness, which depends on the magnitude of the orbital plicity we have carried out all calculations by setting 
angular momenta. Therefore the matrix elements of the h=O, g=l.  
transitions P - P, D - S, and so  forth for the electron- 
nuclear weak interaction are  suppressed in comparison In coordinate space the interaction (1) takes the form 
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