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The leading nonasymptotic terms in the Migdal equation of state are determined by the c-expansion 
method to order c2. The contribution of the additional terms is related to the susceptibility of the system 
and is proportional to x - ~ ' ~ .  The equation of state is determined by the expression H X * + ~ ) ' ~  
= Q , , ( M ~ ' ~ ) +  c c p , ( ~ x ~ ' ~ )  x - ~ ' ~ .  The functions cp,(m) and cp,(m) have a simple form and are determined 
by formulas (3.5) and (4.4). 

PACS numbers: 64.10. + h 

1. INTRODUCTION tained in different experiments for different substances 
frequently do not coincide (cf. ['I), even though current Substantial progress in the description of critical 
theory requires them to be universal. The principal in- phenomena has recently been achieved. Using a method 

developed by himself, ~ i l s o n [ "  has found the f i rs t  terms accuracy in their determination is evidently associated 

of the c-expansion for the critical indices to order c2 with systematic errors-in particular, with the use of 

( E  = 4 - d; d is the dimensionality of space). I t  was the pure-power, asymptotic laws in the whole range of 

found that the coefficients of c and c2 a r e  small and for the fitting. But i t  is completely unclear beforehand 
whether any particular region of measurements is asymp- 

E = 1 give values of the indices that a re  close to the ex- 
perimental values. This circumstance served a s  a stim- totic. The natural criterion for applicability of the as- 

ulus for  the determination of other universal quantities ymptotic laws in the analysis of the experimental data is 
that the nonasymptotic terms be small compared with the too. The f i r s t  three terms of the c-expansion of the 
experimental error.  Strictly speaking they should be, equation of state of the Ising model were determined by 
to use the terminology of mathematical statistics, in- Avdeeva and Migdal, and also by ~ r k z i n ,  Wallace and 

Wilson. significant, i. e. , systematic (albeit, possibly, small) 
deviations of the experimental points from the asymptotic 

However, i t  is essential to note that the results ofC2] dependences should be absent. Thus, taking nonasymp- 
a re  applicable only in the immediate vicinity of the crit- totic terms into account should lead to a more rigorous 
ical point. As we move away from i t  there ar ise  addi- appraisal of the degree of universality of the experimen- 
tional terms, [31 a knowledge of which is important for the tally obtained quantities. 
following reasons. First, they give the possibility of 
determining whether the experimental investigations are The other topic in which the determination of noniis- 

being carried out sufficiently close to the &tical point, ymptotic terms can play an is the descri~-  

and, secondly, they give the possibility of describing the tion of the behavior of matter, e. g. 9 a liquid and a dense 

substance in a wide region about the critical point. We gas, in a wide interval of the parameters of state. In 

shall discuss these questions in more detail. such an approach, as was noted id5], the universal scal- 
ing equation of state in the critical region can be used as 

The techniques of present-day experiments in the study the "zeroth" approximation. It is found that in practical- 
of critical phenomena make i t  possible to obtain reliable ly the whole region t< 1 and I = I (p - p,)/p,l < 1 the &- 
results (with e r ro r  - 0.1-1% for  the specific heat, fo r  crepancies between the asymptotic dependences and the 
example) near the transition point, down to values of experimental data a re  not large and can, apparently, be 
t = ( ~ -  T,)/T, of the order of 10-'-10-~, where T is the described by the introduction of non-asymptotic terms. 
temperature. On the other hand, since i t  is known that ~ h ,  important point here is that these turn out to be uni- 
the theory is asymptotic in character, the fitting of the versal to the same degree as the asymptotic equation of 
experimental data by the corresponding power laws, state. CS*81 
which define the critical indices, is usually carried out 
for I tl 5 10-2-10-1. The best critical-index values ob- The f i rs t  results in the determination of the nonas- 
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ymptotic terms were obtained The critical index 
A, which determines the behavior of the nonasymptotic 
terms, and the contribution of these terms to a number 
of quantities determining the behavior of the system near 
the critical point were calculated inCB1. In the present 
paper the leading nonasymptotic terms in the equation 
of state a r e  determined by the Wilson method to second 
order inclusive in E, for systems with a one-component 
order parameter. 

2. METHOD OF CALCULATION 

We shall discuss the calculational method used. The 
Hamiltonian of the problem under consideration has the 
form 

where d is the dimensionality of space and u, is an inter- 
action constant. 

The correlation functions calculated in the theory a re  
obtained in the form of series in u, and E. In order to 
obtain critical behavior of these functions that is inde- 
pendent of u, i t  is necessary to sum the entire series. 
However, by means of the renormalization-group equa- 
tions['] i t  can be shown that there exists a choice of cou- 
pling constant u,* such that the expected critical behavior 
is obtained in the f i rs t  orders of perturbation theory. 

For subsequent use we note the followic, goint. Since 
the quantities being calculated have a universal char- 
acter, i. e., do not depend on the method of cutoff, for 
d = 4 - E i t  is most natural to make use of the method of 
't Hooft and ~el tman"]  to regularize the integrals en- 
countered. It then turns out, however, that the calcula- 
tion of the coupling constant u,* by "matching" the power 
behavior of the amplitude u, to the perturbation-theory 
series for i t  leads to %*-a. It is necessary, therefore, 
to go over to the renormalized theory. This implies go- 
ing over from (2.1) and the unrenormalized Green func- 
tions I"'N'(t, u,, k t )  to a Hamiltonian of the form 

and to the renormalized Green functions 

r(F)(r,~,,p. k i ) = z : / '  ( ~ , ) r " ~ ' ( t .  u". k t ) ,  
G- ' (r ,  u,, p, k ) = Z 3 ( t i , )  ( G 1 ( t .  110. k ) ) - I .  

Here, 

The momentum p has been introduced to fix the dimen- 
sions and can henceforth be put equal to unity. The 
constants Z1, 2, and the renormalized mass can be de- 
termined from the initial conditions, e. g., 

dG-' ( k ,  p, u ,  r=0)  
G-' (k=O,p, u,,  r )  =r, 

h-0 (2. 5) 
u,(k=O, u,, r=p )  =u,pZ. 

Then 

The connection between the unrenormalized and renor- 
malized theories is effected by the relations (2.3), (2.4). 
The dependence of the bare Green functions in the re- 
normalized theory on r and k is the same as in the un- 
renormalized theory, since they differ by the factor 2,. 

The specified value u$ - .o corresponds to the quantity 
u12,(u,)2~(ul) becoming infinite a t  a certain value u:. 
This value u: is defined as a ze ro  of the Gell-Mann- 
Low function 

The function gu,)  has a finite limit as E - 0, and can be 
found by perturbation theory. In our case, 

For  small deviations of the coupling constant from its 
value at the fixed point the behavior of the system will 
differ from the asymptotic behavior. The most impor- 
tant corrections to the asymptotic laws can then be de- 
termined as a derivative with respect to the coupling 
constant a t  the fixed point'81; this corresponds to the 
contribution of the "irrelevantJ' cp4 operator to the quan- 
tities under consideration. 

3. EQUATION OF STATE IN THE RENORMALIZED 
THEORY 

Before proceeding directly to the calculation of the 
nonasymptotic terms in the equation of state we shall 
give a derivation of the asymptotic equation of state in 
the framework of the method under consideration. 

In the Hamiltonian (2.1) we separate out the zeroth 
Fourier component 

which has the meaning of the macroscopic magnetiza- 
tion. Denoting the corresponding Hamiltonian a s  ~ ( 9 6 ,  
cp;), we obtain the equation of state in the form[83 

where h is the magnetic field. The averaging in (3.1) is 
performed over the distribution function exp{-%(pi, 
cp;)/~}. Here, to the necessary accuracy -c2, in the ex- 
pression for the field i t  is necessary to take into account 
the following diagrams: 

Here a vertex corresponds to the coupling constant u,, 
an external line with a blob a t  the end corresponds to 
the magnetic moment cp;, and the internal lines corre- 
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spond to the bare Green functions (G$"= t + i  uo(q$+d. 

In the expression (3.2) we change to the renormalized 
quantities introduced in Sec. 2. In addition, since 
q,(q;)' is of zeroth order in c,L81 we carry out an addi- 
tional renormalization of the magnetic moment and mag- 
netic field: 

As a result we arrive a t  the following relation between 
the magnetic field H, magnetic moment M and suscep- 
tibility x = 2,~~': 

where 

and the prime denotes differentiation with respect to r. 

Since the field H in (3.4) is a function of the magnetic 
moment and of the susceptibility X, the expression ob- 
tained should correspond to the Migdal equation of 
statecg1 defined by the function qo(m) (the isocline of the 
family of isotherms) in the relation H ~ ' ~ ' ~ ' ~ ~  = VO(MX~/ 7). 
I t  follows fromcs1 that the coefficient of M3 is proportion- 
a l  to X"+2B1y and that of @ is proportional to x". In the 
expression (3.3) the coefficient of M3 is proportional to 
X- F / z + ~ ~ I s ~  , which corresponds to the expression quoted, 

when the &-expansions for the critical indices a r e  sub- 
stituted in the latter. The coefficient of lkf is verified 
analogously. Choosing the quantity M ~ ~ / ~  as the argu- 
ment, we arrive a t  the following expression for the 
function cpo(m) in the Migdal equation: 

Thus, the Migdal equation has been obtained by a direct 
calculation. 

4. NONASYMPTOTIC TERMS I N  THE EQUATION OF 
STATE 

We turn to the calculation of the nonasymptotic terms 
in the equation of state. We shall determine what 
changes occur in the isocline (3.5). As noted in Sec. 2, 
the contribution of the nonasymptotic terms can be de- 
termined by variation with respect to the coupling con- 
stant. In the expression (3.2), e. g. , the variation is 
performed with respect to q, for constant t and qh. I t  
should be noted that, to the required accuracy, i t  is not 

( I ,  and I, a r e  defined in (3.4)). The coefficient c is an 
additional scale factor that cannot be determined in the 
theory. 

One further remark relates to a e  fact that the nor- 
malization coefficients in the asymptotic equation of 
state contain the coupling constant and, on variation with 
respect to the latter, mixing of the asymptotic and non- 
asymptotic terms occurs. Therefore, in order to de- 
termine the structure of the nonasymptotic function in 
the expression obtained, and the critical index A deter- 
mining the behavior of the nonasymptotic terms, we re- 
quire a knowledge of expressions proportional to the 
squares of logarithms (which requires an additional cal- 
culation of three-loop diagrams). I t  is possible, how- 
ever, to make use of the fact that the index A is deter- 
mined by the derivative of the Gell-Mann-Low function 
a t  the fixed pointts1: 

which coincides with the expression obtained inc6] (here 
v = i + &/I2 + . . . is the correlation-length index). Sepa- 
rating out in (4. l) the terms corresponding to A and per- 
forming the renormalization of the coefficients, we ar- 
rive a t  the following expression for the equation of 
state: 

In (4.3) the function cpo(m) is determined a s  before by 
the relation (3.5), and cp,(m) is equal to 

cp, ( m )  =mgi-eh5. (4.4) 

It should be noted that the convergence of the function 
ql(m) in E is worse than that of the critical indices and 
the asymptotic function cpo(m). 

As can be seen from (4.3), the contribution of the non- 
asymptotic terms has been found to be related in a nat- 
ural  way to the magnitude of the susceptibility of the sys- 
tem. The appearance of the additional terms in the 
equation of state must be taken into account in compar- 
isons with the experimental data; otherwise, splitting 
of the experimental points on the graph of the dependence 
of H ~ ' ~ + ~ ) ~ ~  on M~~~~ will occur. Inasmuch a s  the &-ex- 
pansion gives only approximate values of the indices, the 
quantity A must be regarded as an adjustable parameter. 

From (4.3) i t  follows, in particular, that the suscep- 
tibility of the system in zero field is determined by an 
expression of the form 

necessary to take into account diagrams of higher order, 
since the renormalization (3. 3) carried out on the mag- which was obtained earlier inL6]. Analogous corrections 

netic moment restores the necessary order in the cou- also ar ise  in other quantities-e. g., in the dependence 

piing constant. We present the expression fo r  the mag- of the specific heat and spontaneous magnetic moment* 

netic field with allowance for the additional terms that AS the transition point is approached, when these terms 

arise: can be neglected, we obtain the usual asymptotic depen- 
dences and the expression (4.3) goes over into Migdal's 

~=i-‘11- ‘M [ I+ /.U,Z, ( u , ) I , ' +  /,u, (I , ' )?-u ,?I; ]  asymptotic equation of state. 
+'l,u,'1tl"I,'I,"+'/31,"] +C {iFI [ l+Ju,Z, ( u , ) I t l  
+ /,u, ( I , ' )  - ; r t ,  I "1-OU,',II [I, 'I ,"T 1 , ~ , " ] )  (4.1) I am grateful to A. A. Migdal for supervising the 
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work, G. M. Avdeeva and A. A. Belavin for many dis- 
cussions on the questions touched upon here, and M. A. 
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The absorption by nuclear spins of an ultrasonic wave whose direction of propagation and polarization 
correspond to the cooperative Jahn-Teller macrodeformation effect is investigated in crystals of the 
TmVO, type. A dispersion equation that describes the coupling between electron-phonon modes and 
nuclear spins due to the hypertine interaction of the dipole type is obtained by the Green's function 
method. It is shown that resonance absorption occurs in the case T <  T,, with an intensity proportional to 
H:H: (Hz is the projection of the magnetic field vector on the crystallographic axis c). The resonance is 
of an interference type. Interference of the absorption contributions of the quasi-nuclear and quasi-phonon 
spectrum branches produces an asymmetry of the resonance curve. 

PACS numbers: 76.60. - k 

The method of acoustic nuclear resonance (ANR) was 
successfully applied to the study of the dynamic interac- 
tion of atomic nuclei with internal fields in crystals.[''31 
One of the forms of such interaction is the dipole inter- 
action of the magnetic moment of the nucleus with the 
local magnetic field of a paramagnetic ion, modulated 
by lattice vibrations. In crystals with the cooperative 
Jahn-Teller effect (CJTE),L4s53 the indicated hyperfine 
interaction, together with the electron-phonon interac- 
tion, leads to the coupling of the subsystem of nuclear 
spins with the electron and phonon subsystems. Since 
the interaction of the electron states with the lattice is 
appreciable in Jahn-Teller crystals as a consequence of 
orbital degeneracy of the ground state of the ions, the 
nuclear spin-phonon coupling caused by the electrons 
can be very effective. For  this reason, i t  turns out to 
be possible to obtain information on the dynamic elec- 
tron-phonon coupling by ultrasonic studies of the sub- 
system of nuclear spins in crystals with CJTE, as  well 
as  by changes in the state of the electron subsystem due 
to structural phase transitions that a re  characteristic of 
Jahn-Teller crystals. Moreover, crystals with a funda- 
mental non-Kramers doublet of Jahn-Teller ions a re  
characterized by a peculiar combination of elastic and 
magnetic properties, a s  a consequence of the mutual 
suppression of distortion of the crystal lattice and the 
magnetic moment, caused by the external (or internal) 

magnetic The mutual suppression of the struc- 
tural and magnetic orderings leads to singularities of 
the temperature and field dependence of the nuclear ab- 
sorption of ultrasound, caused by the hyperfine interac- 
tion. 

So far,  CJTE has been most widely investigated in the 
rare-earth vanadates, arsenates and  phosphate^.'^' In 
the present paper we consider sound absorption by nu- 
clei in crystals of the TmVO, type (local symmetry D,,, 
the ground state of the ~ m ~ '  ion is a non-Kramers dou- 
blet, and the nuclear spin of ~ m " '  is I = i). 

1. The interaction operator of the electrons with the 
lattice vibrations in such crystals is of the form 

where 4 is the electron operator on functions of the 
fundamental doublet, b is the operator of the phonon 
field, m enumerates the sites, and z is the wave vector 
and branch of phonons. Since only the z component of 
the orbital momentum is conserved in systems with 
symmetry D,,, the hyperfine dipole interaction of the 
magnetic moments of electrons and nuclei at a single 
site can be written in the form 
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