
Nonlinear helicon resonance in an aluminum plate 
V. I. Bozhko and E. P. Volski 

Institute of Solid State Physics, USSR Academy of Sciences 
(Submitted June 23, 1976; resubmitted August 13, 1976) 
Zh. Eksp. Teor. Fiz. 72, 257-261 (January 1977) 

The frequency dependence of the first resonance of helicon standing waves in an aluminum plate at a 
constant magnetic field intensity has revealed the following: a shift of the resonance peak, asymmetry of 
the resonance curve and the appearance of signal extinction on the curve with increasing amplitude of the 
current that excites the helicon. The effect is observed at temperatures between 0.5 and 1.5 K in the 
fields of 5-30 kG, when the de Haas-van Alphen oscillations of the resonance frequency of the sample 
exceed the width of the resonance curve by a factor 5-10. The effect is the greatest at the maxima and 
minima of the resonance frequency as a function of the magnetic field intensity; it is practically absent for 
those magnetic field intensities for which the resonance frequency assumes values corresponding to a zero 
amplitude of the de Haas-van Alphen effect at increased temperature (4.2 K). The amplitude dependence 
of the position and shape of the helicon resonance is interpreted as the consequence of the nonlinear 
dependence of the magnetic moment of the metal on the instantaneous value of the helicon field intensity. 

PACS numbers: 76.90. +d 

The de Haas-van Alphen effect leads, as has been 
established, [I1 to an oscillating dependence on the mag- 
netic field of the helicon resonance frequencies in a 
metallic plate. In specially fabricated aluminum sam- 
plesc2' characterized by the absence of a mosaic struc- 
ture, we succeeded in obtaining a spread of the oscilla- 
tion of the resonance frequency that exceeded by a fac- 
tor of 5-10 the width of the resonance curve on the fre- 
quency scale. This allowed us to observe a very pro- 
nounced effect of the dependence of the position and 
shape of the resonance curve on the amplitude of the 
field exciting the helicons. 

The experiments were conducted in the temperature 
range 0.5-4.2 K. A magnetic field up to 60 kG was 
generated by a superconducting coil with a switch for 
conversion to the short-circuit mode. The sample was 
a plate measuring 7 x 7 x 0.6 mm, made of aluminum 
with a room to liquid-helium resistance ratio 2x lo4. 

Using first the method of crossed coils in the helicon 
generator regime, we recorded the resonance fre- 
quency of the sample as a function of the magnetic field 
(Fig. 1). Then, fixing the magnetic field at a number 
of points within the period of a single oscillation, we 
plotted at each one the first resonances of the helicons 
in the plate in the case of symmetric excitation, as a 
function of the frequency of the exciting signal at  differ- 
ent amplitudes in the exciting coil (Fig. 1). The stron- 
gest nonlinear effect is observed with a fixed field at  the 
maximum or minimum oscillations of the resonance 
frequency (points of type 1 and 2 in Fig. 1). In this 
case, upon increase of the amplitude of the exciting cur- 
rent, the maximum of the resonance curve shifts toward 
a position corresponding to zero amplitude of the 
de Haas-van Alphen effect; the leading edge of the reso- 
nance curve becomes steeper, and interruptions of the 
signal appear with hysteresis, depending on the direc- 
tion of the trace. When the maximum field of the heli- 
con along the thickness of the plate (by estimate) is 
greater than about twice the period of oscillation of the 
de Haas-van Alphen effect, the resonance curve reaches 
a null position and again becomes symmetric. At points 
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of type 3 in Fig. 1, the nonlinear effect is virtually ab- 
sent. 

The effect has been observed both on oscillations from 
zone III of the y orbits as well a s  from orbits of zone I1 
of the Fermi surface of aluminum, and is interpreted 
as a consequence of the nonlinear dependence of the 
magnetic moment on the instantaneous value of the heli- 
con field. The ratio h f / ~ f o  can serve a s  a quantitative 
measure of the nonlinear effect; here 4fo is the 
de Haas-van Alphen shift in the resonance frequency of 
the sample a t  some fixed magnetic field, and @ i s  the 
nonlinear shift of the maximum of the resonance curve 
from its position at  a vanishingly small amplitude of 
the helicon at  the same magnetic field. The indicated 
ratio, if our interpretation is valid, should be a function 
of the quantity ~ , , / A B ,  where bo is the mean amplitude 
of the helicon in the sample, and AJ3 is the interval of 
the magnetic field between neighboring maxima or 
minima of the resonance frequency as a function of the 
magnetic field. The quantity A23 varies in proportion 
to the square of the magnetic field, and the field bo is 
proportional to the Q of the resonance, i. e . ,  to B and, 
of course, to the amplitude of the exciting current. 

Thus, fixing the magnetic field at  one and the same 
position on the oscillation of the resonance frequency of 
the sample, we must vary the current in the exciting 
coil in inverse proportion to the number of the oscilla- 

FIG. 1. Resonance frequency of the sample vs the magnetic 
field (single curve) and the resonance curves of the f i r s t  num- 
be r  of the resonance of helicons a t  fixed magnetic field at  
points 1 and 2 a t  different values of the exciting current: a- 
I = 0 . 3  mA, b-I=3.0 d, c-I= 10 d, d-Z=100 d. When 
the exciting current was varied, the gain of the system was 
changed in the opposite direction by a corresponding amount. 
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FIG. 2. Relative nonlinear shift of the maximum of the reso- 
nance curve of the sample ( A  f / A  fo) at fixed magnetic field, at 
points of type 2 in Fig. 1, vs. the ratio of the mean amplitude 
of the helicon to the period of oscillation ( b o / A B ) .  The scales 
of both axes a re  logarithmic. The straight line corresponds 
to the quadratic dependence. A-T = 0 . 8  K ,  B  = 9 . 0 0  kG, 
0 - T = O . 8 * ,  B = 1 1 . 8 0  kG, 0 - T = O . S K ,  B z 1 9 . 1 5  kG, 
0 - T = O . 5  K ,  B = l l . 3 0  kG. 

tion, in order to obtain the same nonlinear effect. If 
we plot Af/Afo against bo/AB, then the points corre- 
sponding to different oscillation numbers should lie on 
one and the same curve. 

The described scaling effect is illustrated in Fig. 2. 
The entire phenomenon is, on the whole, similar to the 
resonance of an oscillator with a nonlinear element, 
known in radio engineering and mechanics. '" Never- 
theless, it is useful, for our case of helicons with the 
de Haas-van Alphen effect, to describe it mathematical- 
ly, albeit partially and approximately. We consider the 
propagation of a helicon wave in half-space, using a 
cartesian coordinate system x,, x,, x,, such that the 
x3 axis is normal to the surface of the metal. All the 
fields and the currents of the wave a re  functions only of 
a single coordinate, x,. The wave propagation is deter- 
mined by the two-dimensional magnetoresistance ten- 
 SO^'^'^ 

The initial wave equations a re  of the form 

d'h, d2h2 4n db, 
a,-+-=-- azh, , d2hl 4n dbz 

az: az: czp ,2  a t  , --a = - - -  a ~ , '  azSz c2p,2 at . (2) 

The component b, of the helicon field is equal to zero. 
The de Haas-van Alphen effect is taken into account by 
the relations 

h,=b,-4nJ1, ( B f b ) ,  h,=b,-4nM2(B+b) (3) 

Let the oscillating magnetic moment M be determined 
by the y orbits on a tube of zone 111 of the Fermi surface 
of aluminum. We confine ourselves to the simple situa- 
tion in which the constant magnetic field is parallel to 
the fourfold axis, which coincides with the x, axis. The 
axes x1 and x, a r e  s o  chosen that the four tubes of the 
zone III, which make angles of 45' with the x, axis, lie 
in the planes xlx3 and xzx3, respectively. In this case, 

= Ml(b,), IM, = M,(b2) and the wave equations (2) re- 
duce to the form 

In the derivation of these equations, we have neglected 
the quantities a, and orz. We note also that the deriva- 
tives of the magnetic moment in the coefficients of Eqs. 
(4) a re  taken not at zero but at  some instantaneous value 
of the helicon field b. 

We assume that the magnetic moment of one tube can 
be written down in the form 

m,=m,n, sin (2nF,ln,(B+b)), (5 

where n i  is a unit vector in the direction of the tube. 
The total magnetic moment is determined a s  the vector 
sum of terms of the type (5). 

We now introduce a certain characteristic amplitude 
of the helicon b, such that b1 = b, fl (x3, t), bz = bO fZ(x3, t), 
where fl and f, a r e  wave functions, with rms  times o r  
coordinates on the order of unity. Calculating the de- 
rivatives of the components of the total magnetic mo- 
ment of all  four tubes, expanding them in a series in 
bo/AB, where A B is the period of the oscillations in 
the direct field, and retaining only the square terms of 
the expansion, we obtain the following approximate wave 
equations : 

where 

The equations (6) describe only the initial state of the 
nonlinear behavior of the helicon, when its amplitude is 
significantly smaller than the de Haas-van Alphen pe- 
riod. If the nonlinear parameter here is E << l, then 
the approximate solution (6) can be obtained by the sub- 
stitution 

where gl(s +2n) =gl(s), g2(s +2n) =gz(s). In first-order 
approximation in E we obtain the dispersion relation 

and the solution of (6) in the form 

jr=sin(ol-kx,) -BE sin 3(o t -kx , ) ,  

where j3 = 1/24. Thus, in the given approximation, the 
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deviation of the wave from sinusoidal and of i ts  polar- 
ization from circular a re  quite insignificant. 

We write the condition of symmetric resonance of 
the standing waves in a plate of thickness 2d in the form 

Here we consider a steady-state standing wave in a 
plate, with a certain wave-amplitude distribution that 
is symmetric relative to the symmetry plane of the 
plate. The dependence of k on x, i s  determined by the 
relation (9), where E = E (x,). 

In the approximation considered, we can substitute in 
(9) and (11) E = E ,  cos2k1 x3, where kl is the value of k in 
the linear regime. As a result, we obtain the following 
relation for the frequency of the first resonance: 

where wl,, is the resonance frequency in the linear re- 
gime. 

The value of the nonlinear shift in the resonance fre- 
quency i s  equal to 

where b ,  is the maximum amplitude in the middle of the 
plate. In the transition of the magnetic field from mini- 
mum to maximum & the shift (13) changes sign, but 
retains the same value. A significant asymmetry is 
noted experimentally in the nonlinear shift of the reso- 
nance frequency (curves l b  and 2b in Fig. I), which can 
be explained apparently by the nonsinusoidal dependence 
of the magnetic moment on the field. This asymmetry 
i s  quite marked on the left-hand f (H) curve of Fig. 1 

and is not taken into account in the calculation (5) above. 

We now compare numerically the experimentally ob- 
served nonlinear shift in the resonance frequency with 
that computed from Eq. (13). For curves l b  and 2b in 
Fig. 1, the shift in the maximum relative to the curves 
l a  and 2a amounts to 5 and 27 Hz, respectively. Sub- 
stituting in (13) the values obtained from the left-hand 
f (H) curve of Fig. 1, as  well a s  the value b ,  = 7 G, cal- 
culated for an excitation current of 3 mA, starting from 
the known parameters of the excitation coil and the Q 
of the resonance, we obtain a value of the nonlinear res- 
onance shift equal to 4.5 Hz. All the calculations were 
carried out accurate to 1%. Taking into account the 
rather approximate character of the foregoing analysis, 
the agreement with experiment for curve l b  should be 
regarded as  satisfactory. Curve 2b i s  severely dis- 
torted and the above approximation is scarcely adequate 
in this case. 

The authors thank V. A. Tulin for valuable comments 
in the discussion of the research. 
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