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A method is proposed for investigating the thermal fluctuations in an arbitrary system subjected to the 
influence of a dynamic perturbation (and in contact with a thermostat). An exact formula is obtained for 
the characteristic functional of the fluctuations of the macroscopic variables. The formula contains all the 
most general consequences of the basic postulates of statistical mechanics regarding the macroscopic 
variables. An infinite set of relations between the moment and cumulant functions of the equilibrium and 
nonequilibrium fluctuations (in particular, the Onsager reciprocity relations and the fluctuation-dissipation 
theorems) follows from the formula. The consequences of the additional assumption that the macroscopic 
variables are Markovian are also considered. 

PACS numbers: 05.20.Gg, 05.40. +j 

I. Theorems that stem from the following general macrovariables under consideration is Markovian a re  
assumptions about the character of the macroscopic analyzed. Section 5 is devoted to a generalization of 
motion a re  of great importance in statistical thermo- the generating formula (4) to the quantum case. 
dynamics: 1) the microscopic motion obeys the laws 
of mechanics and is, therefore, reversible in time; 2) 
a system in thermodynamic equilibrium with a thermo- 
stat has a Gibbs distribution function (density matrix, 
in the quantum case); 3) the influence of mechanical 
external perturbations is described by an interaction 
Hamiltonian (linear in the external forces). From the 
reversibility in time follow the Onsager reciprocity re-  
lations, from the second and third assumpti& follow 
the fluctuation-dissipation theorems, and from the com- 
bination of all three assumptions follow the multi-index 
relations of nonlinear fluctuation thermodynamics. C'-6*101 

To derive these one uses perturbation theory, expanding 
the moments of the nonequilibrium fluctuations in ser ies  
in powers of the external forces. 

Efremov, "**I by the perturbation method, was the 
first to obtain three-index relations between the third- 
order moments of equilibrium fluctuations and the quad- 
ratic response of a system to an external perturbation. 
The analysis of the four-index relations, C4*8*101 however, 
has turned out to be extremely cumbersome, and i t  is 
impossible in practice to investigate the relations of 
higher order by the perturbation method. How to pre- 
sent the entire aggregate of information contained in all 
possible multi-index relations in a closed and visible 
form has, therefore, remained unclear. The answer to  
this question is given in the present paper. 

We show that the se t  of relations of different orders 
can be replaced by a single exact generating formula for 
the characteristic functional of the stochastic thermo- 
dynamic variables or  for the corresponding probability 
functional. The derivation, given in Sec. 2, of the fun- 
damental generating formula (4) from a classical me- 
chanical model and from the three aforementioned as-  
sumptions does not require the use of perturbation the- 
ory; it is an exact theorem, of which all the multi-index 
relations obtained previously and a large number of new 
relations a re  consequences. When formulated in terms 
of the probability functional (7) this theorem acquires 
greater simplicity and clarity. In Sec. 4 the conse- 
quences of the additional assumption that the se t  of 
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2. We shall consider a classical mechanical system 
with Hamiltonian Ho= Ho(a, P) ,  where o is the set  of 
generalized coordinates and B is the se t  of momenta 
canonically conjugate to them. We suppose that before 
the time t= 0 the system was in thermodynamic equilib- 
rium with the surroundings a t  temperature T and con- 
formed with the Gibbs distribution1' 

where q is the normalization constant. We assume that 
a t  time t = 0 external forces xk(t) began to act on the sys- 
tem, and the Hamiltonian took the form 

Here the macroscopic variables Q(t) = ~ ( c y ~ ,  P t, a re  con- 
jugate to the external forces; the values of the micro- 
scopic coordinates and momenta at time t a re  denoted 
by o t  and Pt .  We express Q(t) in terms of the initial 
values cyO and Po of the microvariables: 

where Q ~ [ ~ O ,  Po; x(B)] is a certain functional of the real- 
ization x(6) for t 3  620, determined by the equations of 
motion. 

In the following we shall use the symmetry of the equa- 
tions of motion under change of sign of the time. Under 
time reversal  the momenta change sign. If the equilib- 
rium Hamiltonian Ho does not contain a constant mag- 
netic field (or other time-odd parameters), then H0(a, 
- 8) = Ho(a, P) . Otherwise, i t  is necessary to reverse 
the direction of the magnetic field at the same time. We 
shall assume that the macrovariables Q(t) possess a 
definite parity under time reversal, i. e., Qk(cu, - P), 
= C ~ Q ~ ( N ,  P), where ek =* 1. The time reversibility of 
the mechanical motion implies that, for t 3  73  0, 

Here & is a diagonal matrix with elements &,. 
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The evolution and fluctuations of the variables Q(T) for 
t 2 ~ 2  0 a r e  determined by the characteristic functional 

where ~ ~ ( 7 )  a r e  arbitrary trial  functions, and jdarodpo 
is an integral over the whole phase space (the subscript 
x ( 0 )  on the averaging symbol indicates for which realiza- 
tion of the external forces the nonequilibrium average is 
taken). 

We shall elucidate which properties of the character- 
istic functional stem from the time-reversibility for- 
mulas (1). We introduce the quantity 

which, as  follows from the Hamiltonian equations of 
motion, gives the change in the internal energy of the 
system under the action of the external forces, i. e . ,  

Next we consider the average 

We substitute the equality (2) into this and then change to 
new integration variables art, @, using the fact that the 
Jacobian of the transformation from arO, Po to a', 0' is 
equal to unity. Transforming also the exponent of the 
first  exponential in the right-hand side of (3) by means 
of formula (I), we obtain 

Here we have taken into account that (in the absence of a 
magnetic field) D(a,  - P) = D(ar, P). 

Since the times t = 0 and t a re  in no way special, we 
can take -mas the start  of the action of the external 
force and put the upper limit of all the integrals equal 
to + -. Then, using the time -translation invariance of 
the unperturbed motion of the system, we arrive at the 
principal formula of this paper: 
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E = s(r) Q (7) dz. 5 (5) 
-- 

Formula (4) relates the characteristic functional~ of 
stochastic processes Q(t) for the forward and time-re- 
versed motions of the system. Inasmuch as, in its der- 
ivation, the Hamiltonian of the system was in no way 
made concrete, it contains all the most general conse- 
quences of the microscopic reversibility in respect of 
the macrovariables Q(t). It is not difficult to obtain a 
completely analogous formula fo? the characteristic 
functional of the variables J(t) = Q(t), which we shall call 
the currents: 

Here we have introduced the notation ;(T) = u(- T), ;(T) 
= x(- 7). 

The results obtained can be given a physically intuitive 
form i f  we write them not in terms of the characteristic 
functionals but in terms of the density of the probability 
measure in the space of the macroscopic trajectories of 
the system. Thus, being interested in the variables 
Q(t), we shall denote the probability-measure density in 
the space of the trajectories Q(t) (for given realizations 
of the external forces) by the symbol P[Q;x]. Then for- 
mula (4) is equivalent to the equality 

When x z  0, E I  0 and this formula states simply that the 
probabilities of the forward and time-reserved trajec- 
tories Q(t) and cQ(-t) a r e  the same. We integrate both 
sides of (7) over all trajectories Q(t). The integral of 
the right-hand side should be equal to unity, and we a r -  
rive at the interesting relation 

which holds for an arbitrary realization of the external 
forces. We also obtain this result from (4), when we 
put ~ ( 7 ) '  0. 

If we take into account that 

it follows from this and from (a), since the temperature 
is positive, that ( E ) >  0. Thus, for an arbitrary me- 
chanical external perturbation a system always absorbs 
energy, on the average, if i t  was originally in thermo- 
dynamic equilibrium. 

We shall discuss briefly the meaning of the results 
obtained, which can be interpreted in two ways. Inas- 
much as  the interaction with the thermostat was switched 
off simultaneously with the switching-on of the perturba- 
tion, formulas (4) and (6)-(8) characterize those prop- 
erties of the mechanical evolution of the system that 
stem from the reversibility and the special Gibbs form 
of the initial condition for the distribution function. The 
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temperature T here is simply a parameter of the initial 
distribution and pertains to the remote past, if the ex- 
ternal forces act for a long time. It is possible, how- 
ever, to assume that: l )  the external forces act only on 
a small part A of the whole system A + B  under consider- 
ation, and the variables Q(t) also pertain to the system 
A; 2) the whole system A + B  is in contact with the ther- 
mostat, but the energy of interaction with the thermo- 
stat is relatively very small and the role of the thermo- 
stat reduces to just the forming of the Gibbs equilibrium 
distribution in the absence of the external perturbations. 
Then, when the perturbation is switched on, in relation 
to the small subsystem A the large subsystem B  will 
play the role of a thermostat maintaining the tempera- 
ture T. In this case the parameter T in all our formu- 
las has the meaning of the constant temperature of a 
thermostat and pertains to the actual moment of time. 
In either of these two interpretations, the formulas (4), 
(7) and (8) characterize the excitation of the system from 
the state of thermodynamic equilibrium. 

We note that all  the formulas can be extended to the 
case when the Hamiltonian of the perturbation is non- 
linear in the external forces and internal parameters: 

H ( t ) = H , - h [ x ( t ) ;  Q ] ,  h ( e x ;  e Q ) = h ( x ;  Q ) .  

As follows from Hamilton's equations, in this case the 
functional of the absorbed energy E in formulas (4), (7) 
and (8) must be specified (in place of (5)) by the more 
general expression 

We shall consider next certain consequences of the basic 
formulas (4), (6) and (7). 

3. We shall obtain various relations between the equi- 
librium and nonequilibrium moment functions of the 
variables Q(t) and J(t) by applying functional differen- 
tiation with respect to u(t), x(t) to (4), (6) and (7) and 
then putting u(t) = x(t) = 0. Here it is necessary to invoke 
the principle of causality, according to which an arbi- 
trary moment function with time arguments tk does not 
depend on x(t) i f  t > t,. It is obvious that to any relation 
between the moment functions of the stochastic process- 
es  Q(t), J(t) there corresponds a relation, completely 
identical in form, between the cumulant functions. 

We shall give an example of the calculations. We 
multiply both sides of (7) by Q(t) and integrate over the 
trajectories: 

We differentiate this equality with respect to x(t,) and 
put x(t) = 0: 

where (. . . )o denotes an equilibrium average (in the ab- 

sence of external forces) and the factor c2 has an ob- 
vious tensor meaning. Let t > t,; then - t < - t, and, by 
virtue of causality, the right-hand side should be equal 
to zero. As a result we obtain the two-index fluctua- 
tion-dissipation formula 

(Here and below we omit the subscript x from the non- 
equilibrium averages. ) 

Completely analogously we can obtain the multi-index 
relations, which ar? written most simply in terms of 
the currents J(t) = Q(t). Without concerning ourselves 
with the calculations, we give here only the three- and 
four-index relations. We first introduce abbreviated 
notation, clarifying it by examples: 

etc., where all the rk* 0 and by (J. . . J) we mean either 
the moment or the cumulant functions of the currents. 
In this notation, after i t  has been differentiated with re- 
spect to t formula (9) takes the form 

Putting x=O in (6), we obtain the following symmetry 
relations for the equilibrium moment functions of the 
currents: 

In particular, for rk = 0 we have 

Consequently, i f  Qk is an even variable (cR= I ) ,  the 
equilibrium one-dimensional distribution of the current 
J, is symmetric, i. e., opposite directions of the cur- 
rent a r e  equally probable. From (10) and (11) for n = l, 
making the tensor notation explicit we obtain the Onsager 
reciprocity relations : 

We write out the three-index relations: 

The complete independent four-index relations have the 
form 
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Formula (12) expresses the third equilibrium cumu- 
lant function in terms of the second variation of the 
nonequilibrium average (J) with respect to the external 
forces; the first variation of the nonequilibrium corre- 
lation function can also be expressed in terms of this 
variation. The f our-index relations do not enable us to 
relate the equilibrium fourth cumulant to the nonequilib- 
rium averages. However, according to (13), the fourth 
equilibrium cumulant is determined by the second varia- 
tion of the nonequilibrium correlation function with re-  
spect to  the forces. These a re  the well-known results 
obtained inC1'4s6s101 for the quantum case by the method 
of perturbation theory and presented there in a (much 
more complicated) spectral form. Our method does not 
require the use of perturbation theory and makes i t  
possible to obtain multi-index relations from the exact 
generating formulas (4), (6) and (7) by a comparatively 
simple route. As a straightforward analysis of for- 
mula (6) shows, the equilibrium cumulant functions of 
orders 2N and 2 N +  1 can be expressed in terms of the 
variations of the N-th and lower nonequilibrium cumu- 
lant functions with respect to  the forces. We remark 
also that the formula derived by stratonovichcs1 that re-  
lates the two-dimensional equilibrium and one-dimen- 
sional nonequilibrium distributions of Q(t) follows from 
(4). 

4. We shall assume that the macrovariables Q(t) form 
a complete set, i. e., they uniquely determine their 
future. In this case i t  is natural to assume their fluc- 
tuations to be Markovian. We shall consider what in- 
formation about the kinetic operator of a Markovian 
process Q(t) can be extracted from the general formula 
(7). We shall denote the probability density of the sta- 
tionary nonequilibrium distribution for x(t) = x =  const by 
W%(Q), and the probability density of the equilibrium 
fluctuations by Wo(Q). We put Q(tk)a Qk and stipulate 
that t1*t2.. . 2 t,,. We take the trajectory of the external 
forces to be piecewise-constant: x(t) = xk = const for 
tk > t > tk,. We denote by the symbol V,,(Qk I a+,; xk, 
x,,, . . . ) the probability density of a transition from 
Qk+, to Qk in the time Tk" tk- tkrl (and if xm= 0 we shall 
not include xm among the arguments). 

We now put xk = 0 for k + 1, = 7, and x, = x. Formu- 
l a  (7) takes the form 

p [ Q ;  x ]  e s p  { - X ( Q ~ - Q ~ ) / T ) = P [ E ? ~ ;  ~ 4 1 .  

Integrating this equality over all trajectories with the 
two fixed points Q(t,) = Q, and Q(t,) = Q,, we obtain 

Vr(Qi  19%; x )  W , ( Q z )  erp { -+ (Q+-Qz) /T)  =Vr(eQz 180,; e x )  W o ( e Q , ) .  

(14) 
In the limit as 7 - m, Q1 and Q2 should become statis- 
tically independent, and therefore (14) becomes 

From this i t  follows that 

Next, let xk = 0 for k +  l , 2 .  From (7), by the pre- 
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vious method, we obtain 

From this and from (14), (15), i t  is not difficult to ob- 
tain the equality 

vr,(Q1 IQz; x,,  x2) V4(eQ3 I eQ2;  EX^) Wo(Qz) exp { -x i  (Q , -Q2) /T)  
=V7,(eQJIeQI;  E X * ,  E X ~ ) V ~ , ( E Q ~ I E Q , ;  E X , )  W o ( Q , ) ,  

integration of which over Q3 gives 

v ~ ,  Q2; X I ,  X Z )  Wo(Q2) e s p  { -x ,  ( Q , - Q 2 ) / T )  
=v,, (eQ2 I EQ,; € 5 1 )  W o  ( Q , ) .  

The right-hand side of this equality does not depend on 
x,, and, therefore, the left-hand side, i.e., V,,, also 
does not, in fact, depend on xz. 

Thus, in combination with the Markovian assumption, 
the time symmetry of the motion leads to the following 
important result: the probability density of a transi- 
tion from Q(t2) and Q(tl) depends only on x(t) for t, > t  >t2 
and does not depend on that part of the realization of 
the external forces that precedes the time t,. This 
means that the kinetic operator of the Markovian sto- 
chastic process Q(t) should depend in an instantaneous 
manner on the external forces. At the same time, we 
have obtained a symmetry property for the transition- 
probability density: 

The latter formula is equivalent to the following rela- 
tions between the kinetic coefficients K,,(x, Q): 

These restrictions, following from formulas (15) and 
(16), on the kinetic coefficients have been analyzed by 
Stratonovich. C1-91 However, in his papers, C7-g1 the re- 
lations (15) and (16) appear a s  initial postulates, and 
the external forces a r e  assumed to be constant. First, 
we have derived (15) and (16) from the more general 
nonmarkovian relation (7), and, secondly, we have 
shown that i t  is necessary to extend the results of 
~ t r a t o n o v i c h ~ ~ - ~ ~  to the case of time-dependent external 
forces (in this case the kinetic coefficients a r e  deter- 
mined by the instantaneous value of &)). 

5. In conclusion we shall derive the quantum equiva- 
lent of the classical time-symmetry formula (4). Inas- 
much a s  a quantum system does not have a trajectory, 
we cannot introduce for i t  a characteristic o r  probability 
functional, and i t  is necessary to consider the quantum 
moment functions directly. We denote by 

the equilibrium density matrix, and by Q(t), Ak(t) the 
Hermitian operators of the physical variables in the 
Heisenberg picture, which a r e  related to the operators 
Q, A, in the Schradinger picture by the formulas 
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Here and below the symbols e& and e 5  will denote, 
respectively, the chronological and antichronological 
ordering of the exponential, and the cross denotes the 
Hermitian conjugate. The nonequilibrium quantum mo- 
ment functions a re  determined by the formulas 

this equality in the form 

We now transform the initial average (17) in another 
way. We note that 

In order to find the time-symmetry relations for 
them, we shall consider the average 

assuming first, a s  in Sec. 2, that the external forces 
X(T) = 0 for 7 < 0 and that t > t k a  0. Using the properties 
of the trace Sp {. . . ) and the formula 

S ( T ,  0) =S+ ( t ,  T ) S ( ~ ,  O), 

it is not difficult to bring (17) to the form 

The values of (18) is not changed when the operator 
under the trace is replaced by its transpose. Therefore, 
denoting the transpose by a bar above, we can write, in 
place of (18), 

~ = S P  (S+( t ,  tdA,S( t ,  t,) . . . S+(t ,  t , )A ,S( t ,  t , )p) .  (19) 

We now recall that under time reversal any Hermitian 
operator (in the Schrodinger picture) goes over into its 
transpose. If all  the physical quantities under consider- 
ation possess a definite parity under time reversal, then 
x k = c k A k a n d G = c ~ ,  where&,=kl  a n d c = * l .  (Gener- 
ally speaking, the relations Ak = ckU +AkU and g= &U' QU 
hold, where U is a certain unitary opefator. However, 
the values of ~ p { .  . .)and of the moment functions re-  
main unchanged under any unitary transformation U, so  
that we can assume U=Z.) Furthermore, if the equi- 
librium Hamiltonian Ho does not contain time-odd param, 
eters, e.g., a constant magnetic field, then g o = ~ o .  
Otherwise, taking the transpose of H, is equivalent to 
reversing the direction of the magnetic field. Assuming 
that go= Ho and 3 = p ,  we obtain from (19) 

-- .- . 
i 

= exp {- \ [ H ,  - E X  ( t  - t ') Q ]  atf} . (21) 
0 

In the latter formula we have used the well-known rule 
for going over from a chronologically ordered exponen- 
tial to an antichronologically ordered one. 

It is easy to see  from formulas (20) and (21) that 
~ p { .  . .) in (20) coincides with the moment function with 
the time-reversed external force cx(t - T): 

Taking into account the time-translational invariance of 
the unperturbed motion of the system, we can rewrite 

We shall consider the derivative 
(23) 

d i 
- -Ha ( t )  = S+ ( t ,  0 ) - ( H ( t ) H o - H o H ( t ) ) S ( t , O )  
d t  h 

where we have introduced the operator J(t) n d~( t ) /d t .  
Hence follows 

I 

~ , ( t ) =  H,+E, E E  J x ( t ' ) ~ ( t ' ) d t ~ .  
0 

Substituting this expression (which is analogous to the 
classical expression (2)) into (23) and using the well- 
known formula 

in which A and B a r e  arbitrary operators, we obtain 

S+ ( t ,  0 )  pS ( t ,  0 )  = oxp - - r5@ EeEOm~' da )  p, - : i  
Finally, from this and from (17) and (22) we obtain the 
following desired result: 

The start  of the action of the external forces can now be 
taken at -w. The operator E in (24) is defined by the 
expression - 

E = J x ( t ) ~ ( t ) d t  
-- 

and has the usual meaning of the operator of the energy 
absorbed by the system in the presence of the external 
perturbation. 

The formula (24) relates the moment functions for the 
forward and time-reversed motions of the system. In 
the classical limit a l l  the variables become commuting 
variables and the order of the factors under the averag- 
ing symbol is unimportant. The exponential in the left- 
hand side of (24) acquires the form e"IT and the for- 
mula is considerably simplified: 

Replacing Ak by Qk here, we obtain a set  of relations 
equivalent to the generating formula (4). 
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Current fluctuations in semiconductors in the presence of a 
quantizing electric field 
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The current fluctuations in a semiconductor are investigated under the conditions for "Stark 
quantization". It is shown that the fluctuations may be anomalously large. The obtained dependence of 
the fluctuations on the parameters of the scattering system and on the width of the energy band allow us 
to reach definite conclusions about the nature of the energy dissipation and band structure of the 
semiconductor. 
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1. INTRODUCTION cording to this theorem the problem of fluctuations re-  

A number of art icles devoted to the investigation of 
semiconductors in strong electric fields have recently 
appeared. If the electric field is sufficiently strong 
(and the allowed band is relatively narrow), in such a 
field the electron is able to reach the top of the allowed 
band in energy space before being scattered. In such a 
situation the electron may undergo periodic motion in the 
Brillouin zone between collision events, which leads to 
qualitatively new quantum effects which a r e  not observ- 
able in weak fields. The general theory of kinetic phe- 
nomena in semiconductors in a strong electric field is 
developed in the art icles by Bryksin and Firsov. c1121 In 
the single-band approximation they obtainedc1] an ex- 
pression for the current in an  arbitrary electric field 
and an equation for  the distribution function on the basis 
of a diagram technique. A quantum transport equation 
is presented and also a number of specific physical situ- 
ationscZ1 a r e  investigated. Similar questions a r e  con- 
sidered by Levinson and Yasevichyute inc3], where the 
quantum kinetic equation is solved and the current is 
calculated for a model of scattering. It should be noted 
that the solution of the problem by Levinson and 
~ a s e v i c h ~ u t e ~ ~ ~  is of a less  general nature than the solu- 
tion by Bryksin and ~ i r s o d ' ~ ~ ~  since the authors ofc3] 
confined their attention to the case of weak electron-pho- 
non coupling and to a specific choice for the form of the 
electron band. 

It is known that the fluctuation-dissipation theorem is 
valid for a system in thermodynamic equilibrium; ac- 
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duces to a calculation of the-linear response of the sys- 
tem to an external perturbation. There is no such gen- 
eralized theorem for nonequilibrium systems, and in 
each specific case the calculation of the fluctuations re-  
quires special consideration. The theory of fluctuations 
in nonequilibrium electron-phonon systems is given in 

In these art icles current fluctuations were in- 
vestigated under the quasi-classical condition F>> tiw, 
where F denotes the average energy of the electron and 
w denotes the frequency of the fluctuations. High-fre- 
quency fluctuations in electron-phonon systems were in- 
vestigated inc7]. 

The present article is devoted to a calculation of the 
current fluctuations in semiconductors in a strong elec- 
tr ic field such that quantum effects due to the appear- 
ance of the "Stark levels"c81 begin to exert  influence on 
the quantum effects. The existence of these levels has 
been experimentally established. C9r'01 AS f a r  a s  the 
authors know, fluctuations under the conditions for quan- 
tization of the electron longitudinal motion have not been 
hitherto investigated. 

~ a r l i e r [ ~ * ~ '  a method was proposed for a calculation of 
the fluctuations, based on the equations of motion fo r  the 
quantum analog of the microscopic distribution function. 
In particular, this method enabled one to introduce out- 
side sources of fluctuations into the equation for the 
fluctuating part  of the distribution function without mak- 
ing any kind of assumption except those which a r e  used 
in the derivation of the corresponding kinetic equations. 
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