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FIG. 5. Temperature dependences of the relaxation t ime of 
the vortices af ter  the rotation i s  stopped. Curve 1-pure ~ e ~ ,  
curve 2-solution with C =3.03 at.'%, curve 3-solution with 
C =5.7 at. % ~ e ' .  

by Andronikashvili and ~ s a k a d z e " ~ '  and was subsequent- 
ly used many times by the Tbilisi group to investigate a 
great variety of relaxation phenomena in rotating he- 
lium 11 (due, e. g. , to changes in the temperature['B1 o r  
in the rotary speedc171). 

Figure 5 shows the dependence of the relaxation time 
to on the solution temperature. Curve 1 pertains to 
pure He4, curve 2 to a solution with an He3 concentl-a- 
tion C = 3.03, and curve 3 to a solution with C= 5 . 7  at.%. 
In all cases, a transition was effected from a rotation 
at an angular velocity (5, to an immobile stage. 

Examination of Fig. 5 shows that a s  the He3 concen- 
tration in the solution increases the relaxation times to 
decrease in the entire temperature range from - 1 . 5  to 
2.13 K. I t  must be assumed that, just a s  in the case 
of the critical velocity, this i s  caused by the fact that 
the ~ e '  particles dissolved in the He4 assume the role 
of the normal component of the liquid. 

The authors consider it their pleasant duty to thank 
i. L. Andronikashvili and Yu. G. Mamaladze for inter- 
est  in the work and for a discussion of the results. 
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Nonlinear cyclotron resonance in metals 
A. P. Kopasov 
Physico-technical Institute, ~ o r k i r  State University 
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Zh. Eksp. Teor. Fiz. 72, 191-202 (January 1977) 

Nonlinear reflection at the second harmonic frequency in the case of the anomalous skin effect is 
considered for a metal located in a magnetic field parallel to its surface. It is shown that the nonlinearity 
is much greater in this case than in the absence of the magnetic field. The amplitude of the reflected 
second harmonic undergoes cyclotron resonance oscillations and increases additionally when 0 = 1 /21 f lm,  
where 0 is the electromagnetic field frequency, 0, is the extremal cyclotron frequency, and 1 is an 
integer. 

PACS numbers: 76.40. +b 

The generation of higher harmonics of an electromag- nonlinear reflection, a t  the frequency of the second har- 
netic field in conductors has been studied experimentally monic, from a metal situated in a magnetic field paral- 
and theoretically in a number of papers. ['"I Harmonic lel to i t s  surface, in the case of the anomalous skin ef- 
generation in the presence of a magnetic field, however, fect, when the inequalities 
has been previously studied only under conditions of the 6 60 6 

normal skin effect, a t  low frequencies WT<< 1C4151 (W is -<i, -a, - < I ,  
UaT UP I.H 

(1) 

the frequency of the electromagnetic wave, T is the re- 
laxation time). In the present paper we consider the a r e  satisfied, where 6 is the skin depth, v, is the Fermi  
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velocity, Y, is the Larmor radius. The magnetic field 
H is assumed to be nonquantizing but strong: 

where 51 is the cyclotron frequency. I t  is also assumed 
that there a r e  no open trajectories. The dispersion law 
of the electrons is not specified. As shown below, the 
amplitude of the reflected second harmonic is much 
greater in this case than in the absence of the field, and 
undergoes cyclotron-resonance oscillations and in- 
creases additionally upon satisfaction of the condition 
w =+la, where 1 is an integer. The only case considered 
is that of practical importance, when the resonance is 
not too sharp and the anomaly parameter is a very small 
parameter of the problem. 

THE NONLINEAR CONDUCTIVITY TENSOR IN A 
STRONG MAGNETIC FIELD 

The kinetic equation for the electron distribution func- 
tion in a strong magnetic field is written in the form 

where t, is the time of motion along the trajectory, c is 
the energy, p, is the projection of the momentum on the 
direction of the constant magnetic field H, E(r, t) and 
H(r, t) a re  the alternating electric and magnetic fields, 
and fo is the equilibrium distribution function. 

We now calculate the derivative 

dt ,  a t ,  dp  
-=u- 
dt d p  dt 

The vector at,/ap is determined from the equations of 
motion in a constant magnetic field: 

It is obvious that the vector at,/ap is not determined 
uniquely, since the choice of the initial time tl along 
each trajectory is arbitrary. We shall reckon the time 
t, from the plane p,=O. Then, a s  follows from (5), 

where = u:+ u:. The integral in (6) is taken along the 
trajectory from a point p' in the plane p,= 0 to some 
other point p. 

We consider the expression 

where C is a close contour in the plane p,= const (see 

Fig. 1). Two sides of the contour C a r e  segmants of the 
trajectories passing through the points p and p+ Ap. By 
calculating (7), i t  is not difficult to obtain 

"'(IJ) c { M P ) x ~ ]  = -  [ ~ ( P I )  X HI, 
a p ,  e e  v; ( p )  U n ( ~ )  uLZ(p' )  k ( p l )  

where (Y = X ,  y; dl is the element of length of the electron 
trajectory in momentum space. For  arbitrary atl/ap,, 
we get directly from (6): 

at c dl au, L=-j-- 
d p ,  eH p .  ul2 a p l  

In the case of an isotropic and quadratic spectrum, i t  
follows from (8) and (9) that 

a t ,  c [ V X H I  -- = 
a p  e T 7  

Let the fields E(r,  t )  and H(r, t )  have the time depen- 
dence 

E (r ,  t )  =e-'"'E(r) +c.c., H ( I ,  t )  =e-'°'II(r) + C.C. 

We expand the functions E(r) and H(r) in Fourier inte- 
grals: 

E ( r )  = j d3k E ( k )  e"', H ( r )  = j dJkH(k)e"' .  

The nonlinear conductivity tensor o,,,(k,, lr;) is defined 
in the following manner: 

. ( 2 )  
la ( k ,  2 0 )  = j d3kt d3kz6 ( k - k l - k r ) ~ a ~ ( k t ,  k z ) E ~  (ka )E l (k i ) ,  (1 1) 

where jL2'(k, 2w)  is the Fourier component of the nonlin- 
ear  current a t  the second-harmonic frequency. 

Solving the kinetic equation by the iteration method, 
we obtain an expression for the nonlinear conductivity 
tensor o,,,(k,,k,) in the case when k, I1 &,,1 H. We shall 
assume that k, - k, - 6-'. We expand the distribution 
function f in a ser ies  in powers of the field: 

f = e - t ~ t  j d ~ k , f ( l )  exp( ik ,r )  +e-2'm'J d3k,  d3kj")  e x p ( i ( k , + k 2 ) r ) + .  . . (12) 

In the linear approximation, we obtain 
af(" a f o  

i ( k , v - o - i ~ - ' )  I"'+- = - e E ( k , ) v - .  
a t l  a e  

(13) 

Solving Eq. (13), we obtainc8' 

FIG. 1. 
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where T = 2n/SZ is the period of rotation of the electron 
in  the magnetic field. 

The equation for f '2' is of the form d 

k2 4 
dtl 

- 5 *jrdt,-  (F ( t2 ) exp { -  i u t J ) e x p  
i (kv-2o- ir -I )  f [ l l  + afc2'lat, o 4 

a t ,  af*' e dpl'  -- - - [ v X H ( k , ) l - - -  [ v x H ( ~ z )  I . - ,  (15) Substituting (20) in (171, we obtain double and triple in- 
a p  a t ,  apZ tegrals with respect to time, which can be calculated o r  

where k = k, +k,. In (15), we have taken into account: 
only the nonlinearity due to the Lorentz force, since i t  
predominates in the situation considered. The role of 
a nonlinearity that is quadratic in the electric field will 
be discussed later. 

estimated a t  r,/b >> 1 by the-stationary-phase method. 
At sufficiently large values of the parameter r,/6 (the 
exact cri teria will be given below), the principal con- 
tribution is made by those terms which contain only dou- 
ble integration with respect to time. The calculation of 
these double integrals is performed in the same way a s  

We get from Eq. (15) in the linear theory (see, for  example, Refs. 6, 7). 

1 , t T  a t  a f ( i l  ( t , )  a fC i '  ( t , )  The contribution to the nonlinearity from the term pro- 
- dt,  { [ v ( t 3 x H ( k 2 )  I - - - - + [ V ( ~ ~ ) X H ( ~ Z )  I , - - - }  portional to a f  "'/ape in Eq. (15) is calculated analogous- a p  a t ,  apZ 

ly. As a result, we obtain that the nonlinear conductivi- 

(kv-20-iT-t)  d t ~  ( e x p ( - i ~  (20+iT-l))-1)-1.  (16) ty ua6 has a part that depends smoothly on kl and k2, a s  1 well as a part  that undergoes geometric resonance oscil- 
lations, and is much less smooth. The principal contri- 

We consider first  the contribution made to the non- bution to the smooth part  of a,&, the only part of inter- 
linearity by the term proportional to af "'/at2. Calculat- est  to us, is obtained from Eq. (17). Omitting all the 
ing the nonlinear current jL2' (k, 2w), we obtain cumbersome calculations, we put down the final result: 

11+F X I  dtr pxp( i! .kv  - 201 - i r - 1 ) d t ' } [ v ( t z ) X ~ ( k 2 )  ] s { i ( k , v ( t . ) -  w - I T - ' )  
I, a p  The tensor Ca,,(k, w )  is of the form 

where c, is the Fermi energy. 

As is seen from (17), the nonlinear response at the 
frequency of the second harmonic increases in reso- 
nance fashion upon satisfaction of the condition r+, =+ la,, 
where 51, is the extremal cyclotron frequency and I is 
an integer. We shall call the resonance even if I is even 
and odd if I is odd. 

We calculate the integrals with respect to t,, t2, and 
t ,  in (17). For definiteness, we assume that the vectors 
k, and k, are  parallel to the y axis. We f i rs t  consider 
the following integral 

4t2 
t ,  

(k,v - u )  d l f }  j d t , ~  ( k . )  v  ( t , )  
ti 

The inner integral over t2 can be written in the following 
fashion: 

5 ' r d t 2 F  ( t , )  exp .p( i o t2 )  - exp i  kivdt 
k, , dt2 ( { 0 j '1) T d t i @ ( t 2 ) .  t2 (19) 

where n, is a vector normal to the Fermi  surface, ~ ( c p )  
= ~ ( a / 2 ,  cp) is the Gaussian curvature of the Fermi sur- 
face, Q and cp a re  the polar and azimuthal angles of the 
normal vector n, (the polar axis coincides with the y 
axis). 

In obtaining (21) and (22), we have also taken the fol- 
lowing equality into account: 

which follows from Eq. (8). It follows from (22) that 
u,,,(k, w) = E,,,(k, w) = 8,,,(k, w) = u,,(k, w), where 
ua,(k, w) is the linear conductivity tensor. If ct = P = y = z ,  
then the integrand in (22) has a t  n, = 0 a singularity that 
must be integrated in the sense of i t s  principal value. 
I t  is also seen from Eq. (22) that the contribution of lon- 
gitudinal fields to the transverse current is insignificant, 
a s  in the linear theory. 

Estimating the terms discarded in the derivation of 
(21), i t  is not difficult to establish that their contribution 
is small if the inequalities 

Integrating by parts, we obtain ( rH/6 ) '"B1 ,  (r , /6)  '"Wo/Q (24) 

a re  satisfied. 5 (F ( t , )  e x p { -  iu t ,  + i 
k2 Furthermore, some limitations exist on the range of 
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applicability of E; (21). Actually, as follows from (21), 
the nonlinear response a t  resonance, as also in the lin- 
ear case, increases by a factor of 517 in the case of a 
square-law dispersion and by a factor of ( 5 1 ~ ) " ~  in the 
case of a nonquadratic dispersion law. It follows from 
the inital equation (17) that the nonlinear current in- 
creases unboundedly as T- in even resonance, and is 
proportional to (51~)' in the quadratic case and propor- 
tional to in the nonquadratic case. Consequently, 
the terms that were discarded in obtaining Eq. (21) have 
a stronger singularity in even resonance than those taken 
into account. Therefore, in order that the expression 
(21) remain valid even a t  w = IO,, the parameter wr 
should not be too large. Estimates show that the in- 
equality 

must be satisfied. A similar restriction appears also 
in the range of frequencies w<< 51, since the specified 
situation is also resonant. It can be established that 
even in this case, upon satisfaction of (24) and the fol- 
lowing condition: 

formula (21) remains valid. We note that the satisfac- 
tion of the inequality (26) is generally not essential. In 
some special cases, for example in the case of an iso- 
tropic and quadratic dispersion law, the validity of the 
expression (21) in the range of frequencies w << 51 is as- 
sured by satisfaction of the conditions (24) and satisfac- 
tion of the inequality (26) is not required. It can be 
shown that the validity of the formula (21) for the terms 
o,,,, in the case of an arbitrary dispersion law, is also 
not connected with satisfaction of condition (26). 

We now estimate the magnitude of the nonlinearity. 
Let w - 51 but assume no cyclotron resonance. Then we 
get from (21) and (22) 

eS pp  6 (a), 
om" - ;4n, 

where p ,  is the Fermi momentum. 

This estimate is valid both for quadratic and nonqua- 
dratic dispersion laws. In the absence of a magnetic 
field, the nonlinearity depends significantly on the an- 
isotropy of the dispersion law (we have in mind a trans- 
verse current). If the dispersion law is of the form 
c =$a ,g ip j  with an anisotropy of the order of unity, 
then, according to Ref. 3, 

In the case of an isotropic dispersion law, the trans- 
verse current generally vanishes. Comparing (27) with 
(28), we see that in the given situation, the nonlinearity 
in a magnetic field i s  ( ~ , / b ) ~  - ( v , / w ~ ) ~  times greater 
than the nonlinearity without a magnetic field. Besides, 
the nonlinearity in the magnetic field increases addi- 
tionally upon satisfaction of the condition of cyclotron 

resonance w = gl!2,,,, 

We now obtain the expression for  the nonlinear con- 
ductivity tensor @,& near the even resonance in the case 
in which 

As earlier,  the chief contribution to the monotonic por- 
tion of the nonlinear conductivity o,&, is obtained from 
Eq. (17), wherein upon satisfaction of the inequality 
(291, only those terms of (17) which contain two reso- 
nance factors a r e  significant. Since we assume the fre- 
quency w to be close to the resonant frequency, we can 
then replace w in (17) by In everywhere except in fac- 
tors  that describe cyclotron resonance. This allows 
integrals of the form to be replaced by integrals of 
the form I:. After some transformations, we get from 
Eq. (171, 

where 
I. 

u-l' ( k , )  = dt  u'(t)  exp {ik,r ( t )  - i l 8 t )  , 
8 

After integration by parts, ~!~(k,, &) can be represented 
in the form 

where 
T 

G - , P ( k , )  = J d t  w s ( t )  e x p { i k , r ( t )  - iLRt), 
D 

T 

ti7-la (k,) = dt  ae ( t )  exp{ik,r  ( t )  - i l 8 t )  , 

m* is the cyclotron mass. We get the following expres- 
sions for  the functions z8(t) and G8(t): 

The matrix elements vy(k), &:(&), and G_8,(&) can be 
calculated by the method of stationary phase. For  sim- 
plicity, we shall assume that there a re  only two points 
on the electron trajectory where k .  v=O, the vicinity of 
which also makes the principal contribution to the inte- 
gral. We denote them by and 4,). For w!z (&) we 
obtain 
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The remaining matrix elements have the same form. 
Substituting the expressions for the matrix elements in 
formula (30), we get the following for the parts of the 
nonlinear conductivity that depend monotonically on k, 
and &: 

kz ki C I . ~ ~ ( ~ , ,  k , )  = -,Kw + -'IL=~~l 
Ikikzkl Ikikzkl 

where 

The expression for La& is obtained from the formula 
(34) by the replacement of Z%y G B .  

Recognizing that v i ,  ,, = e ~ c - '  4, ,/p,,, , where p,, , i s  the 
radius of curvature of the orbit in p space at the point of 
stationary phase t, ,,, and using the equality dp,p,,,/v~, ,,, 
= d q ~ / ~ ( c p ) v ~ ,  the formula (34) can be transformed to 

In the case of quadratic and isotropic dispersion law, 
we obtain from Eqs. (10) and (32): 

We have considered here only the nonlinearity due to 
the Lorentz force, and have not taken into account the 
nonlinearity that is quadratic in the field E. However, i t  
can be shown that in our case the nonlinearity due to the 
Lorentz force actually predominates at all times. One 
of the reasons for this is that the force eE is smaller 
than the Lorentz force by a factor (6w/v,)-'. The non- 
linearity that is quadratic in the field E becomes sig- 
nificant only near the cyclotron resonance w =$lC2, if 
the cyclotron frequency SZ depends on the energy, and 
the parameter C27 is sufficiently large. Estimates show 
that the nonlinearity due to the Lorentz force always 
predominates if the inequality a7 < ( ~ ~ 1 6 )  is satisfied. 

NONLINEAR REFLECTION FROM A METAL 
SURFACE 

Let an electromagnetic wave of frequency w impinge 
on a metal that fills the halfspace y >O. The magnetic 
field is parallel to the surface of the metal and is di- 
rected along the z axis. We calculate the amplitude of 
the reflected wave a t  the frequency of the second har- 
monic. From Maxwell's equations, we obtain 

where ~ ( ~ ' ( 0 )  and H'2'(0) a r e  the amplitudes of the elec- 

tr ic and magnetic fields of the second harmonic a t  the 
surface of the metal, n is the vector normal to the sur- 
face, I"'(2w) is the total nonlinear current a t  the fre- 
quency of the second harmonic, IU'(2w) is the linear 
current a t  the second-harmonic frequency. 

Taking into account the relation 

where g(2w) i s  the surface impedance a t  the second har- 
monic frequency, we get from (37) 

Since 5 << 1 in the case of the anomalous skin effect, we 
have 

- 

I:" ( 2 0 )  = J dy j:" ((y, 2 0 ) ,  
0 

where j',2'(y, 2w) is the nonlinear current density. 

The exact calculation of the nonlinear current I"'(2w) 
is extremely complicated, both for specular and diffuse 
reflection. It is known from linear theory that, in the 
case of diffuse reflection, if we neglect numerical fac- 
tors of the order of unity, we can in practice consider 
the problem in an unbounded space. However, it is nec- 
essary to replace the conductivity tensor of the un- 
bounded medium a,, by the modified tensor a&, (see, for 
example, Ref. 7). The difference between a;, and o,, 
is that the factor in a&, which describes the cyclotron 
resonance is taken into account only a t  those stationary- 
phase points k . v =  0 for which the orbit can be a reso- 
nant one in real space. In the case when there a r e  only 
two stationary-phase points on the electron trajectory 
o&, is obtained from a,, by replacement of the resonance 
factor coth{T(- iw +T")) by (1 - exp{T(+iw - 7-')})-I; 
consequently, 

We consider here also an unbounded space, modifying 
o,, and the nonlinear conductivity o,, in the above fash- 
ion. The result thus obtained corresponds to the rigor- 
ous solution of the problem in the case of diffuse reflec- 
tion to within a numerical factor of the order of unity. 

Taking the above into consideration, we obtain for the 
nonlinear current ~ ' ~ ' ( 2 w )  - - j:') ( k ,  2 o )  

1 : ' ( 2 o ) = J d ~ j h ~ ' ( ( y , 2 " ) = J d k  , , 

0 - m  
z(k+cO) 

where a&, is the modified nonlinear conductivity tensor. 

We shall only consider the case in which the tensor 
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oak is described by (21) and (22). If there a r e  only two 
stationary-phase points on the electron trajectory, then, 
a s  in the linear case, the tensor u&,, is obtained from 
u,,, by replacement of factors of the type coth{~(- io  
$7")) by (1 - exp{~(iw - 7")))": We note, however, that 
such a modification of the nonlinear tensor u,, is in 
fact insignificant. For simplicity, we shall assume that 
the tensor taB(w) can be reduced to diagonal form, and 
that the vector ~ " ' ( 0 )  coincides with one of the eigen- 
vectors of the surface impedance with eigenvalue 5,(w). 
Consequently, 

where bl/ I k l is one of the eigenvalues of the tensor 
4ncew o&,. We write the tensor is&,, in the form 

k  k  
d B , ( k , .  k z )=  f B ~ P , ~ .  

Ikl Ik,l 

The explicit expressions for the quantities A,,, and B,, 
can easily be obtained from (21) and (22). After several 
transformations, we get from formulas (40) and (42)- 
(44) 

where c, and c, a r e  constants, and I c1 I - I c, I - 1 .  We 
shall not calculate c, and c,, since we a re  not concerned 
with numerical factors of the order of unity. 

Let the frequency o~ -52, but let there be no cyclotron 
resonance. In this case, 

We then obtain from (45) 

We now consider cyclotron resonance. We shall as- 
sume that all the non-vanishing components of the ten- 
sors  [,,, A,,, BsB7 and the quantity bl(w) a r e  resonant. 
Such a situation exists in the case of an isotropic and 
quadratic dispersion law, and also in the case of a non- 
quadratic dispersion law with resonance a t  a noncentral 
cross section. Near the even resonance w =Earn, the 
quantities bl(w), A, and B,, increase while tl(w) and 
[,,(2w) decay. It is not difficult to see that the ratios 
A,,,/b, and ~,,+/b,  remain finite a t  resonance, equal in 
order of magnitude to their values far  from resonance. 
Thus, we see that a t  even resonance, in the case of a 
fixed value of the field of the fundamental frequency on the 
surface of the sample, the amplitude of the second har- 
monic increases a s  t;'. Consequently, the amplitude of 
the second harmonic increases in the given case by a 
factor of ( ~ 7 ) ' ' ~  in the case of a nonquadratic dispersion 
law and by ( 5 2 ~ ) " ~  in the quadratic case. Near the odd 
resonance w = (1 + $)a,, the quantities bl(w), tl(w) and 
B,, remain finite, and 5,,(2w) and A,, have singulari- 
ties. The amplitude of the second harmonic increases 
in this case by a factor (52~)"~ in the nonquadratic case 

and by (07)"~ in the quadratic case. 

We have thus shown that the presence of a magnetic 
field parallel to the metal surface increases strongly 
the coefficient of nonlinear reflection of the electromag- 
netic wave in comparison to i t s  value in the absence of a 
field. The amplitude of the reflected second harmonic 
a t  a fixed value of the field of fundamental frequency on 
the metal surface greatly increases upon satisfaction of 
the condition of nonlinear cyclotron resonance w = $1~2,. 
The relative value of the peaks can be significantly dif- 
ferent, depending on whether the resonance is even, 
w = 152, o r  odd, w = (1 + $)G?,. The period of oscillations 
of the second harmonic amplitude ~ ( 1 1 ~ )  is equal to 

It is seen that it is smaller by half than the period of 
oscillations in the surface impedance at the frequency 
W. Consequently, the determination of the extremal or- 
bit diameter by the method of cutoff of the nonlinear cy- 
clotron resonance a t  the second harmonic yields half the 
e r r o r  of the usual method of cutoff of cyclotron reso- 
nance in the surface impedance a t  frequency w. The 
method of cutoff of the nonlinear cyclotron resonance a t  
higher harmonics would allow a significant increase in 
the accuracy of the measurements. 

I t  is known that the impedance of a thin plate in a 
magnetic field parallel to i t s  surface undergoes singu- 
larities of the cyclotron resonance a t  frequencies that 
a r e  multiples of the frequency of rotation of the elec- 
trons, whose trajectory diameter 2r(P,) is identical with 
the plate thickness d ,  i. e., upon satisfaction of the con- 
ditions 

where ~ ( p , )  is the diameter of the electron orbit in p 
space. 

Cyclotron resonance a t  nonextremal orbits, defined 
by the conditions (47), allow us to find the function 
m*(D) o r  m*(P,) i f  the shape of the Fermi  surface is 
known. This effect was observed experimentally in 
Refs. 8 and 9. The theory of the size-effect cyclotron 
resonance was constructed in Refs. 10- 12. 

For  an experimental study of the properties of elec- 
trons of nonextreme cross sections, nonlinear cyclotron 
resonance in the plate can also be used. This effect al- 
lows us to obtain more detail information on the function 
m*(D) or  m*(P,). Actually, from the expressions that 
we have obtained for the nonlinear conductivity, i t  fol- 
lows that the nonlinear cyclotron resonance in a plate 
can be observed upon fulfilment of the conditions 

For  odd I ,  the frequencies defined by Eqs. (48) a re  not 
identical with those found from (47). Consequently, the 
number of resonances is doubled, and additional points 
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appear on the m*(D) or  m*(P,) curve. 

We note that although the linear impedance of the plate 
in an oblique field also has a singularity upon satisfac- 
tion of the conditions (48) with odd I[111; however, the 
singularity here is very weak. The resonance contribu- 
tion to the impedance is proportional to the square of 
the small parameter 6/rqp, where p is the angle of in- 
clination of the magnetic field to the surface of the 
plate. '"I In thin plates, this contribution also contains 
an additional small parameter. Therefore, the singu- 
larities of the surface impedance at frequencies deter- 
mined from (48) a t  odd 1 have not been observed experi- 
mentally to date. Of course, the dimensional nonlinear 
cyclotron resonance in an oblique field gives more de- 
tailed information on the electron spectrum than does 
the linear case. 

Consideration of the problem of the nonlinear cyclo- 
tron resonance in a plate in the case in which reflection 
of the electrons from the boundary is not close to spec- 
ular can be carried out if we use the results obtained 
above. This is to be the object of a separate investiga- 
tion. Here we only note that the odd nonlinear reso- 
nance has a logarithmic character and a t  even I the sin- 
gularity can become stronger i f  the parameter COT is suf- 
ficently large. 

IN. Bloembergen, R. K. Chang, S. S. Iha, and C. H. Lee, 
Phys. Rev. 174, 813 (1968). 

'G. I. Leviev and E. G. Yashin, Pis'ma Zh. Eksp. Teor. Fiz. 
lo, 257 (1969) [JETP Lett. 10, 163 (1969)l. 

3 ~ .  I. Leviev, Fiz. Tverd. Tela (Leningrad) 12, 2131 (1970) 
Bov. Phys. Solid State 12, 1691 (1971)l. 

4 ~ .  T. Bate and W. R. Wisseman, Thys. Rev. 181, 763 (1969). 
5 ~ .  Ya. Azbel' and L. B. Dubovskii, Pis'ma Zh. Eksp. Teor. 

Fiz. 5, 414 (1967) [JETP Lett. 5, 338 (1967)l. 
6 ~ .  Ya. Azbel' and E. A. Kaner, Zh. Eksp. Teor. Fiz. 32, 
896 (1957) [Sov. Phys. JETP 730 (1957)l; Phys. Chem. Sol. 
6, 113 (1958). 

?R. Chambers, in the collection Fizika metallov (Physics of 
Metals), vol. 1: Electron:. (J. Ziman, ed.) Mir, 1972. 

8 ~ .  P. Volodin, M. S. Khaikin, and V. S. Edel'man, Pis'ma 
Zh. Eksp. Teor. Fiz. 17, 491 (1973) BETP Lett. 17, 353 
(1973)); Zh. Eksp. Teor. Fiz. 65, 2105 (1973) [Sov. Phys. 
JETP 38, 1052 (1074)l. 

'A. P. Volodin and M. S.  hayk kin, Zh. Eksp. Teor. Fiz. 70, 
2006 (1976) Bov. Phys. JETP 43, LO46 (1976)l. 

'OM. A. Lur'e and V. G. Peschanskii, Zh. Eksp. Teor. Fiz. 
66, 240 (1974) [Sov. Phys. JETP 30, 114 (1974)l. 
"M. A. Lur'e and V. G. ~eschanskif ,  Fiz. Nizk. Temp. 1, 
1044 (1975) [Sov. J. Low Temp. Phys. 1, 502 (197511. 

120. V. Kirichenko, M. A. Lur'e, and V. G. ~eschanski l ,  Zh. 
Eksp. Teor. Fiz. 70, 337 (1975) [Sov. Phys. JETP 4, 175 
(1975) 1. 

Translated by R. T. Beyer 

Amplification and generation of coherent phonons in ruby 
under conditions of spin-level population inversion 

E. M. Ganapol'ski and D. N. ~akovitski 

Institute of Radiophysics and Electronics, Ukrainian Academy of Sciences 
(Submitted April 10, 1976) 
Zh. Eksp. Teor. Fi. 72, 203-217 (January 1977) 

The processes of amplification and generation of coherent phonons in ruby at a frequency 9.12 GHz 
following inversion of the spin-level populations by electromagnetic pumping at 23 GHz were investigated 
at temperatures 1.7-4.2"K. The resonant-longitudinal-phonon lifetime estimated from the threshold the 
gain of the hypersound excited in a crystal is rP, k 2X lo-' sec. A nonstationary effect, wherein the 
hypersound gain increases appreciably under conditions when the pump line is saturated on the wing is 
observed. This effect is interpreted on the basis of the thermodynamics of an electron-nuclear system 
made up of the Zeeman and dipole pools of the Cr3+ ions and the Zeeman pool of the ~ 1 ' '  nuclei. 
Stationary incoherent emission of phonons is realized. It is shown that the multimode character of this 
emission at the natural frequencies of the acoustic resonance and the narrow spectral radiation interval are 
due to the fact that phonon generation takes place under conditions of spatial disequilibrium in the case of 
a small excess above the pump threshold. 

PACS numbers: 78.60.Mq 

1. INTRODUCTION practically neglected. The gist of these effects, pre- 
dicted back in-the early sixties independently by 

In connection with the successful use of hypersound Townes, Kopvillem and Korepanov, and Kittel, "I 
waves in solid-state investigations, interest in the am- consists in the following: 
plification and generation of these waves has greatly in- - 

creased recently. Particular attention, however, hasbeen A hypersonic wave in a crystal with nonmagnetic cen- 
paid to amplificationunder conditions of carr ier  drift in ters  is resonantly absorbed, owing to the electron-pho- 
semiconductors, while amplification and generation of non coupling, when the quantum of the elastic oscilla- 
hypersonic waves based on stimulated emission by im- tions of the waves is equal to the spacing between the 
purity paramagnetic centers in crystals have been energy levels of the center in the magnetic field. If the 

106 Sov. Phys. JETP, Vol. 45, No. 1, January 1977 Copyright O 1977 American Institute of Physics 106 


