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The mass correction to the amplitude of order a2 for the elastic scattering of photons in an intense 
electromagnetic field is found. It is used to find the probability of the photoproduction of a pair and a 
photon and the mass correction to the photoproduction of a pair. 
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1. INTRODUCTION pair and a photon is the governing factor. 

This article is devoted to an investigation of certain 
radiative processes of order a2 in an intense electro- 
magnetic field, i. e., in a field whose intensity i s  close 
to the critical value F- Fo = m22/eti=4. 4 x  1013 Oe." 
As i s  well known, nonlinear quantum electrodynamic 
effects (see, for example, ['"I) reach their optimal val- 
ues in such fields and the verification of quantum elec- 
trodynamics in the range of field strengths of the order 
of F, constitutes a new aspect of i t s  investigation dif- 
ferent from the traditional investigation a t  small  dis- 
tances. 

The field strengths which can be obtained experi- 
mentally at the present time a r e  several  orders  of mag- 
nitude smaller than the critical value. However, i t  is 
still possible to observe at this time nonlinear effects 
induced by ultrarelativistic particles with a momentum 
p - F,m/F>> m. The field strength in the proper frame 
will be of the order of Fo for such particles. In addi- 
tion, independently of the form of the field in the lab- 
oratory system, it will be nearly a plane wave field in 
the proper frame, and if its characteristic wavelength 
and period a r e  large in comparison with the quantity 
m/eF which determines the characteristic length and 
time of the formation of the processes, it can be re-  
garded a s  a constant crossed field E 1 H, E = H= F. I t  
i s  precisely such a field which we shall investigate be- 
low. 

The systematic investigation of effects of order a2 
was initiated by Ritus, who found the polarizationc43 and 
mass (jointly with one of the authors)c51 corrections to 
the amplitude for  the elastic scattering of an electron 
in a constant crossed field, and also found the probabil- 
ity for electroproduction of a pair, e-  ee+e- (also seecB1) 
and the probability for two-photon emission e-e2y. 

The mass correction to the amplitude of the elastic 
scattering of photons in a constant crossed field i s  de- 
rived in the present article; the imaginary part of this 
correction contains the nonexchange part  of the prob- 
ability for the photoproduction of a pair and a photon, 
y-e+emy, and the mass correction to the probability for 
the photoproduction of a pair, y-e'e'. Exchange effects 
become small in a strong field o r  a t  high energies of the 
incident photons; therefore, in this case the investi- 
gated part of the probability for photoproduction of a 

The determined probabilities consist of two terms- 
incoherent and coherent. The f i r s t  corresponds to the 
fact that the regions of formation of the pair production 
processes and of the subsequent emission of a photon by 
an electron o r  positron a r e  separated by a distance 
much longer than length for the formation of each pro- 
cess  separately. The second corresponds to the fact 
that both processes a r e  being formed in a common re-  
gion. The incoherent par ts  of the probability for  the 
photoproduction of a pair and a photon and for  the mass 
correction to the probability for photoproduction of a 
pair differ in sign, which i s  natural since the sum of 
these probabilities, equal to twice the imaginary part 
of the amplitude of the elastic scattering of photons, 
must have a common region of formation. 

The incoherent part  of the probability is proportional 
to the total observation time T, whereas the coherent 
part  does not depend on T. We must note in this con- 
nection that some ambiguity exists in the calculation of 
the probability component independent of T. This am- 
biguity is due to the fact that the incoherent part of the 
probability depends on the shape of the region in which 
the corresponding process occurs (at the same value of 
the 4-volume), that is, it essentially depends on the 
experimental situation. The influence of the shape of 
the region on the incoherent part leads to the appear- 
ance in it of terms that a r e  small  in comparison with 
the terms - T, but a r e  of the same order a s  the coher- 
ent part. However, these terms, just as the entire in- 
coherent part, a r e  characterized by the presence of two 
regions of formation, a fact that allows us  to distin- 
guish them from the "truly coherent" part, which i s  
uniquely determined. 

2. THE MASS CORRECTION TO THE PHOTON 
ELASTIC-SCATTERING AMPLITUDE 

To fourth order in the radiation field the polariza- 
tion operator i s  described by the three compact dia- 
grams shown in Fig. l. The solid lines correspond 
to electrons interacting with an intense field and the 
wavy lines correspond to photons. In this article we 
consider diagrams a and b, which determine the mass 
correction to the polarization operator whose imaginary 
par t  contains in particular the probability for  the photo- 
production of a pair and a photon in a strong field. 
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MR(P; F), see  Ref. 7, 8. Here we only note that one 
can represent i t  in the form of the integral 

FIG. 1. 

where st and t denote the proper times of the virtual 
electron and photon, respectively. 

Now let us  present the form of ASC(xl', x') in the 
Ep-representation 

In the presence of a crossed field described by the 
4-potential For the proper-time representation of ASC(x", x'), 

seeCs3. 

Direct calculations show that the entire nondiagonal 
part  ASC(x", x') is incorporated in the same phase fac- 
tor eiT which also appears in the function Sc(xf', x'). 
Therefore n$,',',,, depends only on the difference be- 
tween the coordinates 

the mass correction to the polarization operator may 
be written in the form 

(a) n,,.,(z", z ' )  =-ie2{Sp[y,AS(z", z') y , S ( z J ,  x") 1 
+ Sp[ y,AS (z',  z'') y,P (z", 2') I ) , 

(2) 

where 
and i t  is convenient to change to the momentum repre- 
sentation 

It is convenient to perform the integration in (10) by 
changing to the variables x,, x,, x* = x,* % which a r e  
natural for a plane-wave field. The integrals over x ,  
and x2  reduce to Gaussian integrals and the integra- 
tion over x+ gives a 6-function 2n6(x_ - 21,sls/(s, + s)) o r  
i ts  derivative so  that the remaining integration over x, 
is trivial2' ( s  and s, denote the proper times of the 
"dressed" and "bare" electrons, respectively; see the 
figure). 

is the causal Green's function in the proper-time repre- 
sentation, ''] and 

(a?, z') =--i(dl] S ~ M S O I  z l )  (4) 

is the mass correction to it, of order a2, found by 
Morozov and Ritus. In formulas (3) and (4) q denotes 
the nondiagonal phase of the Green's function 

The resulting expression has an ultraviolet divergence 
and needs to be renormalized. The renormalized ex- 
pression for  nt42t,, (I; F) has the form 

and M denotes the renormalized mass operator of sec- 
ond order in the crossed field. t1*51 

It will be convenient henceforth to use the so-called 
Ep-representation introduced by Ritus, "I with basis 
functions 

where I I ~ ~ R , , ,  (I; 0) denotes the renormalized mass cor- 
rection to the vacuum polarization operator. In what 
follows we shall omit the superscript R. 

The quantity n$,,,(l; F) has the following tensor 
structure: 

A remarkable property of the Ep-representation is 
the fact that in this representation the SE function re -  
duces to the vacuum function 

(cf . C1*B'), where 
d4p E, (z") (m-ip) EP (2')  

sC(zu ,  z T ) = - i  IT- 
2n)' mz+pz-ie 

and the mass operator is diagonal 
a r e  four independent orthogonal vectors and the func- 
tions njt-, depend on two invariant parameters: l 2  and 
n 2  = (e~ l )~ / rn ' .  

For the explicit form of the renormalized function The presence of a term - 1,1, in Eq. (12) is associated 
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= ( p / m ) 2  which was introduced in order to eliminate the 
infrared divergence of the mass operator (7). 

If A i s  assumed to be a very small  parameter, the 
infrared divergence can be isolated into a separate 
term 

with the fact that we a r e  considering only a portion of 
the diagrams which contribute to the polarization opera- 
tor, and which by themselves a r e  not gauge invariant. 

On the mass surface 1 = 0 the quantity n;:,,, (1; F) 
determines the mass correction to the amplitude for the 
elastic scattering of a photon with a change of polariza- 
tion e -e' 

in which T:?:, ,, denotes the second-order amplitude.["81 
The form of Eq. (20) i s  quite understandable. In fact, 
the infrared divergent park of the vacuum mass opera- 
tor is equal to (a/2n) lnA(ip+m) (see, for example, ["). 
Therefore, the isolation of terms -1nA in each of the 
diagrams a and b (see the figure) amounts to the re-  
placement of a "dressed" electron line by a "bare" line 
with the factor (a/2n)lnX, which ultimately leads to 
Eq. (20). The A-dependent part of the amplituded:!:.,,, 
is cumbersome and i s  not presented here. 

The variables u and v have a simple physical mean- 
ing: v is the ratio of the proper times s' and t of the 
virtual electron and of the photon of the mass  operator, 
and u is the ratio of the proper times s and s, of the 
"dressed" s and "bare" virtual electrons 

where the unit polarization vectors el and e, a r e  given 
by 

and describe in the "special" coordinate system the 
photons polarized respectively along E and - H, and n, 
denotes the density of incident photons. 

Thus, the amplitude i s  solely determined by the func- 
tions n::: ,, (0, x )  which a r e  given by 

On the other hand, i f f  and f' denote the momenta of the 
"dressed" and "bare" electrons and I' i s  the momen- 
tum of a virtual photon, then 

subject to the conservation law 

Here I, I,, and I,, denote the three characteristic inte- 
grals The variable x is given by 

where y_ and x_ denote the durations of the internal and 
external interactions (see Fig. 1). 

The integrals (17) have the following "original" 
representations: determined by the well known special functionsc" 

finally 
q=z+zi'z/a, E=q (i+zs/as)-", 

where the variables o and T a r e  related to the previous- 
ly introduced variables in the following way: 

As is evident from Eqs. (19), the amplitude depends on 
a small fictitious photon mass Q via the parameter 
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We note that in the representation (17) the vacuum part 
of the mass operator leads to integrals over xfrom 
1 to -, and in the representation (25) i t  leads to inte- 
grals over o from 0 to a7. 

For &'I2 << x<< 1 we have 

where C is Euler's constant. For  x >> 1 we have 

For H >> 1 we present only the major term with asymp- 
totic behavior -x2I3 1nx since the next term - u2lS in 
the expansion contains a rather cumbersome coefficient 
which is expressed in terms of the generalized hyper- 
geometric ser ies  ,F2 with argument equal to unity. For 
large values of x the real  and imaginary parts of the 
mass correction to the amplitude turn out to be - a2x213 
x lnx,  whereas the amplitude T ' ~ '  - ax2/', C7*81 so that I 

the obtained result is valid a s  long a s  the condition 
a lnx<< 1 is fulfilled. It is natural to regard a lnx a s  
the expansion parameter of the polarization operator. 
We note that the fourth-order mass operator increases 
more rapidly and has an expansion parameter 
ax1" lnx, [" where X2 = (e~p)'/rn'. 

The doubled imaginary part of the amplitude consists 
of the nonexchange part of the probability fo r  the pro- 
duction of a pair and a photon and the mass correction 
to the probability for the photoproduction of a pair 

Sections 3 and 4 a r e  devoted to the derivation of the 
probability w$:-,,,,, and the correction w$:-,,, from 
the amplitude T J!:, ,,;,,, . 
3. PHOTOPRODUCTION OF A PAIR AND A PHOTON 

The nonexchange part of the probability for  the photo- 
production of a pair and a photon can be represented in 
the form 

ezn7 j dIXn e , I c = . - * - e  VTW!!!-, .... = - )e,e, 
2 1 0  

X {Sp[y,AS'+'(xf', x') ySc- ' (z ' ,  d') ] + Sp[y.AS1-'(z' ,  z") y,,S1+) (z", 2') I}, 
(31) 

where s(+'(S"') denotes the positive-frequency (nega- 
tive-frequency) Green's function, 

M(*' (f, q) =ie'j d'z' d'dll'Et(z') y 5 " '  (d, d t )  

X r3q(z")~,?'(z'-z") -(2n)'i?(f-q)M(*) (f; F). (33) 

The proper-time representations for  the positive- 
frequency (negative-f requency) Green's functions differ 
from expression (3) in that the limits of integration 
over s a r e  excluded from -- to +- and by the appear- 
ance of the factor 

The proper-time representation M'*' ( f ;  F) differs 
from expression (8) by an extension of the limits of 
integration with respect to s' and t from -a to +a, by 
the appearance of the factors 

*e(Y-) 0 ( s l / t )  e ( t )  

and by discarding the terms arising from renormaliza- 
tion. The latter circumstance is associated with the 
fact that replacement of the causal functions Sc and Dc 
in Eq. (7) by positive- o r  negative-frequency functions 
actually means the replacement of the mass operator 
by i ts  doubled imaginary part, ['I which is not subject 
to renormalization. 

The transition from A S  to AS'*' contains one more 
substitution 

Substitution of the term (p/(rn2 + f 2)), into (32) conse- 
quently leads to an expression differing from (14) by re-  
placement of the functions I, I,, I,, by the real  functions 
2R, 2R1, 2R1, and determining the coherent part of the 
probability characterized by the fact that the procesaes 
of pair production and emission have a common region 
of formation. 

The functions 2R, 2R1, and 2 4 ,  a r e  obtained if the 
limits of integration with respect to o and T a r e  ex- 
tended from - .o to + .o in the "original" representations 
(25) of the integrals, I ,  I,, and I,,, respectively, if the 
terms arising from renormalization a r e  discarded, and 
if the factor (2i)'1&(u - a?) is introduced: 

The "original" representations for the functions 4 and 
R,, differ from the similar representation for R by the 
factors - i(7 - ic)" and - (T - i&)"(u - i6)'l. Going around 
the points a = 0 and T = 0 from below corresponds to 
P auli-Villars regularization of singular functions. C1O1 

However, the following representations a r e  more con- 
venient 

26 Sov. Phys. JETP, Vol. 45, No. 1, January 1977 D. A. Morozov and N. B. ~arozhnyj 26 



where G ( z )  =Imf(z) denotes the Airy function, 

- .. 
r ( z ~ ' ) = R e f ( z D ,  Q ) , ( z ) - ~ d x c D ( ~ ) ,  T,(z:)-j &[T(x)-Z-11, 

'a' 

see Ref. 4. 

Substitution of the term - 257 '6(m + f ') from (34) into 
Eq. (32) leads to the incoherent part  of the probability 
w:::-?,?'~ which i s  characterized by separated regions 
for the formation of the processes associated with pair 
production and emission. In this connection it i s  neces- 
sary to replace one of the 6-functions by 

where T and L_ denote the intervals of variation of the 
time xo and of the coordinate x-. 

It i s  convenient to ca r ry  out the integration over co- 
ordinates in (31) according to the same scheme a s  in 
(10). In this connection i t  is necessary to remember 
that 6(O) is a function off- o r  of x_ if the proper-time 
representations a r e  used for the S-functions. There- 
fore, in those places where 6(0) is multiplied by a 6'- 
function (see the text after formula (lo)), it must be dif- 
ferentiated a s  an ordinary function f i rs t  in the calcula- 
tion of AS'*' and then in the calculation of the probability 
w:!;?;~~. 

Those probability terms in which 6(O) w~as not differ- 
entiated can be obtained from the amplitude with the aid 
of a simple prescription. Namely, i t  i s  necessary to 
carry  out the following substitutions 

(a-aa') I+rz"@ (z') '4 ( z )  , (a-aa') I , -+Tz'~@, (2') cD ( z ) ,  
(a-aa') Z,,-rt5@,(z') 0, ( z ) ,  

where T = eFL_/m, and to discard the remaining terms, 
since in the E,-representation they contain the product 
(m2 + f ') 6(m2 + f '). NO analogs of the terms arising from 
the differentiation of 6(0) a r e  contained in the amplitude, 
and it is necessary to calculate them separately. As a 
result we obtain an answer which, after several inte- 
grations by parts, reduces to the form 

The subscripts I1 and 1 denote photons polarized along 
E and -H. Since the incoherent part  does not contain 
an infrared divergence, we have assumed A=O. 

Expression (39) can also be obtained directly (cf. Eq. 
(15) ofc4') if the probability n:-'@:'(X', b )  for the emis- 

sion of a polarized electronc"' is integrated over the 
spectrum d w$~-,,,, (.A, u, 6 )  of the electrons appearing 
after pair production during the entire time up to the 
moment of emission, followed by averaging over the 
total observation time and summation over the spin of 
the intermediate electron. In addition i t  i s  necessary 
to multiply this expression by two since the emission of 
a positron gives the same contribution to the desired 
probability: 

The agreement between expressions (40) and (39) is not 
only a check on formula (39) but to some degree also a 
check on the total amplitude. 

We note that in the evaluation of the incoherent part 
of the probability w:.',,,, for two-photon emission incs1, 
the function 6(0) = T/4nfo mentioned above was errone- 
ously assumed to be constant in the course of the differ- 
entiation. This led to the absence of the following terms 
inside the curly brackets of Eq. (54) incs1: 

and to i ts  agreement with the product of the probabilities 
for one-photon emission integrated over the proper time 
of the electrons, but not over the laboratory time which 
would have been natural. Taking account of the omitted 
terms leads to agreement of w~~~,,,, with the product 
of the probabilities for one-photon emission integrated 
over the laboratory time, and differing from Eq. (55) 
inc5' by the replacement ph/po-1; compare with Eq. (40) 
and with Eq. (1 5) in14]. In this connection the asymp- 
totic formula (54) inc5' for x >> 1 is replaced by 

We note that the utilization of the representation (38) 
for 6(0) is associated with a specific form of the region 
in which the process takes place. Namely, it was as -  
sumed that the difference between the centers of the re-  
gions of formation of the two processes varies within 
the interval from - ~ , / 2  to ~ _ / 2 .  For  a different form 
of the region (having the same value for  the 4-volume) 
the representation for 6(0) may have the form 6(O) = (L- 
+ b)/47rf -, where b i s  small  in comparison with the L, 
correction, being unimportant for  the calculation of the 
major term of the probability - L_ but having the same 
order (with respect to L-) a s  the coherent part. In 
other words, one can say that the terms in the prob- 
ability which do not depend on L, a r e  not uniquely de- 
termined and depend essentially on the experimental 
situation. However, the presence of two regions of 
formation is characteristic for the terms in the prob- 
ability which depend on the shape of the region, i. e., 
on b, and this allows one to uniquely isolate the "truly 
coherent" part. 

Thus, one can write the nonexchange part of the prob- 
ability for  the photoproduction of a pair and a photon 
in the form 
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where (R, 4, R,,} in the second, coherent term denotes 
the expression inside the curly brackets in formula (16) 
in which the functions I, I,, I,, a r e  replaced by the 
functions R, R,, R1,. 

Let us present the asymptotic expressions for 
~ $ i > : ~ ~  associated with small and large values of n : 

F o r  large values of n this probability does not depend 
on the electron mass, i. e., it possesses the property 
of scale invariance. 

The asymptotic expression for w:!;-C,Of$,, is a s  follows: 

Since the exchange effects a r e  small  in comparison 
with the nonexchange effects a t  high energies o r  large 
fields, w:!:-, ,,, for large values of x coincides with 
the total probability w:!:-, and is given by the asymp- 
totic expressions (44) and (45). 

The coherent term in this probability turns out to be 
negative at large values of and decreases the total 
probability. In spite of the fact that it increases more 
strongly than the incoherent part with increasing values 
of x ,  the probability w:!:-, of course remains positive 
since the length L, entering into the incoherent term 
should be larger than the length of formation Ax-, which 
is given by Ax , - ( rn /e~)n ' /~  for this process a t  x >> 1. 
Thus, T & R ' / ~ .  On the other hand, T cannot become too 
large since according to perturbation theory the prob- 
ability for the photoproduction of a pair and a photon 
must remain smaller than the probability for the photo- 
production of a pair in the a-approximation: 76 dl x1I3. 

We also note that the coherent term of w:$>, contin- 
ues to contain the photon mass, but the electron mass 
does not appear in it, 

(eF1)' 
a k a x " l n <  = ' l ,az(eF1)" ln- a ILO 

which corresponds to minimal violation of scale invari- 
ance. 

4. MASS CORRECTION TO THE PROBABILITY FOR 
THE PHOTOPRODUCTION OF A PAIR 

One can represent the mass correction to the pair 
photoproduction probability in the form 
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X { s p [ ~ b S " + '  (fl, 2')  yS(-) (z', z") 1 + S p [ y d S 1 ( - ) ( z ' ,  df) y , ,S+)  (9, t') I), 
-- 

where 

A S ' ( + ) ( z b ,  2') - i ( z Y  I S ( + ) M P I z f ) ,  A S f ( - )  (z', 2 " )  = i ( z1ISIMS(- )  I Z m ) .  - 
(47) 

The transition from ASC to AStF*) contains the sub- 
stitution 

compare withCS1. The last term in (48) leads to a 6(0) 
singularity in the probability and forms i ts  incoherent 
part. It i s  not difficult to see that this part differs 
from the incoherent part of the probability w:!:-, only 
in sign. 

Substitutionof the f i rs t  coherent term from (48) leads 
to the result that the transition from the amplitude 
77") I ,e , ,  le;mPss to the coherent part  w:!:-,,, consists of 

an extension of the limits of integration over a from 
- m to + m  in the "original" representations of the func- 
tions n:$ ,,, (see Eqs. (16) and (25)), discarding of 
terms stemming from the vacuum part  of the mass 
operator, and taking the imaginary part. This i s  equiv- 
alent to the replacement of the functions I, I,, and I,, 
in Eq. (16) by the real  functions - 2y(z ;) @(z), - 2y1(z ;) 
x @(z), and - 2yl(zi)@,(z). Thus we obtain 

where { } denotes the expression in curly brackets in 
formula (16) with the appropriate replacement of the 
functions I, I,, and I,,. 

The sum w$:-,,~,,+ w:!:-,,, satisfies the unitarity 
relationship (30) a s  long a s  the representations (37) 
exist. The incoherent terms cancel each other which 
is natural since any compact part of the elastic scat- 
tering amplitude possesses a single region of forma- 
tion. 

Let us present the asymptotic expression for 
(4 )coh  

We+e- maam: 

( 4 )  ~ o h  aam2nl 
We%- m a .  I,,,. = - 

n210 

We note that the coherent part  of the probability 
WAC, ,, contains the electron mass  and does not pos- 
sess  minimally violated gauge invar iance. 

In conclusion we thank V. I. Ritus fo r  his constant 
interest in this work and for helpful discussions. 
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')We use the units ti = c  = 1,  =e2/4r  = 1/137, and the notation 
P, = (P,  PO), PQ = p a  ~ - P ~ Q O .  
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Unitarity relations are recorded in explicit form for the amplitude of scattering of a resonance by a 
particle and for the amplitude for the creation of a resonance and a particle. The solution of these 
unitarity relations is found, and a representation is obtained for the amplitude for creation B in which all 
the corrections for rescattering have been taken into account. It is shown that the phase of the amplitude 
B is a sum of two terms: one of them corresponds to a long-range interaction between the resonance and 
the particle and an explicit expression is obtained for it; the other term originates from the left (potential) 
singularities of the amplitude and is the proper phase for the resonance-particle system. The results 
obtained enable us to carry out correctly a phase analysis for the resonance plus particle system and to 
improve the procedure employed in the well-known phase analysis of the Illinois group. 

PACS numbers: 11.80.Et 

The study of the interaction between a resonance and 
a particle has recently become particularly important 
in connection with the phase analysis carried out for the 
3n and Kan systems. [1'31 One of the principal prob- 
lems in studying the resonance plus particle system is 
the following: what a r e  the specific features (and the prin- 
cipal difference)of the resonance-particle system com- 
pared with the system of two stable particles? For  stable 
particles we can carry  out a phase-shift analysis using 
the interaction in the final state and determining the 
phase of this interaction from experiment. In such a 

count within the framework of the K-matrix formalism 
was made recently by Ascoli and Wyld, but this, how- 
ever, led to a serious deterioration in the quality of fit 
obtained with phase analysis (and not conversely, a s  
ought to be the case when the correct  UR requirements 
a r e  satisfied). Aitcheson and ~ o l d i n g ~ ~ '  then noted that 
taking rescattering into account, a s  was done by Ascoli 
and Wyld, satisfies unitarity, but violates the proper- 
t ies of analyticity. The situation was thereby created 
that nonunitarized solutions should be mistrusted while 
unitarized solutions violate analyticity. 

procedure, representing the amplitude in terms of the In this paper we s tar t  from rigorous UR for the 
scattering phase automatically guarantees two-particle amplitude for the creation of a resonance and a par- 
unitarity. In a three particle system, a special case ticle and for the amplitude for the interaction of the 
of which is the resonance-plus-particle system, the resonance with the particle, and with the aid of the 
unitarity relation (UR) is satisfied only when the whole 
infinite ser ies  of rescattering including the exchange solution of these UR we establish the following: 

of the decay product betweenthe resonance and the-par- 1. Taking unitarity (i. e., a l l  the rescatterings) into 
ticle is taken into account. For this reason i t  appears account in the amplitude for the creation of a resonance 
at f i rs t  sight that i t  is quite a complicated matter to plus a particle reduces to multiplying the nonunitary 
satisfy the unitarity requirements in this system, and (initial) amplitude by a phase factor. 
that in any case introduction of a t  least minimal dy- 2. This factor contains the sum of two phases, the 
namic assumptions is required. f i r s t  of which. a,, takes into account discontinuities , .. 

An attempt to take three-particle unitarity into ac- to the right (in the energy plane) in the amplitude for 
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