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We evaluate the cross-section for the two-quantum positron annihilation by atomic K electrons for small 
aZ and arbitrary values of the momentum transfer q to the nucleus. We obtain the angular distribution 
of the emerging photons and various simple limiting formulae. We calculate the shift in the maximum of 
the line shape of the annihilation photon caused by the binding of the electron to the nucleus. 
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1. INTRODUCTION tances from the nucleus r - l / g -  l / m  where the wave- 

When a positron beam i s  scattered by atoms both sin- 
gle-photon and two-photon annihilation (TPA) processes 
for the positrons caused by the atomic electrons a r e  
possible. The annihilation process with the emission 
of a single Y quantum i s  possible only for a bound elec- 
tron. The annihilation with the emission of two photons 
proceeds both for bound and for free electrons. The 
single-photon annihilation process is characterized by a 
cross-section of the order of r2,a4z5 (yo= a / m  is the 
classical electron radius, a = 1/137 the fine-structure 
constant, and 2 the nuclear charge). The TPA c ross  
section i s  of the order of 4, i. e., for small Z this pro- 
cess  i s  appreciably more probable. However, for heavy 
atoms the probabilities for the two processes a r e  com- 
parable. 

The single-photon annihilation was studied in detail 
~ i r a c " '  and ~ e t h e " ]  obtained the c ross  section 

for the annihilation of a positron by a free electron. 
There were no calculations for the cross-section of 
TPA of positrons by bound electrons. ~ e c e n t l y ' ~ ~  the 
results have been published of an experimental study of 
this process: the double angular distribution &o/dSl, dS12 
for the TPA of positrons with energies of 300 keV by the 
K shell of silver (2 = 47) was measured using the method 
of triple coincidences of the two annihilation y quanta 
and the single x-ray quantum which i s  emitted by the 
atom when the vacancy in the K shell i s  filled. 

In the present paper we evaluate different differential 
cross  sections for the TPA by the K shell of an atom 
with an arbitrary momentum transfer q to the nucleus. 

The TPA process with arbitrary momentum transfers 
to the nucleus i s  in the first  approximation in the Cou- 
lomb field described by the three Feynman graphs 
shown in Fig. 1 plus the three diagrams with the photon 
lines interchanged. 

The TPA cross  section i s  maximal for small momen- 
tum transfers to the nucleus 9-11 ( q = m a Z ,  m is the 
electron mass). In that case the process i s  described 
by diagram a alone. Up to terms of order $z2 the 
total contribution from the region of all q i s  determined 
by that graph and i s  the same as the c ross  section for 
the annihilation by a free electron. In the region q -  m 
all three diagrams turn out to be of the same order of 
magnitude. When the transfer of momentum to the nu- 
cleus is large the process must proceed a t  small dis- 

17 Sov. Phys. JETP, Vol. 45, No. 1, January 1977 

function i s  proportional to ( a ~ ) ' / ~ .  As for such q the 
annihilation by a f ree  electron i s  kinematically impos- 
sible, there a r i ses  an additional small  factor aZ in 
diagram a due to the transfer of a momentum q  to the 
nucleus through the wavefunction of the bound electron. 
In the diagrams b and c the transfer of momentum to 
the nucleus takes place through a Coulomb photon which 
also leads to an additional factor a Z .  As a result we 
get for q - m  for the c ross  section a quantity of the order 
of r 2 , ( a ~ ) ~ .  However, for large q  there exists a region 
where the cross  section is  - r ; ( w 4 .  This is  the region 
of resonant behavior of the diagram c, caused by the 
production of a positron with a small virtual component 
-7 when it i s  scattered by the Coulomb field of the nu- 
cleus and the subsequent annihilation of this positron by 
an electron. The physical nature of such a resonant be- 
havior was discussed in detail inC6*']. 

2. CROSS SECTION OF THE PROCESS 

TPA of positrons by an atom i s  a cross-symmetrical 
reaction channel for the scattering of photons by bound 
electrons with ionization of the atom. The annihilation 
amplitude and cross  section can be  obtained from the 
corresponding quantities for the Compton scattering of 
photons by K electronsc6' when we replace the electron 
energy and momentum E ,  p by - &, - p and the photon 
energy and momentum wl, k, by - w,, - k,.  It is neces- 
sary  to make also a replacement of the electron phase 
volume d3p by the phase volume $k, of the y quantum 
and the flux j = 1  of the incident photons by the positron 
flux j = p/c . 

After such a substitution the amplitude A of the TPA 
process takes the form1' 

.. 
F = L , ~ , ( L - ~ + ~ ) &  ( @ m )  +L,~^,(K,-b+m) y O ( - ~ l + m y o + m ) &  

+Layo(-K+myo+m) eZ(-K1+myo+m)e,+ (K,PK,,  e,r+e,), (la) 

a b c 

FIG. 1. 
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FIG. 2. Double angular distribution of the two-photon annihi- 
lation du/dSZldSZ2 for T,+ =300 keV under the conditions of'51. 
a) The contours for I$= cp2 - cpl = 180"; we show the part where 
O2 2 O1; the dashed lines show the connection between O2 and 0, 
for the free kinematics. b) The distribution for =30°, 
I$ = 180". c )  The distribution for 0, = 30" and O2 = 106". 

Here e,, K4 = (w4, k,) a r e  the photon polarization and mo- 
mentum four-vectors, P= (&,p) the positron four-mo- 
mentum, Q = K, + K, - P =  (m, q), q the momentum trans- 
ferred to the nucleus, K =  K, + K, = (w, + w,,x) the total 
energy and momentum of the two photons, P= yOvo - y -V. 

The energy conservation law has the form m + & 

= wl+ w,. We use everywhere a system of units in which 
A = c = l .  

The differential c ross  section of the process, aver- 
aged over the initial and summed over the final polar- 
izations of the photons v and the electrons A, i s  given 
by the following expression: 

do=-- d3 k d'k, 
Zx15(e+m-ol-oz) 

2rO2 9' =-- 
x b 2 p  

J ar, (2) 

where 

The expression for J is obtained from Eq. (19) fromLs1 
by the substitutions &,p- - &, - p and wl, kl- - w,, - k,. 

TPA by a bound electron i s  a process in which two 
particles (the positron and the atom) change into three 
(two photons and an ion). This process i s  therefore 
characterized by five independent variables: w,, w,, el, 
02, and @ = (p2 - (pl, where w, 8, and (p a r e  the energy, 
and the polar and azimuthal angles of the photons rela- 
tive to the direction of th? positron momentum p. Of 
most experimental interest is the double angular distri- 
bution of the two-photon annihilation (DADTA) over the 
angles el, 8,, and 4, which can be obtained by inte- 
grating (2) over w,. 

The DADTA i s  maximal in the region of angles deter- 
mined by the f ree  kinematics q = 0. The condition q = 0 
fixes three variables and the cross-section for the pro- 

cess  becomes dependent on only two variables where 
4 = 180°, while the angles 8, and 8, turn out to be con- 
nected by the equation cos8, = f(cosO1) = ( p  - & cosel)/ 
(C - p COSB,). 

In Fig. 2a we show the contours of the DADTA with 
respect to 8, and 8, for @ = 180"; the ridge l ies along the 
curve cos8, = f(cosOl). Figure 2b shows the cross  section 
a s  function of 8, for 81=300 and @ =  180°, and Fig. 3b 
the c ross  section a s  function of @ for the angles 8, = 30" 
and 8, = 106", which satisfy the condition q = 0 for a 
positron energy of 300 keV. 

The DADTA due to the K shell of si lver was measured 
inc5' for a positron kinetic energy of 300 keV for the an- 
gles 8, = 30°, 8, = 100°, and @ = 180". This point i s  close 
to the region of the maximum in Fig. 2. The theoretical 
value of the cross-section in that range of ang 9s equals 
0.5 b/sr2 which corresponds to the magnitude of the 
cross-section for the annihilation process due to free 
electrons. The experimental value obtained inL5' 
equaled 7.7 i 6.4 mb/sr2 which is two orders  of magni- 
tude smaller than the theoretical value. There a r e  no 
other experimental data for this process. 

We now consider the c ross  section for the process in 
different ranges of the kinematic variables which a r e  of 
physical interest. 

3. REGION OF SMALL MOMENTUM TRANSFERS 

The region where the momentum transferred to the 
nucleus i s  small q -  q makes the main contribution to 
the cross-section and i s  therefore of most interest. We 
obtain in that region the cross-section with a relative 
accuracy of the order of 02. To do this we must take 
into account in the amplitude terms linear in q/m and 
QZ. These terms make i t  possible to evaluate the main 
part  of the magnitude of the shift in the quasi-free peak 
corresponding to the annihilation process due to a free 
electron. 

When q s q the contribution I, from diagram a of Fig. 
1 i s  proportional to the quantity 

Diagram b of Fig. 1 which contains the Coulomb correc- 
tion to the electron Green function is proportional to 

and can be neglected. The diagram of Fig. l c  is pro- 
portional to the quantity 

q (ab) - I - q  (q2+qz)-'(pq-ipq)-L-p-'r)-Z-aZI. 

It i s  necessary to take into account in the diagram of 
Fig. l c  also terms of order &a''- aZI, (6 = aZ&/p) 
omitted in (1) when q >> q. Terms of the same order a r e  
contained in diagram a and stem from the relativistic 
correction to the wavefunction of the bound electron. 
The amplitude of the process i s  thus given by the sum 
of the diagrams a and c in the region of small q -  q, up 
to terms of order a Z  inclusive. 
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Using the equations 

we can appreciably simplify Eq. ( 1 )  for the amplitude: where 
O 1 ( z ,  t )  = J / ~ ~ t y ' [ ~ ' ( 5 - 3 t z )  +~'(13-21tZ+14t') 

+xZ (8-26t2+23t'+t') -tZ(8-9t2-t') 1 ,  

D2 (2, t )  =2cty { l  +h-0,75c's4y' (7.2'- 12xztZ+t') 
+z2s'y2( l+3h))z- '  arctg z ,  

@ , ( z ,  t )  - -s2y{ l+h+ 0,375casLr'[Z(-6xat'+t' 
-3cs-'(z'-lOz'tZ+5t') ] -c't1y'(1+3h) ) In [ ( I + t ) /  (1 - t )  1. 

a_,& (6 - I?, + m )  Gu, u, = 
(Q - K,)' - mZ + ( 1 = = 2 ) ,  (4b) 

The functions f,, f l ,  f2 a r e  given by (7), (7a), (7b), where u, and U, a r e  the Dirac bispinor and the amplitude 
of the scattering by a free electron with initial momen- 
tum q. 

The term in Lj with the infrared divergence arose 
from the expansion of the infrared phase factor in the 
positron wavefunction. ''I This term disappears from the 
cross  section: 

The value x = 0 corresponds to w = wlo of (9) .  Equa- 
tion (10) is valid for x<< (cuZ)-', i .e . ,  in the vicinity of  
the curve w, = wlo and is the contour of the annihilation 
photon line. The width of the line is determined by the 
factor ( 1  + 2)4 and has the magnitude 6, - 1. The cor - 
rection terms -- OZX do not contribute to the total cross- 
section, but shift the line maximum relative to x =  0 
(w, = wlo) by an amount Ax- aZ ( A W , -  m ( a ~ ) ~ ) .  One 
checks easily that terms of order ( c r ~ ) ~  which a re  omit- 
ted in (10) shift the maximum of the line by an amount 
Ax- ((uz)' (Awl- m ( a ~ ) ' ) .  Equation (10) thus enables us 
to obtain the shift in the maximum of the line contour 
of the annihilation photon with a relative accuracy of the 
order ( 0 2 ) ~ .  

The square of the amplitude I u,I2 of the process in- 
volving a free electron with initial momentum q depends 
on the invariant variables QKl = mu1 - q . kl and QK2 
= mw, - q*b. Expanding l U,12 in terms of q / m - a 2  we 
obtain the following expression for the cross  section of 
the process up to terms linear in 02 when q - q  (we have 
dropped terms proportional to ( a ~ ) ~ ,  f fZq /m,  (q/m)2): 2 ,  

If we fix wl in the region allowable by the free kine- 
matics we can evaluate the shift in the line maximum a s  
function of the variable x .  For the evaluation of the de- 
rivative it i s  sufficient to put x = 0 ,  tl = tlo in the function 
F(wl, t i )  in (10). For  the position of the maximum we 
get: 

where 

Replacing d3k2 in (6a) by dsq and integrating over dqLsl 
we get in our approximation an expression which i s  the 
same a s  the TPA c ross  section due to a free electron: Using the definition of x we find the shift of the maximum 

in the distribution over the angular variable t i :  
o la m do doaT0(~1) rOZfo dQ, = 2nro'fo- do , ,  

P' 

where fo i s  defined by Eq. (7) with the values 
Equation (12) determines the angle a t  which the ma- 

jority of the photons with a fixed energy wl fly away. 

The shift in the maximum in the energy wl for a fixed 
angle 0 turns out to be of the order of the binding energy 
of the electron $/2m so  that it i s  necessary to take the 
lat ter  into account in the energy conservation law: 

Integrating (6) over da2 we get the distribution over 
the energy and solid angle of one of the photons: 

do 8 ro' m a 1  -=---- f0  I + I  (10) 
d o I d Q l  3x (1 par (1  + x ' ) ~  
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by a free electron & (both amplitudes a r e  connected 
with the polarization of the intermediate positron): 

FIG. 3. 

Putting wl= wlo into F(w,, tl) in (10) and evaluating the 
derivative of (10) for a fixed angle tl we get: 

where the functions f,, ~(w,), and @(O,t) were defined in 
(7), (7a), {7b), (lob), and (1 la). In the non-relativistic 
region q <<p << m (14) becomes 

4. REGION OF THE RESONANT BEHAVIOR OF THE 
CROSS SECTION 

For the case where the momentum transferred to the 
nucleus is large q >> (m7)'lz there exists a region of 
Coulomb resonance where the differential cross  section 
du/dbk, dS1, is of the order , /2,(~) ' .  In the non-resonant 
region the c ross  section for such q i s  of the order 
./20((r~)'. The region of the Coulomb resonance i s  con- 
nected with the presence of a factor in the shape of a 
pole b" in diagram c of Fig. 1 for the amplitude (1). 
When In - p I -  ? and q >> (m?)lf2 this diagram i s  of the 
order 9-' and determines the cross-section (in the re- 
gion g -?  the contribution from the diagram c of Fig. 1 
is smaller by a factor crZ than that from diagram a): 

F--L~~~(M-K+~)~~(M-K,+~[~,+ (1-2) ; 
M- (m, O,0, O), L,- (a ,b)  -'. (16) 

Putting x = p  everywhere except in the resonance denom- 
inator b and using the relation 

we transform the expression in the first  brackets of Eq. 
(16) to the form 

where P'= ( & , a t ) ,  1x1 = p .  

Using (17) we  can write the amplitude for the process 
(16) in the form of a product of the amplitude of the 
elastic scattering of a positron by the Coulomb field A: 
and the amplitude of the TPA of the scattered positron 

A,L = b r a ~ ~ - ' i ~ , - f u * ~ ~ ,  q = x - p, 

.. f + m  
A2,L - b r a  ii',,e,- [ vn-ma i1*+( i*2) ] ,  

Using the explicit form of the bispinors and of the ma- 
t r ix  yo  we easily get the equation 

where we have summed over the polarization of the ini- 
tial positron. Using this equation we can easily sum 
over the remaining polarizations when evaluating the 
square of the amplitude: 

fo  is defined by Eq. (7). 

When studying the region of the Coulomb resonance 
and of large momentum transfers to the nucleus it i s  
convenient to change to such a set  of independent vari- 
ables that it includes q and x. The phase volume (3) 
contains differentials of five independent variables. 
After averaging over the polarizations one of the azi- 
muthal angles corresponds to the rotation of the fixed 
system of vectors and i t s  differential can be replaced by 
21. We choose a s  the other variables q, x, wl, and $, 
where J, is the angle between the planes determined by 
the vectors p, q, x and k,, kz, and x .  The phase volume 
fl takes in the new variables the form 

One can easily check that this expression i s  correct  by 
choosing the coordinate axes in the way shown in Fig. 3. 

It can b e  seen from Eqs. (18) and (19) that the depen- 
dence of the c ross  section on the azimuthal angle JI dis- 
appears in the resonance region and we replace therefore 
i t s  differential by 21: 

Substituting (19) and (20a) into (2) we get the following 
expression for the c ross  section in the Coulomb reso- 
nance region: 

where 
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a b c 

FIG. 4. The physical regions for the variables w , ,  x , and q. 
The projections of the whole region onto the plane are  bounded 
by the dashed lines. The cross section of the physical region 
with the plane corresponding to a fixed value of the third vari- 
able is hatched. 

do,(q) and do!,.(wl) a r e  respectively the cross sections 
for the scattering of the positron by the Coulomb field 
of the nucleus and for the TPA of the positron by a free 
electron: 

do. Znqdq 
duo(q)= (=ITl 
do, ( 2 a Z e I 2  l - L ,  -=- 
dQ qi ( *ez) 

while duk(ol) is given by Eq. (8). 

One can observe the Coulomb resonance only for large 
momentum transfers to the final atom q>> (mq)'12. 
Resonance occurs when I x - p  I -  q. If the momentum 
transfer q -q  only the region I x -p 1-9 (Ip - ql s x 
c p  + q) is kinematically possible. Moreover, when q - B 
the main contribution, a s  was noted in Sec. 3, comes 
from the impulse approximation determined by diagram 
a of Fig. 1 which parametrically exceeds the contribu- 
tion from the "resonance" diagram c. Small q corre- 
spond to the region where p= x ,  i.  e., the total momen- 
tum of the final photons x is the same as the positron 
momentum p both in direction and in magnitude. The 
Coulomb resonance region (q>> (mq)lJ2, x =P) corre-  
sponds to the case  where x and p have the same magni- 
tude but different directions. 

It i s  clear from Eq. (21) that when I x - p l - B the dif- 
ferential cross-section d u - G ( f f ~ ) ~ ,  but the contribution 
from the resonance region i s  a quantity of order ?fj(a~)~, 
a s  the resonance has a width of order 9. It i s  clear fron 
Eqs. (1) and (2) that the contribution from the non-reso- 
nance region for q>> (mq)'12 is a quantity of order 
~ ( U Z ) ~ .  The resonance region therefore gives the main 
contribution to the c ross  section for large q: 

The physical region i s  bounded in the variables x and 
w1 by the conditions 

and shown in Fig. 4a. The resonance region i s  a narrow 
vertical str ip I x - p  I -  g. 

To observe Coulomb resonances it is necessary to 
know the momentum transferred to the nucleus. As i t  i s  
impossible to measure directly the recoil momentum of 

the nucleus, it is  necessary for i t s  evaluation to have 
complete information about the momenta of the particles 
taking part  in the reaction. If there a re  electrons 
amongst the final particles it i s  in practice only possible 
to measure their momentum by using a gaseous target, 
because of the small range of a charged particle, and 
this appreciably increases the time needed for perform- 
ing the experiment. In this connection the TPA process 
differs conveniently from other processes a s  the final 
particles here a r e  y quanta, the range of which even in a 
solid target is relatively large. The momentum of the 
initial particle-the positron-on the other hand i s  given 
by the experimental conditions. 

When resonance behavior of the c ross  section occurs 
it is most convenient to track the distribution in x and 
q. In the region of large q 2 m this distribution changes 
by two orders of aZ: from a magnitude -*/20(aZ)' for 
I x - p l  >>B to a magnitude -./20(aZ)'for i n - P I  -q. In 
the region I x -p l >> q the distribution of &/dqdw i s  ob- 
tained from Eq. (2) with the phase volume given by 
Eq. (20) and Eq. (19) ofCB1 by integrating over J ,  (see 
Fig. 3) and wl. This integration was performed nu- 
merically. To obtain the above mentioned distribution 
in the region I x -pl -17 it is sufficient to integrate (21) 
over wl from (E + m - p)/2 to (E + m +p)/2. As a result 
we get: 

where og, is the total c ross  section for TPA by a free 
electron: 

Summing the contributions from all q in the limits 
2p L q 2 qo>> (mll)ll2 we find the distribution in x near the 
resonance: 

where 

We show in Fig. 5 the curves of the distributions (24) 
for different 2 and go = m obtained by integrating Eq. (2). 
In the resonance region these curves a r e  described by 
Eq. (24). 

5. CROSS SECTION OF THE ANNIHILATION 
PROCESS FOR SLOW POSITRONS 

We shall regard positrons with a momentum p << m 
as slow. In that region we can obtain a rather simple 
formula for the cross section if we restrict  ourselves 
to small momentum transfers to the nucleus 9-7. The 
main contribution to the amplitude of the process will 
come from the diagram a of Fig. 1, but only if we take 
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FIG. 5. Coulomb resonance in the two-photon annihilation of 
positrons with an energy of 300 keV. Curve 1 corresponds to 
Z=47, k=1 .  Curve 2 to Z=26, k=3. Curve 3 to Z=13, k=lO. 
The smallest momentum transferred to the nucleus qo = m; k 
is a scaling coefficient along the ordinate axis. 

for the positron wavefunction the non-relativistic wave- 
function instead of a plane wave. Diagram b of Fig. 1 
which contains the correction to the free electron Green 
function is proportional to (qe + and diagram a to 
the quantity (q2 + For small q - 71 diagram b can 
thus be neglected (diagram c does not occur here; it is  
included in diagram a). 

The differential cross section calculated with the non- 
relativistic wavefunction is given by the expression 

where 

Using for dI' Eq. (6a) in (25) and integrating over d o ,  
we can obtain the non-relativistic expression for the 
DADTA, but the integral over w1 can only be obtained 
numerically. Taking dI' in the form (20) we can inte- 
grate Eq. (25) analytically over q, q, and w,. The inte- 
gral over I,!J and q equals 

Only the cosine of the angle between the photon momenta 
depends on o, 

The integration over wl from rn - 4% to m + $x, using the 
identity of the photons, gives 

6. SMALL w2 REGION 

We consider the region w, << o, and 5 = crZc/p << 1. It 
follows from the energy conservation law and the defini- 
tion of x and q that 

The main diagrams in this region are  diagrams a and 
b of Fig. 1 which contain the pole 4' a o,". The cross 
section of the process summed over the polarizations of 
the particles is in the form of a product of the probabil- 
ity dW7 of the bremsstrahlung by the long-wave photon 
and the cross section duly for the single-photon annihila- 
tion of a positron by a K electron: 

a P'- (P~*) '  d61,d0', ,- ~ W T  (nap a,) - - P kc 
(2nt' (e-pn,)' oz P a( 

Integrating (26) over the angles of departure dS2, and 
dQl we get the cross section for TPA with the emission 
of a soft photon in the frequency range do,: 

where 

u,, is the total cross section for single photon annihila- 
tion by a K electron, dW7(o,) the probability for the 
emission of a soft photon in the frequency interval dwz. 
Equations (26) and (27) are  valid when the energy of one 
of the photons is  small: 6 -( we << m, where 6 i s  the re- 
solving power of the apparatus. 

The authors are grateful to M. G. Gavrilov for dis- 
cussions about the possibilities of present-day experi- 
ments. 

 he minus sign was omitted in Eq. (16) for L2 int6'. 
2 ' ~ n  Eqs. (23) and (24) off6] the term - 22 arctan(ng/q) in the 

round brackets was omitted, which ar ises  from the infrared 
term (4a). This term was taken into account when the shift 
in the maximum of the line (36) was evaluated in the pre- 
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