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The effect of electron scattering by impurities on the main logarithmic diagrams responsible for pairing 
phenomena in one-dimensional metals is considered. It is shown that a sufficiently high impurity 
concentration 1n(2D/wo) is replaced by 1n(2Dr) in the diagram corresponding to exciton pairing (D is 
the upper integration limit (-Ep or WD) and r is the collision time). Diagrams corresponding to Cooper 
pairing, however, are not affected by scattering by impurities. 

PACS numbers: n.lD.Fk 

1. INTRODUCTION 

It is known U] that in a one-dimensional metal the for
mation of Cooper pairs is complicated by the process of 
dielectric electron-hole pairing. This leads to the need 
of summing diagrams of the "parquet" type instead of 
the "ladder" diagrams used in the three-dimensional 
case. In the case of the "parquet" situation, the calcu
lation with better than logarithmic accuracy entails con
Siderable difficulties, and even though in this approxi
mation pairing is obtained, it is not clear the extent to 
which this result is reliable. It should be noted here 
that in the logarithmic approximation both types of pair
ing occur simultaneously, but in actuality this may not 
be the case, and moreover, the dielectric pairing may 
hinder the formation of Cooper pairs. This is precisely 
the situation with the experimental studies of quasi-one
dimensional compounds based on TCNQ. However, 
among compounds of this type there are also some in 
which, in view of the several equivalent pOSitions for 
definite complexes, there is an "innate" disorder, and 
it is known that in these compounds the transition into a 
dielectric is either not observed at all or occurs at a 
very low temperature (see[21). 

The purpose of the present paper is to demonstrate 
how scattering of electrons by a random potential (in 
the form of impurities or incomplete order of the host 
substance) leads to elimination of the dielectric pairing 
without essential changes in the formation of Cooper 
pairs. We use a purely one-dimensional model. We 
note that the same question was investigated by Zava
dovskilt3 ] under the assumption of a slow quasi-classi
cal random potential (in our case it corresponds to the 
field T/, see below). It turned out that such a potential 
does not influence the pairing in any of the channels. 
The difference between our results and that oft3 ] is the 
consequence of the allowance for the "backward" scat
tering (Po- -Po)' 

2. COOPER PAIRING 

The main element that determines the Cooper pairing 
is the sum of diagrams of the loop type, shown in Fig. 
1. In the absence of electron scattering by impurities, 
there is only the diagram la, and it is proportional to 
In(D/ wo), where D is the upper limit of the logarithmic 
integralS (on the order of the Fermi energy or the Debye 
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frequency). This leads in final analysis to the appear
ance of an imaginary pole with respect to the variable 
Wo at the upper vertex and to the corresponding sign of 
the bare interaction, and in the latter situation this is 
evidence of instability of the Fermi spectrum and the 
need for restructuring the state (the appearance of su
perconductivity). 

In the one-dimensional case, as already noted, the 
use of parquet diagrams complicates the situation. In 
any case, however, it can be stated that the absence of 
In(D/wo) means also the absence of Cooper pairing. If 
we assume electron scattering by impurities, then at 
wo» T-1, where T is the collision time, the scattering is 
obviously insignificant and the logarithm is present. At 
wo« T-1, however, it is perfectly possible to have In(DT) 
instead of In(D/wo}. The pole in the total vertex with re
spect to the variable Wo then vanishes. If this is pre
cisely the situation, this means that at a suitable im
purity concentration (or at a suitable degree of disor
der), the Cooper pairing is eliminated. On the other 
hand, if the loop yields In{D/wo) even at wo« T-1, this 
means that the impurities do not influence the Cooper 
pairing. 

We use the method of t4]. It follows from it that it is 
necessary to calculate the integral 

(1) 

(We recall that the subscript 1 denotes the vicinity of Po 
and the subscript 2 denotes the vicinity of - Po.) The 
integral (I) with respect to frequency can be broken up 
into integrals containing only retarded and advanced 
functions, namely 

~ -
S G«())o-()))G«()))d()) = S GA «())o-())) G. «()))d()) .. _ 0 

+ S Gn«())o-()))GR«()))d())+S G.«())o-()))GA«()))d()). (2) 
o 

FIG. 1. 

a b 
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Since III is a diverging expression, and our formulas 
for the G functions are valid only for the vicinity of the 
Fermi limit, we add and subtract the corresponding ex
pression for the free electrons. If the integration is 
performed in correct order, we should write in this 
case: 

I- dro ID dp, 
II.,= -2 -?-[ro,-ro-6+i11 sign 6]-' [ro-6+i11 sign 6]-' 

:t _It 
-D 

=...!...in(~). 
1[V -uOo 

(3) 

We now subtract an expression of the type (1), but for 
the free electrons. We introduce for the time being an 
upper cutoff limit with respect to the frequencies D1• 

Using the representation of the integral in the form (2) 
and the expressions for the free Green's functions 

Gn" (zz' ro) =- (i/v) 8 (z-z') exp [iw (z-z') /v], 
GR ,,=- (i/v)8 (z' -z) exp[ -iro (z-z')/v], 

GA ,,= (i/v) 8(z' -z) exp[iro (z-z')/v], 
G A22= (ilv) 8 (z-z')exp[ -iro (z-z')/v], 

we obtain 

, i 2D, 
II., =-in-. 

rtV WI) 

(4) 

Thus, we must calculate expression (1), limiting the in
tegration with respect to w to the interval (- Dh D1), and 
adding to it 

II ,i (D) .,-II" =-in -. - . 
ltV -tD, 

(5) 

Changing over to expression (1), we note first that the 
field 7j corresponding to forward scattering of the elec
trons exerts no influence on this expression. Indeed, if 
we change over to the interaction representation with 
respect to 7j (see[3]), then factors of the type 

cancel out from the operators t and t* upon averaging, 
and the external factors of the G functions, of the type 

exp (i I1] (z,)dz, a~) 

cancel out in expression (1). We can therefore perform 
the calculations by putting 7j = O. 

The expressions for the Green's functions GR and GA 

were obtained in[4l. Substituting them, we obtain 

D, • 

II, = :t~' {I dro [ I dz,8,~') (ooz) s" (ooz) [S~:) (z,-oo)S,,(z,-oo) 

+S,;') (z,-oo) s" (z,-oo) ] + I dz,S,;1) (z-oo )S" (z-oo) [S,\') (ooz,) 

+ j dro [ J dz, s,:')( ooz) 8" (ooz) [S,~') (z,-oo) s" (z,-oo) 
o 
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+S,~') (z,-oo )S,,(z,-oo) ]+ I dz,S,(;) (z':"'oo)S" (z-oo )IS,(,') (ooz,) 
, 

S" (ooz,) +s,~') (ooz,) 8" (ooz,) ] ] [S,!') (00-00) 8" (00-00) ]-' 

, . 
+ I dro [ I dz, s!:) (ooz)S" (ooz)[S::) (z,-oo )S" (z,-oo) 

_D, .. 
+8,<;) (z,-00)8,,(z,-00)]+ S dz,8,<;) (z-oo) 8" (z-oo) [8::) (ooz,)8,,(ooz,) 

(6) 

where 8(1) denotes 8 .. 0 .... , and 8 stands for 8 ... 

We shall show that the term with the integral 

is equal to zero. This follows from the fact that it is 
impossible to cancel out the extreme left t* in the sec
ond integral in the interval (ooz) at Z >Zl or in the inter
val (ooZl)' The first term in (6) depends only on the fre
quency 0= 2w - wo, and the limits of this variable are 
Wo and 2D1• Similarly, the third term of (6) depends 
likewise only on 0, and in this case 0 changes from 
- 2Dl to - woo The interchange t =t * in this term leads, 
as is well known, [4] to the substitutions 1 = 2 and 0 
- - O. The limits of the integral with respect to the 
new frequency are now Wo and 2D1• Thus, the remain
ing expression can be written in the form 

1 3DI % 

II,=--, J dQ{ J [S"o(ooz)S"(ooz)+S,,o(ooz)S,,(ooz)] 
2ltD' 

-, 

+ I dz,[S"o(z-oo)S"(z-oo)+S,,o(z-oo)S2I(Z-OO)] 

(7) 

After the averaging, the expressions under the integral 
sign will obviously depend on z - Zl' If we introduce the 
variable Z -Zl in the first integral and Zl -z in the sec
ond integral, then obviously the two terms will cOincide. 
ThUS, it suffices to calculate one of these terms and 
double the results. Just as in[4], we expand in the last 
factor of (7) Sz2( 00 - 00) in terms of 

8" (ooz) 8" (z-oo) /[8" (ooz) S" (z-oo) ] 

and proceed analogously with 811(00 _00). We then ob
tain from the condition of the cancellation of t and t*: 

1 IDt I: 

II, = ltV' S dQ S dz, L. [B. (ooz) +B.+,(ooz) ]P.(zz,-oo); (8) 

'" 
where 
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tions En and B~ coincide with those introduced inC4J and, 
as shown there, they are equal to each other after av
eraging. 

To calculate (8) we shall use a somewhat different 
method than in our preceding paper. [4J We note first 
that at 0» 7"i1 the impurity scattering has no signifi
cance, 1. e., in this region we obtain with logarithmic 
ac-curacy 

(I) i ) II, =-in(2D,T,. (10) 
ltV 

We must ascertain whether the part of the integral from 
Wo to - 7" i1 yields at W07"2« 1 an analogous expression 
with In(l/ W07"2)' Since the logarithmic integral is ac
cumulated over the region wo« 0« 7"i\ it suffices to 
calculate expression (8) at 07"2« 1. However (see [4J), 
in this case the large values n» 1 play the essential role 
in the sum over n. We can therefore replace the sum 
by an integral and, confining ourselves to the first term, 
put Bn+l'" Bn' 

The equation for Bn takes the form (see[3J) 

(11) 

where t=Z/(V7"2) and /3=207"2' Just as in[4J, we must 
find a solution that does not depend on t. Changing over 
for large n from the discrete variable n to the continu
ous variable, we obtain 

d'B 
n'--' +i~nB.=O. 

dn' 
(12) 

A solution of this equation, satisfying the boundary con
dition (see (9» and not increasing as n - co, is 

B.=uK,(u) , (13) 

where u = 2( - i/3 n)1/2 • The function Pn satisfies the same 
equation as en in[4J, and differs only in the boundary 
condition: 

oP ./ot=n'P n-'+ (nH) 'Pn+!- [2n(nH) H1P.+i~ (n+ 1f2)Pn• (14) 

Taking the Laplace transform: 

p.(t) = S P •• r·'ds 
, 

and changing over to the continuous variable n, we ob
tain 

,d'P.. dP.. . ) 0 n --+2n-+(/~n+s P •• = . 
dn' dn 

(15) 

This equation has a solution that does not increase as 
n- co, in the form 

(16) 

where 

(17) 
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The functions PA{u) have the orthogonality property on 
the segment u = o-co: 

- ,,;'6(1.-1.') 
Sp·(u)P..(u)udu= 81.sh2Jtl. . (18) 

The boundary condition for Pn(t) at t = 0 is 2Bn (13). 

The orthogonality relation (18) makes it possible to 
write down the solution in the form1) 

p. (t) = 16lt-' j dl.1. sh 2ltl. exp[ - ('1.+1.') tj u-'K".(u) j u,K,,,, (u,)K, (u,)du,. 
, 

(19) 
Substituting this expression in (8), we obtain 

8' IDI dQ" .. 110 2: 

II,")= It:v S Q S dl. S dtl. sh 2ltl. exp[-('/.+I.') tl [S uduK".(u)K,(u) ]. 
, , , 

(20) 
The integral with respect to u is equal to 

w It' 1 
S UduK".(u)K,(u)=T( T+I.')ch-'ltl.. 
, 

Substituting this expression in (20), we obtain with log
arithmic accuracy 

IIi') ~ ~ in (_1_) . 
nv (i)o'[~ 

(21) 

Combining expression (21) with rr:ll (10) and adding (5) 
we obtain2 ) 

(22) 

It is seen therefore that even in the case when 1/7"2» wo, 
the logarithm In(2D! wo) is retained, from which it fol
lows that scattering by impurities does not prevent pair
ing of the Cooper type. 

3. EXCITON PAIRING 

The prinCipal element of exciton pairing i-s the loop 
shown in Fig. 2. This loop corresponds to the integral 

- d -
II.= S 2: S dz,G"(oo+oo"z,z,)G,,(oo,z,,z) .. (23) 

Again we add and subtract the corresponding expreSSion 
for the free electrons. We then obtain 

II,,-II,,' = - _i_in (~) 
2ltv -iD,' (24) 

where we have formally introduced a finite interval for 
the frequency (- Dl - D 1) • 

We break up the integral (23) into three parts 

. D\ doo CID (1) 

+ S 2lt S dz,G"a(zz,)G".(z,z), (25) 
o 

where G(1)=G,,,+,,,o and G=G",. In this case the field 1) 
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w+Wo 

I~I 
~7. 

U1 

FIG. 2. 

introduces into llz phase factors of the type 

[ S' dZ,] 
exp -2i '1 (Z2)--;- , 

which do not cancel out. It must be borne in mind, how
ever, that the element calculated by us is part of a par
quet diagram and is joined by other Green's functions 
with their own phase multipliers. In view of the mo
mentum conservation, the number of ends of type 1 and 
2, which enter and leave a given point, is always such 
that the factors with 1J cancel out. Thus, as before, we 
can put 1J = O. 

Substituting in (25) the expressions for GRand G A1 we 
get 

II, = - 2:V' (f dill [ f dz,8,~') (ooz)8,,( ooz)8i,') (z,-oo )8" (z,_oo) 
-v, 

. . 
+ J dill [ S dz,8,(;) (ooz)8" (ooz) 8::) (z,-00)8,,(z,-00) 

+ j dz,8,C,') (00:,)8" (ooz,) 8,',') (z-00)8" (z-oo) ] [8:;) (00-00)8" (00-00) 1-' 
. ' 

D, , 

+ J dill [ S dz,S,~') (ooz)8" (ooz) 8 2(2') (Z,-00)822(Z,-~) 
o 

+ j dz,8,\') (ooz,)8" (ooz,)8,~') (z-00)8,,(z-00) ] [si:) (00-00)8,,(00-00) ]-'. 

(26) 
Although in this case the integral 

-0, 

is not equal to zero, it is not logarithmic. It can be 
shown that this integral yields only a real constant un
der the logarithm sigh. As to the first and third inte
grals, it can easily be seen that in these integrals it is 
necessary to take into consideration from each of the S 
only the factor 

IT (1+1[;,1'/2) 

(see[3J), for if we take one of the terms of the type 
I;tl;,I;!, .. . , i'" U m •• • , then in the first integral the ex
treme left I; will have nothing to be paired with (and the 
same holds true for 1;* in the third integral). As a result 
we obtain 

II 1 {-S"" J~ [i(2ill+ill.) (z-z,) Z,-Z] 
, = - 2nv' dill dz, exp v T,V 

-DI Z 
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+ fdill f dz, exp [ i(2ill+ill~ (z-z,) -- =---In---Z-Z'l} i 2D, 

• TzV 2n:v (J,)O+iT2-1 

(27) 
Combining (27) with (24), we get 

i 2D 
II.= - --In---. 

2nv 't.z -I-iroo 
(28) 

It is seen from this answer than at a sufficient impurity 
concentration, when T 21» Wo, we have llz cc In2DTz. In 
this case we are left only with In(2D/wo) from the Cooper 
loop, i. e., the parquet is replaced by a ladder. It is 
seen therefore that in either case the impurities enhance 
the tendency to superconductivity (at the appropriate 
sign of the interaction). 

We note in conclusion that the present result was ob
tained under the assumption that the averaging over the 
impurities can be carried out in each loop independently. 
This is correct for the three-dimensional case, but not 
so obvious for the one-dimensional case, so that an ad
ditional analysis is necessary. We note furthermore 
that substantial differences can occur in real quasi-one
dimensional systems in which the electron transitions 
from filament to filament have a finite probability. For 
example, as shown by Larkin and Mel'nikov, [5J even the 
quasi-classical field 1J suppresses in this case pairing 
in both channels. Nonetheless, the purely one-dimen
sional effects considered in the present paper is ap
parently the principal one, i. e., if the forward scatter
ing described by the field 1J suppresses to some degree 
both channels, then the backward scattering, not taken 
into account by Larkin and Mel'nikov, [5J definitely acts 
more strongly in the dielectric channel, and consequent
ly the introduction of impurities can still contribute to 
superconductivity . 

l)The function Bn (13) depends on the same variable u. Since 
the integral in (18) is taken along the real u axis, we shall 
conSider for the time being the imaginary frequency f3 = if3 ' , 
and then make in the final result an analytic continuation to 
real frequencies. 

2)One may question the validity of writing - i in the logarithm 
if we confine ourselves to logarithmic accuracy. This valid
ity follows from the fact that Eqs. (11) and (14) must yield 
real solutions if if3 is real. 
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