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We describe a molecular liquid schematically in the single-molecule approximation as a suspension of rigid 
axisymmetric particles in an anisotropic viscous fluid. We determine a relaxation equation for the average 
orientation of polar molecules in the liquid crystal phase; it contains two relaxation times that depend on 
the anisotropy of the medium and the interaction of a molecule with its neighbors. We determine 
relaxation equations for the average orientation of non-polar molecules in the isotropic and liquid crystal 
phases. We consider the behavior of a liquid crystal in a rotating field. 

PACS numbers: 61.30.+w, 61.20.-p 

1. INTRODUCTION 

Of all the relaxation processes which are possible in 
liquids, conSisting of prolate polyatomic molecules, the 
relaxation processes which are connected with the dis
orientation of molecules and which appear when fields 
which orient separate molecules act upon the liquid are 
characterized by the longest relaxation times. [1) The 
relaxation time in the liquid-crystal phase exceeds by 
several orders of magnitude the relaxation time of the 
corresponding processes in the isotropiC phase, C!-4] a 
fact initially attributed to the presence of "swarms" 
of molecules which when fields or velocity gradients 
are applied behave as rigid particles in a viscous fluid. 
The idea of "swarms" is inconsistent, as was already 
pointed out by Frenkel' , [1] but" swarms" are used even 
up to the present time to explain the behavior of molec
ular liquids and liquid crystals. [5] In what follows the 
relaxation phenomena in the isotropic and liquid crystal 
phases are conSidered on the basis of the concept that a 
separate molecule is the kinetic unit. 

We assume that each molecule is an axisymmetric 
rigid particle, the orientation of which in space is de
termined by a unit vector e directed along the symmetry 
axis of the particle. The components of the vector e 
are connected through the relation 

(1.1) 

by virtue of which we need two variables for the de
scription of the orientation of the particle in space. 
The average orientation of the molecules can be de
scribed by an infinite set of quantities-the moments of 
the distribution function, which are defined as follows 

(e,> = J w(e)e,6(1-e')de, 

(e,e) = J w(e)e,e;6 (1-e') de (1. 2) 

and so on. The odd-order moments are non-vanishing 
only for polar molecules in a field. 

It is convenient to describe the average orientation 
also by the anisotropy tensors which are connected with 
the above mentioned moments of the distribution func
tion and are defined such that when the orientations of 
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the molecules are all equally probable all anisotropy 
tensors vanish. For instance, 

(1. 3) 

One normally uses the second-rank anisotropy tensor 
for the description of the anisotropy of liquid crystals. [8] 

In the single-molecule approximation, when the sys
tem is considered to be a collection of molecules each 
of which is in some average field produced by the other 
molecules, one can, in correspondence with well known 
results, [7] express the average dipole moment per unit 
volume in terms of the first and second order moments, 

(1.4) 

and express the permittivity tensor for the optical fre
quency region or for non-polar molecules in terms of 
the anisotropy tensor, 

(1.5) 

It is convenient to assume that the conversion factor 
from the internal field to the applied field E is included 
in the constant dipole moment of the molecule /.l, which 
by assumption is directed along the symmetry axis of 
the molecule, and in the coefficient 0'11 - aJ. which deter
mines the induced dipole moment of the molecule. In 
E qs. (1. 4) and (1. 5), n is the number of molecules per 
unit volume and Co is the permittivity of the liquid in the 
isotropic state. 

One can write down Similar formulae for the magnetic 
moment and the magnetic permeability. Usually the 
constant magnetic moment of the molecules of interest 
to us is equal to zero, and molecular liquids which 
form liquid crystals are characterized by an anisotropic 
magnetic sus ceptibility [7 ] 

(1.6) 

where mil - mJ. is the difference between the values of 
the magnetic susceptibility of a single molecule. 

The potential energy of a molecule in the anisotropic 
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average field of its neighbors can be written in the form 
of an expansion in terms of invariants that are formed 
from the vector e and the tensors (1. 3). In the simplest 
approximation (see[S,9]) which takes into account also 
the energy of the interaction of the molecule with the 
field UO ] we write 

(1. 7) 

where T is the temperature in energy units, x = ME/T, 
a= (a" - aJ.)E2/T, h is a unit vector in the direction of 
the field strength, and v is a phenomenological constant 
that depends on the density and the temperature. If we 
demand that the molecule is oriented along the sym
metry axis determined by the tensor S.,., then v>O. 

The given approximation (1. 7) succeSSflJIly describes 
the main features in the behavior of liquid crystals, and 
in particular it describes the isotropic liquid-nematic 
liquid crystal transition; however, it is insufficient for 
a description of the details of the thermodynamic be
havior' [11] and the potential energy of a molecule must 
apparently contain also other invariants. Besides it is 
possible that for a more complete description it will be 
necessary to forgo first of all the idea of a molecule as 
an axisymmetric rigid particle. 

In the present paper we use the single-molecule ap
prOXimation to determine relaxation equations for the 
moments of the distribution function which allows us by 
virtue of Eqs. (1. 4) to (1. 6) above to consider the kinet
ics of the polarization, the optical anisotropy, and the 
magnetization of molecular crystals in the isotropic and 
the liquid-crystal phases. 

2. EQUILIBRIUM ORIENTATION OF MOLECULES 
IN A UNIAXIAL LIQUID CRYSTAL IN A FIELD 

The values of the parameters x and a in Eq. (1. 7) are 
small for all reasonable values of the field, so that we 
can write the equilibrium distribution function in the 
form 

W,.=[ 1+"e/,;+'1. (0+"') (e,e,-<e,e.>,) h;h.Jwo, (2.1) 

where Wo is the normalized distribution function for the 
orientations of the molecules for the case when the field 
is zero. Bearing in mind that the anisotropy tensor of 
a liquid with the symmetry of a uniaxial crystal can be 
written in the form 

(2.2) 

where S is the magnitude of the anisotropy and n a unit 
vector in the direction of the axis of macroscopic sym
metry of the substance (in a field n coincides with the 
direction of the field), we determine the normalization 
constant and write 

1 l/-:;S 1 w'=-V exp{'/,vS(e;n;)'}. 
4" 2 F(l/vS/2) 

(2.3) 

The function F(z)=nff2 dx in Eq. (2.3) is tabulated 
in [12]. 
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The odd moments of the distribution function (2.3) 
vanish and the first even moments have the form 

<e,e'>'='/2 (i-M,) 6"+'/2 (3M2-1) n,n" 

<e,e.e,em >,='/.( 1-2M2+M.) (6 .. 6,m +6//6'm 
+6'm6.,) +, J.( -1 +6M,-5M,) (n,n.6'm 

+n/nm6ik +ninl6km +n"nm6il+nin,..,.61d 
+n.n,6'm) +'/. (3-30M2+35M.) n,n.n,nm , 

(2.4) 

(2.5) 

where Mz and M4 are functions of vS and defined by the 
relations 

1 e,j, i 1 3 
M2(x) = l'2X F(l'x12J --;' M,(x) =-:;-+( 1- ;)M2(X). (2.6) 

For small and large values of the argument, the func
tions (2.6) have the form 

1 2 
M,=-+-x+ 

:3 45 

1 4 
M,=s+ 105 x + 

M,=1-~+ 
x 

M,=1-~+ .... 
x (2.7) 

We now find the moments of the distribution function 
(2.1), which determine the average orientation of the 
molecules in the field 

(e,),=,,(e,e;)oh;, (2.8) 
<e,e.> ,.=(e,e.>,+ '/2 (0+"') «e,e,e,e)o-(e,e,>,<e,e),) hih., (2.9) 

<e,e,e,>,=,,<e,e,e,e),h;. (2.10) 

(e,e.e,em).=(e,eke,em),+'h (0+"') «e,e.e,eme,e;), 
-<e,e.e,em >,<e,e.>,) h;h,. (2. 11) 

The equilibrium values of the polarization, the optical 
anisotropy, and the magnetization of a molecular liquid 
are determined by the moments (2.8) and (2.9), which 
we now rewrite using Eqs. (2.2), (2.3), and (2.5). Us
ing the fact that n coincides with h when there is a field, 
we have 

<e,>,.="M,(vS)h,. 

<e,e.>,.=Sh,h'+'/3 (1-S) 6", 

(2.12) 

(2.13) 

where Mz is defined by Eq. (2.6) while S satisfies an 
equation which follows from Eq. (2.9), 

3M,-1+'/2 (0+,,') (M •. -M,') =2S. (2.14) 

When the field vanishes we get from Eq. (2.14) an equa
tion which has been derived before. [S,9] 

For large values of v when Eqs. (2.7) are valid it 
follows from Eq. (2. 14) that 

S=1-3/v. (2.15) 

In this approximation the magnitude of the anisotropy is 
independent of the field. 

3. DYNAMICS OF A PARTICLE IN AN ANISOTROPIC 
LIQUID 

On each molecule of the liquid there acts a torque 
which is determined by the potential energy (1.7) 

L,.=T[ (,,+oe,h,) (e.h;-e;h.) 
+v (S.e.-S.,e;) e,J. (3.1) 
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Under the action of the torque the molecule, as a rigid 
axisymmetric particle, moves in some anisotropic me
dium which is formed by the other molecules and which 
has an equation of motion that contains the moments of 
the distribution function[13] 1) in the approximation linear 
in the velocity gradients, i.e., the second-order mo
ments. Therefore, when considering the simplest ap
proximation, we assume that the anisotropic medium is 
additionally characterized by an internal variable, the 
symmetric tensor SJI' The equations of motion of such 
a medium which were written down in general form by 
Hand [14] contain several phenomenological constants 
which have the meaning of viscosity coefficients. 

Under the action of torques a particle in an anisotropic 
viscous liquid performs a regular rotation with a ve
locity that can be written in the form 

(3.2) 

The symmetric rotational mobility tensor M.j is a func
tion of the vector e and of the symmetric tensor S i l • 

Taking into account the terms of first order in the an
isotropy tensor Sil we write 

Mij = ~ [6,j+')(oe,e j+')(,S,j+)(2S.,e.e.6,j+)(, (Sj,e,e,+S"e,ej) +)(,S •• e.e,e,e,]. 

(3.3) 

In Eq. (3.3), D and X .. are phenomenological constants 
such that for an isotropic liquid the coefficient D is the 
rotational diffusion coefficient of the molecules which, 
for instance, for an ellipsoid of rotation has the form[13] 

T 1 
D=-- (3.4) 

6'lQ 6 

where 1/ is the viscosity coefficient of an isotropic liq
Uid, 0 the volume of a molecule, and 0 a form factor 
(0 = 1 for a spherical particle, 0"" 3 for an ellipSOid 
semi-axis ratio alb"" 4, which is typical for molecules 
in a liquid crystal). The dimensionless coefficients Xc< 
depend on the shape of the particle and on the "viscosity 
coefficients" of the medium. 

We now find from (3.2) and (3.3) the rotational speed 
of a particle in an anisotropiC liquid under the action of 
the torque (3.1) 

Q'm =.E... [L'm +,)(, (LmjSj,-L,jSjm) +')(2Sj,eje,L'm +)(3 (Lm,S"-L,,Sjm) e,e,]. 
T 

(3.5) 
The condition that the work done by the torques must 

be positive imposes some limitations on the values of 
the phenomenological constants. In particular, 

D>O, -3/2S<,)(,<3IS. (3.6) 

POSitive values of Xl correspond to a braking of the 
rotation around an axis perpendicular to the axis of sym
metry of the liquid crystal. The coeffiCient X2 does not 
affect the anisotropy of the mobility and we shall there
fore omit it in what follows. 

4. ROTATIONAL DIFFUSION EQUATION AND 
MOMENTS OF THE DISTRIBUTION FUNCTION 

A particle in a liquid performs a Brownian motion and 
the rotational velocity of a particle can be written in the 
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form 

Q.=Q.(e)+1jl.(e, t), (4.1) 

where Or. = - ~ ehJs 0jS is the regular component of the 
velocity connected with the action of constant torques 
and determined, for instance, by Eq. (3.5) and l}!h is the 
random component of the velocity which is by assump
tion a Gaussian random function, the statistical proper
ties of which are determined by the relations 

¢.(e, t)=o, 1jl.(e, t)¢m(C', t')=2D.m(e, e')6(t-t'). (4.2) 

The averaging in Eqs. (4.2) is over an ensemble of 
realizations of the random functions. 

From Eq. (4.1) there follows an equation for the rate 
of change of the orientation vector which, when we add 
the reaction forces with an undetermined multiplier L, 
has the form 

de, '/ L at = e, •• Q,e.- • e,+cD" (4.3) 

where the random component Wi has three independent 
components and only after the determination of the un
determined multiplier takes the form W J= e jhal}!/res ' 

We introduce next the distribution function 

w(e, t)=6(e-e(t»6(1-e'(t» (4.4) 

and, following the method expounded in Klyatskin's 
monograph, [15] we find the rotational diffusion equation 
which after evaluating the undetermined multiplier takes 
the form 

(4.5) 

When completing the operations in (4.5) we must as
sume the components of the vector e to be independent, 
since condition (1. 1) is satisfied automatically. 2) 

In the case considered the antisymmetric angular ve
locity tensor is given by Eq. (3.5). The symmetric ro
tational diffusion tensor Dhl can, as can be checked 
easily, be written in the form 

(4.6) 

where M' J is given by Eq. (3.3). 

We have earlier considered[13.16] particular cases of 
Eq. (4.5) for an isotropic liqUid. 

The equations for the moments of the distribution 
function are determined by multiplying Eq. (4.5) by 
combinations of orientation vectors and integrating over 
all orientations. We then use the averaging rule 

f DF DB 
B-;-:-6 (1-e2 ) de=2 fe,BF60-e2)de - f-F6(1-e')de. (4.7) 
u~ Oej 

The equations for the first moments have the form 

(4.8) 
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(4.9) 

By virtue of Eqs. (1.4) to (1.6), Eqs. (4.8) and (4.9) 
determine the kinetics of the polarization, the magneti
zation, and the optical anisotropy of a molecular liquid. 

Equations (4.8) and (4. 9) contain not only the first
and second-order moments, but also higher-order mo
ments, and the set of equations is, generally speaking, 
not closed. When the deviation from equilibrium of the 
system is small we can use the methodU71 proposed by 
Leontovich to determine the higher-order moments in 
terms of the first- and second-order moments; the gist 
of this method is that one assumes for a non-equilibrium 
state the existence of some fictitious field such that at 
a given time the distribution function in the actual field 
is the same as the equilibrium distribution function in 
the fictitious field. The non-equilibrium moments of 
the distribution function are then determined by Eqs. 
(2.8) to (2.11), in which the actual values of the field 
are replaced by the fictitious ones. This approach was 
recently applied to a study of the kinetics of the orienta
tion of dipole particles in a fieldu81 and is used in the 
following sections. 

5. KINETICS OF THE ORIENTATION OF POLAR 
MOLECULES IN THE LIQUID CRYSTAL PHASE 

We consider the uniform liquid crystal phase consist
ing of molecules with a constant dipole moment IL which 
is directed along the symmetry axis of the molecule. 
We assume that the uniformity of the sample is main
tained, for instance, by a sufficiently strong constant 
magnetic field. We determine now the relaxation equa
tion for the average dipole moment of a molecule, as
suming that a variable electric field of strength E acts 
upon the system. 

For the case considered there follows from Eqs. 
(4.8), (4.6), and (3. 5) the equation 

1 d<e) n-;n-- = - 2<e)+ (v + x.)S,j<ej>- vSj,<eje,e) + vx. (S"S/e,e,e) 

-S;;Sj,<e,»+ ~ [~ lIij-S,J+X.(2S"Slj-+S,j-S"S"I\;;)]Ej. 

(5.1) 
Apart from the required first-order moments, Eq. 

(5.1) also contains second- and third-order moments 
which we must express in terms of the first-order mo
ments. 

Furthermore, we shall consider a uniaxial liquid 
crystal when we can write the anisotropy tensor in the 
form 

(5.2) 

where n is a unit vector determining the orientation of 
the symmetry axis of the crystal. As we take only ef
fects into account of first order in the variable field E 
only the direction of the unit vector n can change in the 
field. 

Using the method mentioned in the preceding section 
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we assume that there exists some fictitious addition to 
the field liE with which we can connect the deviation of 
the distribution function and its moments from their 
equilibrium values. The first-order moment in which 
we are interested has the equilibrium value 

<e.>.= ; [sn.'n/++(1~S)II'j]Ej, (5.3) 

and the deviation from the equilibrium value is 

where n~ is the unit vector determining the initial (field
free) orientation of the symmetry axis of the liquid crys
tal. 

Considering Eq. (5.1) up to terms of first order in 
the field strength we replace the anisotropy tensor by 
its zeroth order value 

S,j=S (n,'n/-+II,,). 

Further, the third-order moments can be expressed by 
means of Eqs. (2.9), (2.10), and (5. 4) in terms of the 
quantities ~i. After some simple calculations we deter
mined the relaxation equation 

1.1 [s 0 0 + 1 ( S) ] dE j -- n,n -1- lI-T J 3 'J dt' (5.5) 

There occur two relaxation times in Eq. (5.5), they are 
defined by the relations 

1 _ [ + 4S - 1 (3 _ S )] 
,;1. -D 3 3(1-S) x., (5.6) 

1 _ D 2 (1 - S) (3 _ S ) 
7- 3(1+2S) x· . (5.7) 

The values of the relaxation times as functions of S 
are given in Fig. 1 for the value 3 -SXl = 1. When the 
quantity 3 - SXl decreases to zero 'T.t. increases to 1/3D, 
remaining smaller than the value 1/2D of the relaxation 
time in an isotropic medium, while 'Til increases with
out bounds for all values of S. As S - 1 it follows from 
Eqs. (5.6) and (5. 7), using (2.15), that 'Tol - 0 and 'Til 

- 00 regardless of the value of Xl. 

We consider the cases where an oscillating field E 
cc e-i",t is applied parallel or at right angles to the sym
metry axis of the liquid crystal. One can then easily 
determine ~i from Eq. (5. 5) and after that, using Eqs. 
(1.4), (2.8) and the general definitions in[1°l, write 
down expressions for the permittivity in the two cases 
mentioned 

8 4lt' . II ( II)' 
ell=eo+~n(exll-ex1.)S+-n~(1+2S)[1+ !oo'; - 00'; ] 

3 3 T 1+(00,;11)' ' 

(5.8) 
1._ 4n (II 1.)s+4n 1.1'(1 S)[l+ iOO -rL-(OO't1.)'] 

e -eo-3n ex -ex 3 n y - 1+(00101.)" 

(5.9) 
Since the relaxation times 'Til and 'Tol are different, the 

frequency dependences of e;1I and e;ol are different, and 
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FIG. 1. The transverse and 
longitudinal relaxation times 
and functions of the order 
parameter of the liquid crystal 
phase for 3 - SXl = 1. 

this has been observed experimentally for the liquid
crystal phase. [2 ,3] The results of the paper in which the 
case was studied where the dipole moment was directed 
along the axis of the molecule 1%] can be compared with 
Eqs. (5.8) and (5.9) obtained here. 

In the cited investigation[2] it was observed that the 
value of r'1 reaches 10~ to 10~ s, whereas the value of 
rl. could not be measured by the methods used, i. e., it 
was less than 10-7 s. We find from Eqs. (5.6) and (5.7) 
that this difference is possible, if the effect of the pa
rameter Xl is considerable, i. e., if its value is close 
to 3/S. For a typical value S .. O. 6 the value of Xl ap
proaches 5. The values of Eq. (3.3) then determine an 
appreciable anisotropy of the mobility which cannot be 
neglected. 

6. KINETICS OF THE ORIENTATION OF NON·POLAR 
MOLECULES IN THE ISOTROPIC PHASE 

We now consider the isotropic phase of a molecular 
liquid in a field, assuming that the molecules do not 
have constant dipole moments. The normalized equi
librium distribution function is in this case given by a 
formula Similar to Eq. (2. 3) 

w,=-~ V 0 ~exp{,/,oejh,}. 
4" 2 FUo/2) 

(6.1) 

where h is a unit vector indicating the direction of the 
electric field strength. The equilibrium moments of 
the distribution function (6.1) are given by Eqs. (2.4) 
and (2.5) in which M2 and M4 are now functions of (J and 
given by Eqs. (2.6) and (2.7). 

The value of the parameter (J is small for molecular 
liquids and we can therefore restrict ourselves in those 
cases to the first terms in the expansion of the function 
(6.1); bearing, however, in mind possible applications 
to dilute macromolecular mixtures and suspensions, we 
determine the relaxation equation without assuming (J 

to be small. 

In the case considered the first-order moments van
ish identically. It follows from (4.9), (4.6), and (3.5) 
that the equation for the required second-order mo
ments has the form 

(6.2) 

The fourth-order moment occurs in Eq. (6.2). To ex-
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press it in terms of the second-order moments we use 
the method mentioned in Sec. 4. We assume that we 
can find for each non-equilibrium value of the distribu
tion function some fictitious field E + t5E such that the 
distribution function at that time in the actual field is 
the same as the equilibrium distribution function in the 
fictitious field. The non-equilibrium moments of the 
distribution function are then given by Eqs. (2.4) and 
(2. 5) in which the actual value of the field is replaced 
by the fictitious one. 

Assuming that the deviation from equilibrium is small 
and thus that 5E/E« 1, we can express the values of the 
fictitious field in terms of the second-order moment. 
Using Eq. (2.4) and expanding the quantity M2 in a series 
we find up to second-order terms the equation 

aM, Ej 1 1 
~,,= o--(3h,h. - I),,)-I)E; + -(3M, -1)-

00 E' 2 E' 

(E'{5E, + EiSE, - 2h,h,E,I)Ej ). (6.3) 

We have introduced here the notation ~ik=(eiej -(eje,JQ 
for the deviation of the second-order moment from its 
equilibrium value. 

We can now use Eq. (2.5) to express the fourth-order 
moments in Eq. (6.2) in terms of the second-order mo
ment, after which we determine the relaxation equation 
for the second-order moments 

(6.4) 

The three constants in Eq. (6.4) 

1-M, 1-M, 
V,=o 3M,-1 ' 

5M,-3M, 
v,= 0 3M,-1 ' 0---

3M,-1 

(6.5) 
determine three independent relaxation times 

(6.6) 

Substituting the values of M2 and Mt for (J« 1 into 
(6.5) we get 

(6.7) 

For large (J the main terms in the expansion of the v .. 
in terms of 1/ (J have the form 

6 
v, "" 2 + -, v, "" 0 + 3, v, "" 0 - 2. 

o 
(6.8) 

The first terms in the expanSions for the relaxation 
times (6.6) thus have the form 

... ",,_1_(1+~0) ... ,,,._1_(1+_1_0)' ... ,"" 6D1 +0(0'), 
'6D 14' 6D 42 

(6.9) 

(6.10) 

The values of the relaxation times for arbitrary values 
of (J are shown in Fig. 2. 
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FIG. 2. Relaxation times as 
functions of the field strength. 
The numbers at the curves de
note the numbers of the relaxa
tion times according to 
Eqs. (6.6). 

OL-----~----~----~ 
10 20 J 30 

By virtue of Eq. (1. 5), Eq. (6.4) describes effects 
which are connected with the change in the anisotropy 
of the permittivity of molecular liquids in variables 
fields, for instance, the relaxation of the Kerr effect; 
when this was studied relaxation times 7 = 1/6D having 
values 10-11 to 10-10 s were determined. £19] 

7. OPTICAL ANISOTROPY OF A LIQUID CRYSTAL 
IN A ROTATING FIELD 

In the case where the constant magnetic moment of 
the molecule is equal to zero the average orientation of 
the molecules is described by the even moments of the 
distribution function and first of all by the second-order 
moment which in the equilibrium state has the form 

<e,e,> ,=Sh,h,+'/, (1-S) b,;. (7.1) 

where h j is a unit vector determining the direction of 
the field strength. The value of S is here a function of 
(] and given by Eq. (2.14). 

When considering this case we can obtain by the same 
method as in the preceding sections the relaxation equa
tion for the quantities ~ji= (eje) -(eje)e which has, 
clearly, the form 

d£ij "dt = - Df.t,£ij - Df.t, (h,h.£., + h,h.£., - 2h,h,h,h;s,.) 

1 2 as H, dH, 
--2 Df.t.(3h,h,-b,,)h,h.£,,--cr-(3h,hj -/)'j)--

3 acr H' dt 

-~(H dH, +H dH, -2hhH dH') 
H' 'dt 'dt "'dt' (7.2) 

The quantities Ila are some functions of (], S, and Xl 
and, as S- 0 go over into the functions (6.5) 

lim f.ta (cr, S, x,) = Va (cr). (7.3) 

We do not give here the expliCit form of the functions Il ... 

Equation (7.2) describes the kinetics of the average 
orientation of non-polar molecules in the liquid crystal 
phase and by virtue of Eq. (1. 5) it determines the change 
in the optical anisotropy of the liquid crystal in variable 
fields. 

We now consider a liquid crystal in a rotating mag
netic field 

h,=cos oot, h,=sin oot, h,=O. (7.4) 

By virtue of Eq. (1.5) we can express 0.6] the angle be-
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tween the optical axis of the suspension and the 1-axis, 
which is denoted by X, in terms of the moments of the 
distribution function 

tg2j( 
2<e,e,) 

<e,')-<e,') (7.5) 

One may expect that in the rotating field (7.4) the opti
cal axis of the suspension rotates with the same velocity, 
but with a phase lag of an angle QI, the expression for 
which can be found from the relaxation Eq. (7.2). In 
accordance with our assumptions we write the unknown 
moments in the form 

2<e,e,)=A sin 2 (oot-ct) , <e,')-<e,')=A cos 2 (oot-a.). (7.6) 

The corresponding equilibrium values of the second
order moments are simply determined through Eqs. 
(7.1). For the moments considered we have 

2<e,e,) ,=S sin 2oot, <e,') ,-<e,') ,=S cos 2oo/. (7.7) 

We now use Eq. (7.2), bear in mind (7.6) and (7.7), 
and find without· any further approximations after some 
simple calculations that 

tg 2ct=2'Coo, (7.8) 

where the relaxation time 7 is given by the relation 

1 
-=D(f.t,+f.t,). 
't 

(7.9) 

The quantities III and 112 can be expanded in a power 
series in (]. Up to first-order terms we write 

1 
-; = IJD(a(S"x,) + ~(S"x,)cr], (7.10) 

where So is the value of the order parameter for zero 
field. 

By virtue of Eq. (7.3) it follows from Eq. (7.9) that 
in the isotropic phase 7 is the same as the relaxation 
time 73 given by Eq. (6.6). 

For measurements [201 performed for the liquid crys
tal phase under conditions where the constant angular 
velocity of the rotating field w is less than some critical 
value while the magnetic field strength H is sufficiently 
large that the macroscopic uniformity of the orientation 
in the whole of the volume is guaranteed we find the re
lation 

. 2 00 sm a = constJj2' (7.11) 

which for small QI is the same as Eq. (7.8), provided 
70: 1/H2. For this it is necessary to assume that the 
kinetic element is a separate molecule in order that in 
Eq. (7.10) the last term dominates the first one; (3 does 
not need to be small here as the measured relaxation 
times are appreciably larger than the relaxation time 
1/6D in the isotropic liquid. 

8. CONCLUSION 

Taking into account the anisotropy of the medium and 
the interaction of the molecules with their neighbors 
leads thus to an explanation of the large values of the 
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relaxation times in the liquid crystal phase. Each of 
these facts is necessary although the form in which they 
are taken into account for calculations can be made 
more precise. One may hope that in the framework of 
the concepts given here the kinetic phenomena in liquid 
crystals can be connected with the sizes and shape of 
molecules in as far as this can allow the single mole
cule approximation used here. 

IlThe values of the stress tensor of a suspension of ellip
soids given in our papertl3 ! are erroneously understated by 
the amount 2j.!q1Ylk which must be added to the appropriate ex
pressions. This reduces to the fact that the value of w in the 
definition (4.9) (seeU3 !) must be increased by unity. The re
maining expressions then remain valid. The numerical 
values of the quantities wand V in Figs. 1 and 3 must be 
increased by unity. In Eqs. (7.5), in the equation that fol
lows, and in (9.3) one should read 2.5 instead of 1. 5. 

2)ln a similar manner we can establish the form of the rota
tional diffusion equation for a particle of arbitrary shape, the 
oreintation of which is determined by two mutually perpen
dicular unit vectors e and c 

The antisymmetric angular velocity tensor 0'8 and the sym
metric diffusion tensor Dkl are here functions of the vectors 
e and c and of the tensor Sjk' 
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On magnetic forces at the surface of a superconductor 
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We construct a theory of the ponderomotive forces at the surface of a superconductor of arbitrary 
dimensions, which is valid in the framework of the applicability of the London equations or the Ginzburg
Landau equations. The formalism obtained is used to describe a number of observable effects: the effect 
of magnetic forces on the dispersion law of the bending oscillations of a plate of arbitrary thickness in a 
parallel magnetic field, the appearance of an electrical quadrupole moment in a superconducting sphere in 
a uniform magnetic field, and so on. The presence of a potential difference between the equator and the 
poles of such a sphere in a magnetic field is experimentally confirmed. We propose, in connection with the 
problem of the calculation of the magnetic forces at the surface of a thin plate of a type-I superconductor, 
a consistent perturbation theory for the solution of the Ginzburg-Landau equations under the stated 
conditions. 

PACS numbers: 74.30.Gn, 74.70.Gj 

One of the fundamental properties of superconductors 
is their capacity to expel from their volume an external 
magnetic field with a field strength less than the critical 
one (the Meissner effect). This fact leads to many con
sequences which can be experimentally verified. In 

particular, the Meissner effect is accompanied by the 
appearance of well defined magnetic forces at the sur
face of the superconductor. We are dealing with a pres
sure from the magnetic field on the surface of the super
conductor. which for bulk superconductors and weak 
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