
Effect of the nature of electron reflection on the 
penetration of an electromagnetic wave through a metallic 
plate 

I. F. Voloshin, S. V. Medvedev, V. G. Skobov, L. M. Fisher, and 
A. S. Chernov 

Moscow Engineering Physics Institute 
(Submitted April 16, 1976) 
Zh. Eksp. Teor. Fiz. 71, 1555-1563 (October 1976) 

The topic considered is the effect of the nature of the reflection of electrons by the surface on the passage 
of a doppleron wave or of a Gantmakher-Kaner component through a metallic plate in a constant magnetic 
field perpendicular to its surface. It is shown that the amplitude of the transmitted signal in the strong­
field range is much larger for diffuse reflection than for specular. The doppleron excitation is considerably 
more efficient in the case of diffuse reflection. Furthermore, an important role in the amplification of the 
signal is played by the skin layer that is produced by the transmitted wave at the opposite side of the 
plate. 

PACS numbers: 03.50.Jj 

It is well known[ll that the impedance of a metal un­
der anomalous skin-effect conditions is only slightly de­
pendent on the nature of the reflection of electrons from 
the surface. The presence of a constant magnetic field 
may in principle change the situation. Thus the behav­
ior of the impedance of a semi-infinite metal near the 
threshold for a helicon[2,3l or doppleron[4,51 wave de­
pends Significantly on how the electrons are reflected. 
At the same time, it has been shown[S,7l that the basic 
features of cyclotron resonance in metals are not very 
sensitive to the nature of the reflection. The same is 
true of the passage of a helicon through a plate[Sl and of 
a number of other phenomena. 

The treatment of the electromagnetic properties of 
metals for diffuse reflection presents a much more com­
plicated problem than for specular. Therefore the au­
thors of the majority of papers on the theory of the pen­
etration of a radiofrequency field through metals have 
considered only specular reflection, assuming that dif­
fuseness will not lead to qualitative changes of the re­
sults. In the present paper it is shown that in a num­
ber of cases this assumption turns out to be incorrect. 
Thus when a doppleron[9l or a Gantmakher-Kaner (GK) 
wave[lOl is excited in the plate, the transmitted signal 
may be much larger in the case of diffuse reflection 
than in the case of specular. 

The first part of the article is devoted to a qualitative 
discussion of the role that the nature of the electron re­
flection plays in the penetration of an electromagnetic 
wave in the nonlocal mode. In the second part, the con­
clusions deduced from the qualitative discussion are il­
lustrated with a simple model of a compensated metal. 
In this model, the electron Fermi surface is a lens 
formed by two paraboloidal bowls with the rims joined; 
the Fermi surface of the holes is a cylinder with axis 
parallel to the axis of the lens; the constant magnetic 
field H (z axis) and the normal to the plate surface are 
directed along the axis of symmetry of the Fermi sur­
face. 

This model permits exact solution of the problem of 
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the field distribution in a semi-infinite metal and in a 
metallic plate, both for specular and for diffuse reflec­
tion of the electrons from the surface. 

1. We shall consider the low-frequency, strong­
magnetic-field range w« 1'« we' where w is the fre­
quency of the exciting field, I' is the frequency of colli­
sion of the electrons with phonons and impurities, and 
we is the cyclotron frequency of the electrons. First 
we shall consider the impedance of a semi-infinite met­
al, and the differences in doppleron excitation between 
specular and diffuse reflection. Let a plane mono­
chromatic wave with amplitude 0 be normally incident 
on a semi-infinite metal. This boundary condition of 
the problem can be written in the form 

(l+_L~)E(~) I =20, 
[gil d~, ;=1} 

(1) 

where we have introduced the dimensionless quantities 
S = 2rrz/u, qo = wu/2rrc; u is the maximum displacement 
of the electrons along the magnetic field during a cyclo­
tron period, 

( I'. ) C I as I H='J rt ---=- =---
-- Ct),. ,xl ell Bpz fiXI' 

where S(P.) is the area of the section of the Fermi sur­
face by the plane P. = const (P. is the component of the 
electron momentum along the magnetic field H). To 
terms of order qo we can write 

E' (0) =2iq,0. 

If there are no nonlocal effects in the conductivity, 
then we get both in the specular and in the diffuse case 
the same field distribution 

where qs is the root of the dispersion equation and de­
scribes the skin layer. The surface impedance, which 
determines the energy that flows into the semi-infinite 
metal in unit time, has the form 
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z~ =4,,;qoiEo (0) / cEo' (0), 
(2) 

In the presence of nonlocal effects, singularities appear 
in the conductivity (J as a function of the wave vector k; 
these correspond to the extreme displacements of the 
electrons and cause the existence of a doppleron and of 
a Gantmakher-Kaner wave. As a result, there occurs 
a redistribution of the field among three components: a 
"skin" component, a "doppleron" component, and a 
Gantmakher-Kaner component. 

We shall consider a model of a compensated metal in 
which there is only one group of electrons, with maxi­
mum displacement u, and the displacement of the holes 
is much smaller than u, so that their contribution to the 
conductivity is described by the local approximation. 
We shall consider waves with "minus" circular polar­
ization, in which the field rotates in the same sense as 
do electrons in a magnetic field. The dispersion equa­
tion for the normal modes in an infinite metal has the 
form 

k'- 4niO) (k)- 4";0) nee {«( 0) kv, . V)-') } - 0_ ----- 1--+--!- -1 
c2 c2 H {Dc mc CDc ' 

(3) 

where n is the concentration of the electrons and m is 
their effective mass. The angular brackets signify av­
eraging over the electron distribution; the unity in the 
wavy brackets corresponds to the local Hall conductivity 
of the holes. 

This dispersion equation has two solutions ks and kD , 

of which the first represents the complex wave vector 
of the skin component of the field, the second the wave 
vector of the doppleron. In the production of the skin 
component of the field, all the carriers play an impor­
tant role; but in the formation of the doppleron, only 
the electrons mOving in the direction of its propagation. 
Hereafter we shall use the dimensionless wave vector 
q=ku/2rr and, accordingly, the solutions 

The real part of qD is negative and in modulus less than 
unity. [9] Hereafter we shall be interested in the strong­
field range, in which 

jq,j «1, Re(HqD)«t. 

The external wave produces, near the surface of the 
metal, an electromagnetic field in which are present 
both components with wave vectors close to the wave 
vector of the doppleron qD' and Gantmakher-Kaner 
waves. These components of the field also excite cor­
responding waves. The amplitude of the excited wave 
depends significantly on the nature of the reflection of 
electrons from the surface: the doppleron and the Gant­
makher-Kaner wave are excited considerably less in 
the case of specular reflection than in diffuse reflection. 
The reason is that in the diffuse case an electron re­
flected from the surface loses the momentum acquired 
in the skin layer, whereas in the specular case it keeps 
it. 

The electric fields comprising the skin layer with 
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wave vectors qD and - qD are almost equal in magnitude 
and opposite in direction (this is a consequence of the 
inequality j q.1 « I qDI). An electron approaching the 
surface interacts in resonance fashion with the compo­
nent E(- qD); a reflected electron, with the component 
E(qD)' Therefore a reflected electron acquires in the 
skin layer a momentum almost equal in magnitude and 
opposite in sign to that, that it acquired during its flight 
to the surface. Thus when the nature of the reflection 
is specular, the resultant change of momentum is great­
ly diminished. But in the case of diffuse reflection, 
the electron gives up the acquired momentum to the sur­
face, so that compensation does not occur, and the ef­
fect turns out to be much larger. The field acting on a 
resonance electron that has undergone diffuse reflection 
is 

while the effective field in specular reflection is 

that is, 

As a result it is found that 

!.~I /~! = -2q 
E~ &P E8 .,lit h 

(4) 

that is, the amplitude of a doppleron (or of a Gant­
makher-Kaner wave) is significantly larger in the dif­
fuse case than in the specular. 

We turn to the expression for the impedance Zoo; this 
we write in the form 

Z, = 4Jlqo i E,(O)+ED(O)+EGK(O) 
c E/ (0) +Ev' (0) +EGK' (0) , (5) 

where the indices sand D refer to the skin and doppler­
on components of the field, the indices GK to the Gant­
makher-Kaner component. 

The derivatives of these components are connected 
with them by the relations 

The fields ED(O) and EGK(O) are considerably smaller 
than the electric field E.(O) of the skin component, in 
both the specular and the diffuse cases. Therefore, as 
follows from (4) and (5), in specular reflection the im­
pedance is determined, as usual, by the skin layer: Zoo 
= 4rrqo/ cqs' In the diffuse case, however, the numera­
tor in the expression for the impedance is determined 
by the skin field E.(O), the denominator by the sum of 
the last two terms ED(O) + EbK(O); that is, by the field 
of the doppleron and the Gantmakher-Kaner component. 
Therefore the impedance no longer determines the ef­
fective depth of penetration of the field, as is customari­
ly supposed. Thus the impedance of a metal with dif-
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fuse reflection of the electrons differs in an important 
way from the impedance with specular reflection. 

2. We shall now consider the propagation of an elec­
tromagnetic field in a plate of thickness d, on which an 
external wave is incident from the left. We shall sup­
pose the plate so thick that near the left surface one 
may neglect the signal reflected from the right surface 
and traveling back. In other words, we shall take into 
account the effect of the right-boundary reflection only 
on the transmitted signal. In order to simplify the 
formulas, we shall suppose that the thickness of the 
skin layer is much smaller than the extinction distance 
of the doppleron, and that only the doppleron and the 
Gantmakher-Kaner wave reach the right boundary; that 
is, that the follOwing conditions are satisfied: 

(6) 

In diffuse reflection, an electron loses information 
about the field. Therefore for the reflected electrons 
(and it is they that carry the field back into the depth of 
the meta!), the field produced at the right boundary by 
the arriving doppleron (or GK wave) may be treated as 
an external source. Consequently, these electrons pro­
duce at the right boundary a field distribution similar to 
the distribution at the left boundary. Under these con­
ditions the field inside the plate is 

E(~) ~E,(~)+AE.,(L-~). 

where Eo(l;) is the field in a semi-infinite metal. The 
constant A is determined from the boundary condition 
at the right surface, 

(1-~~ )E(~) I ~O, 
• 19o d~ I ;~L 

which states that no external wave is incident on the 
plate from the right. From this condition follows 

E/(L)-AE/(O) ~O. 

As a result we get 

E(~) ~E,(~) +Eo' (L)£,,(L-';,)/Eo' (0), 

(7) 

or, by the definition of the impedance of a semi-infinite 
metal, 

cZ E '(L) 
E(~)~Eo(~)-·i_oo_' -Eo(L-~). 

4ngo Eo(O) 
(8) 

The field at the right boundary of the metal has the value 

E(L)~/;\,(L) (l-i cZoo Eo'(L») 
4;rg. E.(L) . (9) 

The second term is almost entirely determined by the 
field of the skin layer formed as a result of the reflec­
tion. This term is always much larger than the first. 
Consequently, in experiments on passage of an electro­
magnetic field through a metal, what is measured is not 
the signal of the transmitted doppleron, but the field of 
the skin layer excited by this doppleron and oscillating 
in phase with it. 

816 SOy. Phys. JETP, Vol. 44, No.4, October 1976 

In the specular case, electrons bring up the field of 
the doppleron, and the same electrons take exactly the 
same field back into the depth of the metal. The mag­
netic fields of the arriving and reflected dopplerons 
compensate each other at the surface t = L to terms of 
order qo; that is, no skin layer at all is formed on re­
flection, but the electric fields of the two dopplerons are 
so combined that 

E(L)~2Eo(L). (10) 

3. We turn now to consideration of the impedance of 
a plate under antisymmetric excitation, as occurs when 
a specimen is placed in the coil of an oscillatory cir­
cuit. Here what is usually measured is the energy that 
flows into the specimen in unit time, 

where « ... » means a time average. 

We shall define the impedance of a plate under anti­
symmetric excitation by the expression 

Then 

Z 8ng. iE.(O) 8ngo . E(O)-E(L) 
.- = -c- Eo' (0) = -c-' E' (0) -E' (L) • 

where E(t) is the field under one-sided excitation. 
Since E'(L)/E'(O) is a small quantity of order qo, the 
impedance of the plate has the form 

Z=2Zoo (1-E(L)/E(O». (11) 

In the specular case we get for a thick plate 

Z"=2Zoo "(1-2Eo(L)/Eo(0». (12) 

Analogously, in the diffuse case 

(13) 

Therefore in order to calculate the impedance of the 
plate in the strong-field range, it is sufficient to know 
the impedance of the semi-infinite metal and the asymp­
totic expression for the ratio Eo(L)/Eo(O). We note that 
in this case the observed oscillations of absorption are 
due to the electric field of the skin layer excited by the 
doppleron, which is much larger than the electric field 
of the doppleron itself. 

4. We shall now apply these relations to the model 
of a compensated metal described at the beginning of 
the article. The appropriate dispersion equation for 
"minus" polarization, in dimensionless variables, has 
the form (see[S1) 

.• ( 1-i'( 1) 
q~; (l-i'()'-q'- , 

where 
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In a strong field, i. e., when ~«1, it has two roots: 
the skin solution q.=(iy~)1/2 and the doppler on solution 
qD = - 1 + ~/2 + iy. In this model the nonlocal conductivity 
as a function of the complex variable q has no branch 
point; therefore the Gantmakher-Kaner component is 
absent. The inequality mentioned above, Imq.L 
»ImqDL, is equivalent to the condition 

(14) 

We consider first a se.ni-infinite metal. The field 
distribution in the specular case is determined by the 
expression[lll 

Eo'J'(~)~E'(U) (-1) S~dqe"J;[q'-~( l~i: ,_1)]~1 
" ~, (1-q)--q-

On evaluating the integral and substituting E'(O), we 
find 

and by use of the inequalities 11 + qD I « 1 and I qsl 
« I qDI we get 

The impedance of the semi-infinite metal in this case is 

(16) 
The field distribution in the diffuse case is determined 

by the equation 

d'£" _ ~ , 1 ~ _ ( 1-/1 
-,-~-SSdI]E/(I])- fdqe"J'-~'" . " 

d,,- " 2":~ (t-q)--q-
1) 

with the boundary condition (1). A similar equation was 
solved earlier. [12,13l Its solution has the form 

By use of the inequality y« ~« 1, we get the field dis­
tribution 

and the impedance 

(18) 

Thus the impedance of a semi-infinite metal in the dif­
fuse case is in fact significantly different from the im­
pedance in the specular case. 

5. We shall now consider the field in a thick plate. 
In accordance with the considerations presented above, 
the field distribution under one-sided excitation in the 
specular case has the form 
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(19) 

and in the diffuse case 

(20) 

The impedance of the plate under antisymmetric ex­
citation is determined by the expressions 

(21) 

(22) 

whence it is evident that the amplitude of the doppleron 
oscillations of impedance with diffuse reflection is dif­
ferent by the factor 

Our model enables us to obtain exact expressions for 
the field in a plate with an arbitrary degree of specu­
larity p. For this purpose it is necessary to solve the 
kinetic equation for the distribution function of the elec­
trons, with allowance for the nature of their reflection 
from the surfaces of the plate, and by means of this so­
lution to calculate the current density that enters Max­
well's equations. As a result, the following integro­
differential equation is obtained: 

d' • 1 
(- (I~~ - = )E(~) ~ -;;J dl1 £(11) {""T exp [ -(i+1) 1~-t]I] 

o 

I) (>xP[-(i-i-1)L] [ (1' )(~+ L) 
-i=-p'cxp[-2(i+1)L] cos -q 1]-

(23) 

-i- P exp [- (i+1)L ]eos (1-i1) (~-I]) ] }, 

The Fourier transform of the kernel of this equation 
is a rational function. Therefore it reduces to a dif­
ferential equation with constant coefficients. The cor­
responding characteristic equation is identical with the 
dispersion equation and consequently has the two roots 
qs and qD' As a result, Eq. (23) is easily solved. Un­
der one-sided excitation of the plate, the solution of (23) 
with the boundary conditions (1) and (7) has a very cum­
bersome form; in this case we shall give only the ap­
proximate expressions for a thick plate in the limits of 
purely specular (p = 1) and purely diffuse (p = 0) reflec­
tion. For p = 1, the field distribution has the form 

'-1 } +- exp(iqD(2L-~) ll--Q'--exp(iq.l;] • 
q. 

(24) 

and the impedance of the plate under antisymmetric ex­
citation is 

Z Sltqo 1+q.qD [1 2q.(i-QD") (' L)] 
8p = c q.qD(q.+qD) - (l+q.QD) (q._qD)qDCXP £qD . 

(25) 
In the case of diffuse reflection, the field and the im­

pedance are given by the expressions 
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Ed(~) =2q,8 { (1 +q,,) exp (iq~~) - (1 +q.)exp(iq.~) 
(HqD+q.) (qD-q.) 

+ (Hq.-q,,) (Hq,,) (qD+q.) ,,[ , 
(1 ) (1+ + ) '( )' exp(,qDL) (Hq,,)exp[,qD(L-~) 1 -qD, q" q, q,,-q. 

2qD(Hq,) , ]} 
- (q,,+q.) (i_qD+q.)exp[,q.(L-~) 1 , (26) 

Z,j = 8nq, [i + 2qD(HqD) (qD+q.) ] 
C(HqD+q,) (l-qD) (HqD+q,) (qn-q,) exp(iq"L) ,(27) 

In the range of moderately strong fields, where the in­
equalities 

(28) 

are satisfied, (24) and (25) reduce to (19) and (21), (26) 
and (27) to (20) and (22); that is, the results of the quali­
tative reasoning presented earlier are confirmed by 
the rigorous calculation. 

6. We shall give also an exact expression for the im­
pedance of a plate of arbitrary thickness in the case of 
antisymmetric excitation. For an arbitrary value of 
p, the impedance Z is determined by the expressions 

Z 8nq,{[( ')' O]T-T+ [(I')' ']T+T-= - q, I-q -gp" D , .-q" -'I -q, D , 

C 

-,-(I-i1) (q.'-qD')T D-T,-} {qDq,(q.'-qD') T D +T,+ 
-A (1-i1) {qv[ (i-i1 ),-q,,'] T" +T,--q, [ (l-i1)'-q,'] T D -T. +} }_I, (29) 

T D~"= l±exp (iqD"L), 1.= (I-p) / (Hp), (30) 

In the case of a thick plate, when T~-1, while T~ dif­
fers from unity by a small oscillatory quantity, the ex­
pression (29) for the impedance in the field range (28) 
takes the form 

8nqo [ HA ( A-g, ) 2 ] z""-- ----2~ -- exp(iqDL) , 
c A£+q, A£+q. (31) 

From (31) it follows that for values of X> I qsl h, the 
dependence of the smooth and oscillatory parts of the 
impedance on H is the same as with purely diffuse re­
flection. In the range X-'S I qsl, the amplitude of the os­
cillations of the impedance decreases to values charac­
teristic of purely specular reflection. The range I qsl 
< X < I q s I / ~ is transitional. 
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Thus for a simple model with a paraboloidal Fermi 
surface, we have demonstrated the correctness of the 
conclusion reached by qualitative reasoning, that there 
is a significant increase of the amplitude of doppleron 
oscillations of the impedance of a plate with diffuse re­
flection of the electrons, as compared with the ampli­
tude with specular reflection. Here it should be men­
tioned that the dependence of the amplitudes themselves 
on the magnetic field is sensitive to the model; that is, 
to the form of the singularity of the nonlocal conductivity 
in the neighborhood of the Doppler-shifted cyclotron 
resonance. 

In the model treated, the Gantmakher-Kaner effect is 
absent. It is obvious, however, that the mechanism de­
scribed above for amplification of the oscillations when 
there is diffuse reflection may occur also in relation to 
the Gantmakher-Kanrr oscillations. 
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