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A theory of the electronic properties of strongly doped compensated (SDC) semiconductors is developed for 
finite temperatures. and in particular for the case when the electron gas in the entire semiconductor 
volume may be regarded as nondegenerate. It is shown that in the nondegenerate case and in the impurity 
conductivity region the characteristic size of the electron "drops" in the fluctuation potential wells 
increases with the temperature T initially as - T: and subsequently as - T: :. The density of states geE) 
in the vicinity of the initial (prior to doping) boltom of the conduction band is found in an energy range of 
the order of the characteristic depth "J of the largest fluctuation potential wells that still remain 
unscreened at T = O. In this energy range, geE) - - : for the chosen shape of the potential wells. The 
position of the Fermi level. the mean energy. and the specific heat of the electron gas in SDC 
semiconductors are calculated as functions of temperature in the range 0:;; r:;; '0' by using the obtained 
form of the density of states. Some arguments are presented regarding the temperature dependence of the 
electric conductivity of SDC semiconductors in the indicated temperature range. 

PACS numbers: 71.20.-c. 7l.80.-j 

The study of the electric properties of strongly doped 
compensated (SDC) semiconductors has recently been 
the subject of a number of both theoretical and experi­
mental papers (see, e. g. ,Cl-11]). Interest in these ma­
terials is due, first, to the fact that they constitute ap­
parently one of the simplest examples of disordered 
SOlids, the electronic structure of which has not yet 
been sufficiently well studied. Second, SDC semicon­
ductors are of interest from the practical point of view, 
for example for the development of most sensitive de­
tectors of infrared and submillimeter radiation. [9] 

In the customarily accepted quite obvious model of an 
SDC semiconductor, say of II-type, it is assumed that 
the free electrons remaining as a result of incomplete 
compensation, and numbering II V (II = Nd - Na is the elec­
tron density averaged over the crystal volume V, while 
Nd and .Ya are the donor and acceptor densities averaged 
over the volume V) fill the deepest regions of the poten­
tial relief of the bottom of the conduction band, pro­
duced by the fluctuating potential of the impurities. The 
concentration of the electrons in these so-called elec­
tron drops, lid' under conditions of strong compensation, 
greatly exceed the average denSity II and can be of the 
order of the density of the doping impurity (for example, 
1015 _1016 cm-1 for II_InSbL9 ]). Thus, at helium tempera­
tures the electron gas in the drops in SDC semiconduc­
tors can be regarded as degenerate. This is precisely 
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the assumption under which Shklovskir and Efros con­
structed a theory of SDC semiconductors. L5J 

With increasing temperature, however, the assump­
tion that the electron gas is degenerate in the drops can 
cease to be satisfied. Thus, for example, in n-InSb at 
11 _1015 cm-3 the degeneracy temperature amounts to ap­
proximately 30 'K. Thus, at temperatures on this or­
der or higher the electron gas in the drops must appar­
ently be regarded as degenerate. An appreciable num­
ber of the experimental data lie in this temperature re­
gion. L8,9J 

In this paper we attempt to construct, using the the­
ory of Shklovskii and EfrosL6] as a model, a theory for 
several electronic properties of SDC semiconductors, 
when the electron gas in a semiconductor, including 
also the drops, can be regarded as nondegenerate. One 
of the most important parameters of the theory of 
Shklovskir and Efros[61 is the characteristic dimension 
of the electron drop Rq =a/(Na3 )1/9 (a = ff2,,/me2 is the 
Bohr radius, x is the dielectric constant of the crystal, 
III and e are the respective mass and charge of the elec­
tron, N'" Nd , .Va). This dimension is obtained from the 
condition that the number of the quantum states in the 
attracting fluctuation of the impurity concentration be 
equal to the excess charges in it. [6J Let us find this pa­
rameter formally by a somewhat different method. 
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Namely, if the electrons having a characteristic kinetic 
energy e are to be retained by a fluctuation potential 
well with depth on the order of y, it is necessary to have 

(1) 

Substituting here for the case of a degenerate electron 
gas in the fluctuation potential well with dimension 
R, £:"'£:11) "'1i2n~/3/2m (£:F and nit are the Fermi energy 
and the electron density in the drop) and y= y(R) 
"'e2(NR3)1I2/XR, CSl and assuming nd to be equal to the 
concentration of the excess charge (NR3)1/2/R3 in this 
fluctuation, we obtain directly for the drop radius R the 
value R =Rq• 

With increasing temperature, the electrons in the 
drop will tend to occupy higher and higher energy states. 
We consider the region of characteristic electron ener­
gies 

(2) 

where Re =N1/3/n2l3 is the maximum possible dimension 
of the fluctuation potential well at T = 0 and is deter­
mined by the screening (larger potential wells are 
screened), while to is the Fermi level reckoned from 
the average value of the fluctuating potential and approx­
imately equal to the fluctuation depth of a well with di­
mension Re. C6] 

At R <Re the potential of the fluctuation well is weakly 
screened and it can be regarded, as before, as equal to 
y(R). Since y(R) increases with increasing radius R, it 
is clear from the considerations presented above that 
the dimension of the characteristic region occupied by 
the electrons in the fluctuation potential well will in­
crease with temperature. Using (1), it is easy to esti­
mate the dimension of the region in this well, which can 
be occupied by electrons with characteristic energy e. 
Substituting y = y(R) in (1), we obtain 

R,=R, (e/e~d») '. (3) 

Here e11) '" y(Rq) "'e2(Na3)4/9/xa is the Fermi energy of 
the electron gas in the drop at T = 0 OK. It is easily 
seen that this formula is valid in the entire indicated en­
ergy interval, in particular, R(£ = £11» =Rq and R(f'" to) 

"'Re. 

lf the average electron energy is "f» £11), then the 
electron gas in the drop can be regarded as nondegen­
erate and we can put £ - T (T is the temperature in en­
ergy units). We then have from (3) for the characteris­
tic dimension of the electron drop at the temperature T 

RT=R,(TIE~d) )'. (4) 

We see thus that in the temperature region 

(e'/xa) (Na')"·.,.T,<T<T,""'e'N'/,/xn'" (5) 

the characteristic dimension of the electron drops in 
the fluctuation potential wells increases in proportion 
to the square of the temperature. We note that in SDC 
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semiconductors we have the ratio 

T,IT,"" (nIN)'" (Na') '1''''''ct'I'<1 

(seeCS ]), i. e., the temperature interval (5) can be quite 
large. 

It is also of interest to note that when the electron gas 
in the drops is not degenerate the dimension of the elec­
tron drop, both at T =0 OK (degenerate electron gas in 
drops) and at temperatures in the interval (5), coincides 
exactly with the corresponding Debye radius. In the ex­
pression for the Debye radiUS, naturally, it is necessary 
here to substitute the average electron density in the 
drop, i. e., the ratio of the number of electrons in the 
drop whose characteristic volume (NR!)1I2/R! or 
(NR~)1/2 /R~ respectively for the degenerate and nonde­
generate cases. This fact can be understood on the 
basis of a definite analogy with the Thomas-Fermi 
model for a multielectron atom, where the dimension of 
the localization region of the wave functions of the elec­
trons is of the order of the corresponding screening ra­
dius of the nuclear potential. 

We consider now the temperature region 

T,<T<T" (6) 

where T3 is the temperature at which the intrinsic av­
erage electron density in the semiconductor becomes 
comparable with the average density n ",Nit - Na , i. e., 
starting with which the semiconductor becomes intrin­
sic. In this temperature region, the Debye screening 
radius turns out to be larger than R e , the screening be­
comes weak, and the greater part of the electrons is no 
longer contained by the potential wells. Accordingly, 
the maximum possible dimension of the not-yet-fully 
screened potential well tUrns out to be of the order of 
the Debye radius. In this case this dimension coincides 
with the dimension of the corresponding electron drop, 
and increases in proportion to T 1/2 

(7) 

The depth of the potential well ,,(RT) turns out in this 
case to be smaller than T, in agreement with the notion 
of weak screening of the potential in this temperature 
region. 

Shklovskii and Efros have concluded that the conduc­
tivity of an SDC semiconductor has an activation-type 
temperature dependence. C6] The activation energy £1 

constitutes here the difference between the percolation 
level[6] and the Fermi level at zero temperature. How­
ever, as seen from the foregOing, when the temperature 
is increased (for example in the interval (5», the elec­
tron gas in the drops becomes nondegenerate, and the 
Fermi level begins to depend on the temperature, name­
ly, it drops. This means that the activation energy will 
increase with temperature, or more accurately speak­
ing, the dependence of the kinetic coefficients on the 
temperature will in general not be described by a pure 
exponential law. It is clear that in this temperature re­
gion the kinetic coefficients will be determined mainly 
by electrons with energy on the order of T. Thus, to 
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estimate the dependence of the activation energy on the 
temperature it is necessary to find the density of states 
in the energy region (2), and accordingly the tempera­
ture dependence of the Fermi level in the temperature 
interval (5). 

For an estimate of the density of states in this energy 
interval, we note that the number of the fluctuation po­
tential wells with dimension R. (3), filled at an average 
electron energy T> e, is n/(NRn1/2 • On the other hand, 
the number of quantum states in one such well in the en­
ergy interval from £ to e +de is 2R~d3p/2rr1f)3. We there­
fore obtain for the density of states 

gee) ~ (nR," IN'h)go(e) ~g,(~o) (e/~o)'/" 

go(e) = (2m) "'e"'/2n'fi', 

(8) 

where go(e) is the density of states in the homogeneous 
semiconductor, and l;o is given by formula (2). The en­
ergy is reckoned here from a certain arbitrary zero, 
located approximately at a distance 1:0 = y(Rcl below the 
average value of the fluctuating potential, i. e., the 
former bottom of the conduction band. 

It is curious to note that the density of states near the 
former bottom of the conduction band is g(l:o) '" go (l;o), 
i. e., the situation is the same as if the action of the im­
purity were to cause the bottom of the conduction band to 
drop by an amount - l;o. It is also easy to show that the 
Fermi level in the drop, at absolute zero temperature, 
calculated with the aid of the density of states (8) is the 
same: e~) '" Y(Rq) '" e2(Na3)4/9 / ....... a, (6] thus indicating defi­
nitely that formula (8) is valid in the entire energy in­
terval from 0 to 1:0 , 

In principle, an exponential factor of the type exp[ - (e/ 
l;0)2] can arise in the expression for the density of states 
(see, e. g., (1-5]), and reflects the presence of fluctua­
tion of various dimensions with corresponding statistical 
weights. This factor is missing from formula (8), since 
our entire analysis pertains to the energy interval I E I 
< 1:0 , and to a certain most probable average dimension 
of the fluctuations. 

At energies E» 1:0 , the electrons can obviously be re­
garded as practically free and we can put g(d "'go(e) 
- El/2. Thus, in the temperature interval T» T2 '" 1:0 we 
can use for the density of states, with good accuracy, 
the expression go( r) = (2111 )3/2 El/2 /2rr 2/i 3 • At temperatures 
T'" T 2 , on the other hand, the energy dependence of the 
density of states is apparently given by some law inter­
mediate between £7/2 and ~y2. Using formula (8), we 
obtain the average electron energy e and the dependence 
of the Fermi level of the electron gas on the tempera­
ture. We note that when finding the equilibrium charac­
teristics of the system, such as the average energy or 
the Fermi level, the presence of exponentially damped 
tails in the density of states, Cl-5] not accounted for by 
formula (8), will apparently not change strongly the re­
sult, inasmuch as in these tails there are few electrons. 

In the temperature region T« Tl = f~), the electron 
gas in the drops is degenerate. Calculating E and the 
corrections to the Fermi level in the usual manner, we 
obtain 
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e~~8p 1+~n-9 (d) [ 11, ( T )'] 
11 12 e(d) , 

F 

(9) 

~(T)~ep 1-~n'-(d) [ 7 (T )'] 
12 e(d) , 

F 

(10) 

where I:(T) is reckoned from the same zero as in for­
mula (8). 

In the temperature interval T 1 < T < T z (5), assuming 
the electron gas to be nondegenerate, i. e., putting 
exp[l;(T)/T]« 1, we obtain 

e='/,T, 

~ (T) =-'/,T In (T/E~» -T In ['I,r('I,) J. 
(11) 
(12) 

Knowing the expression for the density of states (8) 
and the position of the Fermi level (9), (10) in the tem­
perature interval from 0 to Tz, we can obtain the differ­
ent statistical characteristics of the electron gas in a 
SDC semiconductor. For example, for the specific heat 
of the electron gas Cv =nae/aT we obtain 

cv~3/,n'kn(kT/€'fi), T<T,. 

cv",,'/,kn, T,<T<T, 

(13) 

(14) 

(k is the Boltzmann constant). The average electron 
energy at the temperature T and the specific heat of the 
electron gas in the SDC semiconductor turn out to be 
larger than the corresponding values for the free elec­
tron gas with the same average concentration n. The 
reason is that when the temperature is increased an 
ever increasing part of the crystal volume becomes ac­
cessible to the electrons, i. e., the phase space in which 
the electrons are situated increases both on account of 
the momentum space (as in a homogeneous semiconduc­
tor) and on account of the coordinate space. 

Using (8)-(10) for the number of electrons above the 
percolation level, i. e., the electrons that take part in 
the dc conductivity, (6] we obtain 

(15) 

The corresponding dc conductivity a(T) of an SDC semi­
conductor is given by 

(16) 

where J1.(T) is the electron mobility and A(T) is a di­
mensionless factor that takes into account the change in 
the shape of the conducting channels between the elec­
tron drops and the temperature. Using for A(T), for 
example, the expression obtained by Shik, (lll A(T)- (T/ 
l:o)l/Z, and putting J1.(T) - T", we obtain 

(17) 

and 

(18) 

We can consider analogously also other electronic equi­
librium and kinetic characteristics of an SDC semicon­
ductor-the magnetic susceptibility, the light or sound 
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absorption coefficients, etc. 
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temperature in chromium telluride 
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Results of an experimental investigation of the effect of hydrostatic pressure (up to 12 kbar) on the Curie 
temperature T, of solid CrT1_xX, solutions (X = Se. Sb) are presented for concentration values x up to 

0.5. The baric coefficients y = T, -1(dT,/ dP) of all alloys investigated are negative. However the form of 
y( x) is determined by the doping element X and accordingly by the nature of the compression. which can 
be either isotropic (X = Se) or anisotropic (X = Sb). Possible mechanisms of exchange spin coupling in the 
investigated alloys are discussed on the basis of the obtained data. It is concluded that two types of 
exchange interactions coexist in chromium telluride: 1) indirect exchange of localized electrons via the 
anion and 2) interaction between collectivized electrons in the narrow 3 d band. and the energy of this 
interaction determines the Curie temperature. 

PACS numbers: 75.30.La. 75.30.Et. 75.50.Cc, 62.50.+p 

INTRODUCTION 

The Curie temperature of chromium telluride de­
pends very strongly on the variation of the interatomic 
distances, a fact resulting apparently from singularities 
in the exchange spin coupling in chalcogenides of 3d 
transition metals, the nature of which is not clear to 
this day. These questions have been intensively in­
vestigated in recent years both experimentally (see, 
e. g., [1,2]) and theoretically. [3.4] 

In earlier studies[5.6] of chromium telluride at high 
pressures, attempts were made to distinguish between 
the influences exerted on the Curie temperature by two 
factors-volume changes and substitution of one anion 
for another by formation of solid solutions CrTe1-x Xx> 
where X = S, Se, or Sb. It was established there that 
the Curie point Tc decreases with decreasing inter­
atomic distance and the value of the derivative dTc/dV 
= 3· 1025 deg/ cm3 does not depend on the manner in 
which the lattice has been compressed, by hydrostatic 
pressure or by introducing the impurity S, Se, or Sb. 
The present paper is a continuation of the aforementioned 
research. 
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To answer the question why the Curie temperature of 
chromium telluride changes under hydrostatic compres­
sion and what is the mechanism that produces the ex­
change interactions in this alloy, we investigated two 
systems of solid solutions, CrTe1_x Sex and CrTe1_x Sb%, 
which differ from each other in that when the tellurium 
atoms are replaced by selenium the hexagonal lattice 
becomes almost isotropically compressed (the alloys 
CrTe1-x Sex), and when the solid solutions CrTe1_% Sbx 
are produced, an anisotropic change in volume takes 
place as a result of the strong decrease ot the hexagonal 
axis. 

We present in this paper the results of an experimental 
investigation of the magnetization, the crystal-lattice 
parameters, and the baric characteristics of the Curie 
temperature (dTc/dP and Y= T c-1(dTc /dP)) of the alloys 
CrTe1-x Sex and CrTe1_x Sbx in the concentration interval 
0", x'" O. 5. On the basis of the obtained data we discuss 
the previously proposed mechanisms of the exchange in­
teractions in chromium tellurides [1,4] and conclude that 
the observed regularities in the variation of the Curie 
temperature with pressure can be explained on the basis 
of the ferromagnetism of the collectivized electrons. 
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