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A direct calculation of the Boltzmann collision integral for power-law distribution functions f(p) 
= al~ If2p 2, (I is the energy or particle flux in momentum space, p is the momentum, and a is a 

constant) shows that the integral possesses a first-order zero for exponents s that correspond to the 
solutions of the stationary homogeneous kinetic equation. An explicit expression is obtained for the energy 
(particle) flux and the direction of the flux in momentum space is determined. The analytic dependence of 
the coefficient a on sand n (n is the degree of homogeneity of the transition probability) is also 
determined. The regions of existence of power-law distribution functions in momentum space are found for 
particles the interaction between which can be described by a screened Coulomb potential. The 
experimental results on the current and energy of the electron emission induced by intense laser radiation 
in a metal foil are explained by invoking a nonequilibrium particle distribution. A comparison of the 
theoretical and experimental results on the current and its dependence on the retarding potential indicates 
that they are best explained by using nonequilibrium power-law distributions. 

PACS numbers: 72.30.+q, 79.20.Ds 

1. INTRODUCTION 

In investigations of non-equilibrium stationary particle
energy distributions, the non-equilibrium additive is 
usually regarded as small in comparison with the main 
equilibrium distribution. However, in Kolgomorov's 
paper on the theory of turbulence spectra it is shown 
that a stationary non-equilibrium distribution of waves 
in an inertial interval satisfies a power law and differs 
strongly from the equilibrium distribution. In the theory 
of weak turbulence, Zakharovl: 2J (see alscp_7J) obtained 
power-law spectra that lead to vanishing of the integral 
of the collisions between the waves. The question of the 
power-law spectra of weak and strong turbulence was 
considered in detail in a review by Kadomtsev and Kon
torovich. [8J Kats et ala [9J have shown that for particles 
that can exist stationary power-law distributions f 
= a 11j ll/2pS&, which cause the vanishing of the Boltzmann 
collision integral 

n+9+~(i-1) 

213 (1) 

where 11(0) is the energy (particle) flux in momentum 
space, p is the momentum, and n is the degree of homo
geneity of the transition probability. The simpler prob
lem of the relaxation of a small fraction of electrons 
against the main background (in this case the collision 
integral can be linearized), when account is taken of the 
ionization and recombination processes, was approxi
mately considered earlier[lO] (see also the related prob
lem of the distribution of neutrons in crystals[l1]). In 
these cases, the distribution function can diffe r noticeably 
from Maxwellian, but its form depends strongly on the 
structure of the· source and of the sink. To the contrary, 
in the paper of Kats et ala [9] and in the present paper the 
question considered is that of formation, in the presence 
of a source and sink, of a non equilibrium stationary dis
tribution of an arbitrary number of particles (in this 
case it is impossible to linearize the collision inte
gral).1) Such distributions constitute an analog of the 
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Kolgomorov turbulence spectrum. Usually in the analy
sis of power-law solutions of the kinetic equations for 
waves (particles) one uses the method of group sym
metry in the space of the frequencies w, [3-5] wave vec
tors k, [6. 7J and particle momenta p. [9J But symmetry 
considerations do not make it possible to determine the 
constant a in the distribution, the flow direction, or the 
region of existence of the power-law distributions. 

On the other hand, direct calculation[2] has yielded an 
exact expreSSion for the collision integral for waves with 
a power-law distribution function as a function of the 
exponent s, and the integral of the exponent s at which 
the integral vanishes was identified. For acoustic tur
bulence, the energy flux in k-space was calculated di
rectly. [3J 

It is shown in the present paper that the Boltzmann 
collision integral for power-law distributions f(P) can 
be represented in explicit form as a function of the mo
mentum p and of the exponent s. It turns out that this 
approach can yield rather abundant information. ThUS, 
in particular, it was found that the collision integral has 
a first-order zero for exponents s corresponding to solu
tions of the stationary homogeneous kinetic equation. 
Using this, it is possible to obtain an explicit expression 
for the energy (particle) flux in momentum space, its 
direction, and also the proportionality coefficient a be
tween the flux and the normalization constant A that de
termines the particle density. It is important also that 
it is possible to find the regions of existence of the 
power-law solutions in problems with a screened Cou
lomb interaction. 

We note that the question of the regions of homoge
neous asymptotic forms of a transition probability that is 
not homogeneous in the momenta is closely connected 
with the question of the existence of power-law distribu
tions of the type f = Apz& .2) It has been shown [9] that for 
distributions of particles with constant energy flux in 
momentum space, in the case of a Coulomb interaction 
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(s = -i), the main contribution to the relaxation is made 
by particles with comparable momenta, i. e., in other 
words, there exists in inertia interval in which the in
fluence of the source and of the sink is insignificant (this 
property, in analogy with turbulence theory is called 
locality). The natural assumption was madeC9] that the 
Coulomb divergence is eliminated by the Debye screen
ing. Our analysis of the regions of the existence of 
power-law distributions for the inhomogeneous transi
tion probability confirms, in particular, this assumption 
(see Sec. 4). 

We note that in the present paper, by virtue of the 
method used by us to calculate the collision integral, it 
turned out to be convenient to investigate simultaneously 
the possibility of its divergences due to collisions with 
particles belonging to edges of the inertial interval, as 
well as those due to singularities of the transition prob
ability. A number of important consequences that 
follow from such a radical change in the character of 
the distribution of the particles in energy and which have 
important practical significance (the influence exerted on 
the criterion of the positive energy yield in problems of 
controlled thermonuclear fusion, astrophysical applica
tions, Landau damping, etc.) has been pointed out ear
lier. [9J The existence of such non-equilibrium stationar) 
distributions presupposes the presence in momentum 
space of a source and sink of particles or of energy. 
This situation obtains in laser and microwave plasma 
heating, in the formation of secondary electrons by a 
powerful electron beam, when thermonuclear reactions 
take place in a plasma, etc. A plasma, however, is a 
highly unstable medium, in which collective processes 
playa particularly important role and can mask the ac
tion of collisions between particles. More attractive 
from this point of view are solids, where it is possible 
to control the disequilibrium of the system in the stable 
regime. In these substances, the energy (particle) 
source and sink can be produced by high-power laser 
radiation, by emission currents, or by natural or in
duced radioactivity. 

and then introduce in place of PI and P3 new variables PI 
and q, and reduce the collision integral to the form 

( aj ) =---m'A'Sd'ldp, W(p.p,'P-'-'1.p,-'1) 
fJt -: 

X [ip-'1I"!p,-q!"-p"p,"]6(q(p,-p-q»). (3) 

where q = PI - P3' The argument of the function in (3) can 
vanishatpl-p-q=O, q=Oandq(Pl-p-q)=O. The 
first case is of no interest, since it corresponds merely 
to the interchange of the pOSitions of the particles as a 
result of collisions, so that the square bracket vanishes, 
meaning also (Sl/st).t. By introducing the angles 9 and 
91 between the vector q and the vectors P and PI> re
spectively, changing over to spherical coordinates in (3) 
for PI and q, integrating with the aid of the Ii-function 
with respect to PI' and changing to the dimensionless 
variable q(q=q/p), we obtain 

( Oi) _. SX--SS 1 (COss+q)' -::- =-m'A-[1"'--' dqq do do,rf-- ---
'.It " c- Ico,S,1 cosS, 

x[ I t+2q cos S+q'I' / (COS s+q)' -2q (cos S+ql +q' /' _/ cos S+q / "1 ' 
cos 8, cos s, 

(4) 
where r is the dimensionality of the transition probabil
ityand dOl = sin9ld9 j drpl' 

Let us find the particle flux 10 and the energy flux 11 
in momentum space, recognizing that in this case the 
fluxes are expressed in terms of the collision integral 
in the following manner 

diy(j(p) pip) =-E(of'ot)_ (5 ) 

where Ii =4."p2j;. For W, which is a homogeneous func
tion of degree 11 in the momenta, namely W = clq", where 
n is a real number (and n = r), a particular solution of 
(5) with allowance for (4) is (see the Appendix)3) 

I,=A' (2m') "'p"'"'''' R(s.lI) 
4s-n-7-'2i 

(6) 

One of the tasks of the present paper is to determine As seen from (5), if Si satisfies the condition 
the non-equilibrium power-law distributions of electrons 
in solids and use them to explain certain features of the ~=~s-II-j'-~i=O·. (7) 
emission current from a metallic foil. 

2. BOLTZMANN COLLISION INTEGRAL FOR 
ISOTROPIC POWER-LAW DISTRIBUTIONS 

It is known (see, e.g. ,C12J) that the collision integral 
for particles of the same sort can be represented, in 
the case of classical statistics, in the form 

oj (cit)., = Sdp,dp,dp, lI"(p,p,lp,.p,) [U,-/!,] 

x 6 (p-'-p,-p,-p,)6(E+E,-E,-E,). (2) 

where Ii =1 (Pl), W(p, PI i P2, P3) is the probability of the 
transition as a result of collisions, Pi is the momentum, 
and Ei =pV2m* is the energy. We describe below a pro
cedure for directly calculating the collision integral for 
an isotropiC power-law distribution function f = Ap2 •• 
With the aid of a Ii-function that expresses the momentun 
conservation law, we integrate (2) with respect to P2, 
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then the flux I j differs from zero and is constant in mo
mentum space, while the other flux is equal to zero if 
R(s, n) has a first-order of zero at the point sl (in this 
case the collision integral (4) is equal to zero). Con
sequently the distribution function 1= Aph corresponds 
to a non equilibrium stationary situation with a constant 
flux of energy or particles. The direction of the flux is 
determined by the sign of the derivative dR/dy at the 
point y = 0, and the quantity A is connected with the flux 
intensity by the expression 

.-1=crl[I, (8) 
cr.'= (2m') ,., lim I dR d~ I". 

It should be borne in mind (see (6» that the direction 
of the particle flux (energy flux) depends essentially on 
the form of the transition probability W, and these fluxes 
can be either mutually opposite in momentum space, or 
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of the same direction. As follows from the expression 
for R(5,n) (see the Appendix), it consists in the general 
case of terms that contain a first-order zero at the point 
'Y = 0, and also of divergent terms (for the conditions 
under which there are no such terms, see below). The 
nature of the diverging term is twofold. First, it can 
be connected in a number of cases with the influence of 
the collisions between the considered particles and the 
particles that have small (PI - 0) and large (Pi - 00) mo
menta. Second, the divergence can be due to singular
ities of the transition probability (in Sec. 2 are indi
cated the inhomogeneity exponents of the transition prob
ability, at which divergences of the first or second type 
take place). In the present paper (see Sec. 4), using as 
a concrete example a screened Coulomb interaction, 
we show how to eliminate divergences of the second type, 
thus indicating that the earlier assumption,9] concerning 
the role of the Debye screening is natural; we empha
size that, for example, a distribution with a constant 
energy flux 51 = - t has no divergences ofthe first type. ,9l 

It should be noted that we are as yet unable to propose 
a regular procedure for the elimination of the diver
gences of the first type, so that the question of the exis
tence of distributions that are nonlocal remains open in 
this sense. Equation (4) leads directly to convergence 
conditions that ensure locality of the power-law distri
bution, and these conditions coincide with those obtained 
earlier. ,9:1 For convenience, we present these conditions 
expressed in terms of the degree of homogeneity of the 
transition probability: in collisions with immobile par
ticles, or else when the particles are stopped after the 
collisions (6-77/2) we have 

-4<11<-3 (/,=COllst). (9) 

which according to (1) corresponds to exponents 5 in the 
intervals 

(10) 

In the important case of Coulomb interactions, as seen 
from the foregoing inequalities, the collision integral di
verges at small momentum transfers, but this diver
gence can be eliminated by Debye screening. Conse
quently, the restriction connected with the divergence of 
the integral as a result of the transition probability is 
not encountered, and a local power-law distribution can 
exist with a constant energy flux in momentum space. 
In Sec. 4 below we shall consider this question in greater 
detail. 

We note that the existence of a stationary power-law 
distribution function corresponds to the presence of a 
constant non-zero flux in momentum space, the intensity 
of which (in accordance with (8)) determines the par
ticle density in this distribution. On the other hand, the 
conservative character of the flux is ensured by the 
source and the sink, the locations of which should be 
made consistent with the flow direction. 

3. ELECTRON·ELECTRON COLLISION INTEGRAL 

When conSidering normal electron-electron collisions 
in solids in the free-electron approximation, one uses a 
collision integral of the type of (2), in which the expres
sion customarily used for the transition probability W is 
based on the "jellium" model,,13 l namely 

Il<-J. 11<-:3. lr=2e' (q'-'-a,'...,..0.'q'O)-',I', (11) 

In collisions with particles having very large momenta 
(61 -1T/2) we have 

n>-:3. 11>-5 

(here, and below, the first of the inequalities pertains to 
the distributions with constant 1o, and the second to those 
with constant 11). 

In addition, in order for (4) to be convergent it is nec
essary to stipulate also satisfaction of additional condi
tions connected with singularities of the transition prob
ability: 

at small momentum transfers (q - 0) 

n>-4. n>--t 

at very large momentum transfers (q - 00) 

11<3. 1I<.j. 

Thus, the presented inequalities show that for a tran
sition probability that is a power-law function of the m0-
mentum transfer (W=c1Q"), the collision integral con
verges for power-law distributions corresponding to W 
with 

-3<n<-1 (/.=COllst), 
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Ti,,)=E-E:. a,'=3111Il',,) , ~EF. 0.'=;'(m'.1[I", '. '0 '=4:1e'll Ill. 

ne is the electron density, z is the valence, ;,,[ is the ion 
mass. When the collision integral takes the form (4), 
we obtain for (11) the expression 

1l=2e'{Q""":','[17 ~ ;'(:) P2(Q!;'co58)'1r'. (12) 

The dimensionality r, which enters in (4) is here equal 
to - 4. However, it should be noted that here W is not a 
homogeneous function of the momenta and therefore a 
direct application of the results of (6)-(8) is impOSSible. 

It will be shown in Sec. 4 that in definite regions of 
momentum space, the limits of which depend on the ex
ternal physical conditions, there can exist power-law 
functions of the particle distribution. Their degrees 
correspond to different asymptotic forms of the transi
tion probability W, which are already homogeneous func
tions of the momenta. Let us consider different asymp
totic expressions for W, represented by expression (12), 
and obtain the corresponding degrees. 

For small energy transfers (low temperatures) we 
have 

ge' 
W= p'(q+2cos8)'. i.e.. 11=4. 

8 (mIJlI)' (a,ZPF) , ' 

From condition (6) we get so= -l}- and Sl =-¥, in ac
cordance with (1). Here and below, the subscripts 0 (1) 
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correspond to the constant particle (energy) flux. 

At appreciable energy transfers (high temperatures) 
we have 

lV= 2e' 
(q>+al'lp') , (13) 

As will be shown below (see Sec. 4), in the region of 
small a = a/p (a« 1) there can be formed a local power
law distribution f = A p2., corresponding to the asymptotic 
form of the transition probability describing the pure 
Coulomb interaction (exponent 51 = - t), [9] and corre
sponding to the energy flux in momentum space. As to 
large a (a» 1, with n = 0) then, as follows from the in
equalities (9), in this case a local power-law distribu
tion cannot exist, so that we shall not analyze (af/at).t 
in detail for a» 1. We shall illustrate a typical analy
sis of the regions of momentum space in which the pa
rameter a is small (a« 1) by using as examples three 
media: a metal, a semiconductor, and a plasma. Thus, 
in the case of metals a2 = ~/p2 is of the order of unity, 
for momenta p- PF' and a power-law non-equilibrium 
distribution function can be formed at energies exceed
ing E F , inasmuch as the parameter a is small for such 
energies. For semiconductors, a2 is small even for 
momenta P - P F, so that the region of the existence of 
the power-law non-equilibrium distribution function in
cludes energies on the order of the Fermi energy. In 
the case of a laboratory plasma, the parameter a, de
fined by a somewhat different expression 

a'=4:r.e'n,Il'!j5'p'. 

where P is the mean value of the momentum, turns out 
to be much smaller than unity for almost all the mo
menta, so that a power-law distribution function can 
exist in practically the entire energy interval. This 
fact can be established also by a somewhat different 
method. It is well known that in the case of a plasma a 
collision integral describing the interaction of charged 
particles can be written in the Landau form[12] 

( OJ) d' . 
~ =- IV)" 
at " 

'- ,. f U'6,,-lli ll • ['.!.L-f' af]d ' lOI-:te I. J 1 ~ I - P . 
U op. ap. 

(14) 

where u = v - v' and X is the Coulomb logarithm. By sub
stituting in (14) an isotropic power-law distribution func
tion we can obtain by rather simple calculations[9] the 
expression 

( OJ) = 16:r.'m'e'i.A'p" (4s.,-3) (4s+5) 
at " (ST 1) (2s+3) (2s+5) 

16,,'m·e'i . ..1' '" { 28' (PI) ''''. (2s+1)s (1',) "., + , !"lIm --,- - T--.--
3 P,_" 28.,-3 I' 2s.,-2 p 

4. REGIONS OF EXISTENCE OF POWER-LAW 
DISTRIBUTIONS 

The purpose of the present section is to consider the 
collision integral (4) with a transition probability W that 
is not a homogeneous function of the momenta. For 
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simplicity we express the transition probability W in the 
form (13), corresponding to a screened Coulomb poten
tial. Inasmuch as in this case there is not a single 
power-law function that causes the collision integral to 
vanish in the entire momentum space, and different as
ymptotic forms of W correspond each to two pairs of dif
ferent powers (each pair corresponds to constancy of 
one of the fluxes, 10 or II)' it is necessary to determine 
the regions of the existence of the power-law distribu
tion functions. 

We consider the collision integral (4) with the transi
tion probabilityS) 

W=2e'/(q'+a')'. a'=a,'/p'. 

Integrating with respect to the angles 81, rp, and rpl and 
making the substitution x cos8, we obtain the collision 
integral in the form 

( af ) 16:t'm'e'A' ,. II dx I~ ~ {I 1+2 "x 
at ,,= - (2s+2) p (q'+a') ' q 

_I 0 

(16) 

USing standard integrals, [14] we transform (16) into a 
sum of two integrals 

( Of) =_ 8 . .,'m'e'A' "{II dgg [(I+"')'(F(-S2s+3' 
ijt" (s+1) (2s-'-3) p W+a')' q " 

o 

2g 2-
28+4· ---) +F(-8 28+3' 2s+4,-q-)) -(1+g)"+' 

t 1 +~ t" '1 +f 

_ (I-g) 'H] + I' dijij-"" [ij' (1+ij')' (F (-8 2s+3' 2s+4' - ~) 
, (1+a'ij') , '" 1+g' 

+F( -s.2s+3;2s+4; 1;</,)) -(l-'-ij)""'+O-ij)"·']), 

(17) 

To obtain the regions of the existence of the power-law 
distribution functions corresponding to different asymp
totic forms of the transition probability W, it is neces
sary to consider the collision integral for two limiting 
cases (a« 1 and a» 1). 

In the case of small a (a« 1), the dependence of the 
collision integral on a is connected only with the first in
tegral in (17), the value of which is determined by a 
small vicinity of the point q = 0, or the order of a, and 
is obtained by expanding the integrands in powers of (j. 
The final form of the collision integral for small a is 

- = :cm e'· 'p" n-( aj) 8'" I' "\ (4s+3) (48+5) [I 1 
at ,,' - (s+1) (2s+3) (28+5) a' 

• -- T (a'lna- , (2s+1) (2s+3) (2s+5)"'[(s-'-2). l' 0 0 O)} 

2"~'r(_2s)[(2S~7)r(4S;i)8in:(" 2, 2'1) . 

(18) 
Since the screening was not treated in a self-consistent 
manner (a l was assumed to be a certain specified pa
rameter corresponding to the distribution function in the 
entire momentum region), it follows that, as usual (see, 
e. g. , the derivation of the Landau and Lenard-Balescu 
equation[15]), the weak dependence of the "telling" mo
mentum p, which enters under the logarithm Sign, must 
not be taken into account, since this corresponds to an 
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exaggeration of the calculation accuracy. Thus, the 
quantity a under the logarithm sign in (18) corresponds 
to a certain characteristic momentum of the power-law 
section of the distribution function. 

Expression (18) vanishes for s = - t accurate to terms 
of order «-lntr, 6) Consequently, at small values of a 
the distribution function has a power-law form and cor
responds to an asymptotic form of W with exponent n 
= - 4, describing the direct Coulomb interaction between 
the electrons. The foregoing analysis shows therefore 
that in the momentum region indicated for the transition 
probability (13), on the one hand, the Debye screening 
of the Coulomb interaction eliminates the "Coulomb di
vergence," and on the other hand it does not influence 
the exponent of the non-equilibrium stationary distribu
tion function of the particles. 

Expressions (15) and (18) lead to the same degree for 
the non-equilibrium distribution function, However, 
expression (18) yields more complete information, 
since, first, it indicates the region of the existence of 
the power-law function, a« 1, and second, it indicates 
that in a certain region of momentum space the direc
tion of the energy flux is opposite (positive) to its direc
tion at large momenta. 7) The limits of this region are 
determined by the ratio of the logarithmic term to the 
second term in the square bracket of (18), 

5. LASER-INDUCED EMISSION CURRENT 

It is known[16-18] that when a metallic foil is bom
barded by a pulse from a high-power laser with Q= 104 

erg-cm-2 sec-I, two peaks of the emission current are 
observed. The first, almost synchronous with the laser 
pulse, contains a large number of "fast electrons" (the 
maximum energy for tungsten is 14.5 eV). The second 
peak, which follows with a delay r-10-7_10-8 sec rela
tive to the first, contains electrons with energies not 
exceeding 2 eV. 

A satisfactory explanation of the appearance of fast 
electrons as being due to the Maxwellian distribution 
function is impossible, [16] since the experimental re
sultS[I7] would then correspond to a temperature Te 
= 30000 OK, which exceeds by one order of magnitude the 
melting temperature of tungsten. As to the emission 
current, there are two well known mechanisms for its 
appearance: a multiquantum photon effect and thermionic 
emission. These yield respectively the following expres
sions for the emission current density[161: 

iph =2-'" (emWL'lh)n"'(8rce'Q/mc<pw n", 
i,e=c,(T,'/<p) Cxp (-<plkT,,). (19) 

where cp is the work function, n = ent[l + cp/nwL ], wL is 
the laser emission frequency, and Cz is a factor that de
pends on the distribution of the illumination in the spot. 
Let us compare the values of the emission currents cor
responding to these mechanisms with the experimental 
value of the current iex» for a tungsten foil (cp = 4. 5 eV; 
m*=0.5m; E F =5 eV; W L = 1015 sec-I, Emax=24 eVis the 
maximum energy in the distribution). The numerical 
values were taken from Knecht's paper[17] 

1,.=0.33·10-", Iph =1O-' T,'exp (-5.22· 10'IT,) , (20) 
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where 1= i/ieXp' According to the theoretical and experi
mental data[16] the quantity To in It. does not exceed 
1800 OK, from which we get Ite -10-6• 

Thus, the emission currents calculated on the basis of 
the multiquantum photoeffect and thermionic emission 
are both underestimated. In this section we therefore 
propose a mechanism that makes it possible to explain 
the available experimental data on the emission current. 
It seems to us that the considered situation corresponds 
to an essentially non-equilibrium situation connected 
with the presence of a source (high-power laser radia
tion) and a sink (emission current) in momentum space. 
It is intuitively clear8) that a power-law distribution can 
be established in an energy interval in which the par
ticle density produced by the source exceeds the density 
in the equilibrium distribution. In our case the start 
of this interval is the level to which the particles are 
transferred from the Fermi sphere by the two-quantum 
photoeffect. In addition to this source, particles con
nected with three and more quantum transitions will also 
land in this interval, but the densities of the particles 
produced by them will be much smaller and will be dis
regarded. The formation of the non-equilibrium distri
bution in this energy interval will be due to electron col
lisions, since electrons with such energies cannot inter
act effectively with phonons. 

Let us compare the times of the electron-energy re
laxation as a result of electron-electron and electron
phonon collisions. According to(19), in a high-frequency 
electromagnetic field nw» k T at high temperatures T 
»0D (0D is the Debye temperature) the frequency of the 
electron-electron collisions is determined by the ex
preSSion 

1"(W, T)=Yo"(T}[1+(hwlkT)'], (21) 

where y~·(T) is the classical high-temperature frequency 
of the electron-electron collisions and is proportional 
to T Z (see, e.g. ,[ZO]). On the other hand, the frequency 
of the electron-phonon collisions under the same condi
tions takes the form [20] 

1"!=/(8D )TI8D , (22) 

where f(0D ) is the classical high-temperature frequency 
of electron collisions with phonons at T= 0 D • 

For the purpose considered in the present section, 
the conditions necessary for (21) and (22) to be valid are 
satisfied since wL "" 1015 sec-I, To = 1800 K, ° D = 315 K. [20] 

We note that the reciprocals of the collision frequencies, 
defined in accordance with (21) and (22), do not coincide 
in the general case with the electron-energy relaxation 
times, since it is necessary to take additional account 
of the number of collisions needed for the particle to 
lose its energy E, i. e. , the factor 7] = E/E1 (E1 is the en
ergy lost by the electron in one collision). According 
to[ZO,ZI], in our case we have y.f "" y~e (T), yee > y'b"( T), 
while the factor 7] can be of the order of unity for elec
tron-electron collisions, while for electron-phonon col
lisions we have E /k0 D - loZ (E - nw). Thus, in our case 
the time of electron-energy relaxation as a result 
of electron-electron collisions is much shorter than 
the time of relaxation due to electron-phonon pro
cesses. 
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V. Volts 

10 FIG. 1. Dependence of the logarithm 
of the emission current log [ on the 
starting potential V (solid line); the 
dark circles show the experimental 
points) . 

A comparison of the laser pulse duration and of the 
relaxation times shows that the electron distribution 
function in our case is quasi-stationary and is deter
mined mainly by electron-electron collisions. Conse
quently, it can be obtained from the condition that the 
collision integrals (17) vanish. From the analysis car
ried out in Sec. 4 it is seen that for metals in the energy 
region E - E F > tiw L there C2.n exist a power-law distribu
tion corresponding to a constant energy flux S1 = - t in 
momentum space. It should be noted that the distribu
tion will be formed both on account of collisions with 
electrons belonging to the interval E - E F > tiw L, and on 
account of collisions with electrons of the fundamental 
background (equilibrium). However, since relaxation 
on the fundamental background leads in similar prob
lems also to a power-law-like electron distribution, [10] 

and the result, as will be shown later, depends rather 
weakly on the degree s of the distribution, we shall use 
for estimates the degree S1 = - to The emission current 
density for such a distribution function, f=Ap26 is ob
tained in analogy with the Richardson formula [16] and is 
determined by the expression 

AE '+'( • 
i, = n m= 2m ~'+le [8+1 _ Ep+<p (8+2) + (EF+<P ) 0+' ], (23) 

(8+1) (8+ _) Em". Em," 

where Ernax is the maximum energy in the power-law 
distribution. To estimate the value of A we equate the 
particle density produced by the two-quantum photoeffect 
to the particle density in the power-law distribution Sl 

= - t, the lower limit of which is the level to which the 
photoeffect transfers the particles from the Fermi 
sphere, and the upper level is Ernax. Then 

A", 10" gIll em-'ll see l/2 i =94.10-18 A' = 24' , • ..... lexp· lexp' (24) 

The figure compares the experimental data Of[17] with the 
dependence of the emission current density on the retard
ing potential V, as described by formula (23), in which 
qJ is replaced by the effective work function qJ + e V. 

Thus, the use of the proposed mechanism yields an 
acceptable value of the emission current and of its de
pendence (fast peak) on the retarding potential. As to 
the slow peak, on its initial section the emission cur
rent receives contributions not only from the equilibrium 
distribution (thermiOniC emiSSion), but also a nonequi
librium stationary increment due to the "diSintegration" 
of the power-law distribution. 

The authors thank S. I. Anisimov, V. E. Zakharov, 
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and V. P. Silin for interest in the work and for useful 
discussions. 

APPENDIX 

Let the transition probability W=c1qn (n is any real 
number), and then the collision integral (4) is easily 
integrated with respect to 91> qJ, and qJl and reduces to 
the form 

_ = _ 1 p~5+llH[Ii1)_I(2J], (at) 2n'm'c A' 

at " 8+1 
(A1) 

, . 
I'" = S dx S dqqn+'11+2qx+q'I'lxl"+', 

o 

, . 
I"~ = S dx S dijij"+llx+ql'H', X = cos e. 

o 

The calculation of the integral [<2) is elementary, and 
we write down directly the answer, expressed in terms 
of the beta function B(x,y) 

1 
I'" = 28+3 [B (28+4, n+2) -B (-2s-n-5, 28+4) +B(n+2, -2s-n-5)]. 

(A2) 
In the calculation of [(1) it is convenient to integrate first 
with respect to q (see, e. g. ,[14J) 

( 1-28) s' 1(1)=2-('H')/Z1' Z- B (n+2, -n-2s-2) dx x2.+z( 1-x') (',+1)/' 

where P::(x) is a spherical function. Using the prop
erties of solid spherical harmonics 

P .(_)_ sin(:tvlp .( )+sin(:t(v+/L»r(v+f.I+1) 
v x ----- x p -'(x) 

sin(n!!) v sin(nf.l)1'(v-/L+1) v , 

and calculating the integrals, we obtain 

l'''=B (n+2, -n-2s-2) [ ( 1 

n+28+2 

Sin~n,(2s+3+2n)/2) ) _, _1_.F,( n+2 
SInln(2s+1)/2) 2s+3 2 

----
2 

. 1-2s 28+5. ) 
1, -2-' -2-' 1 

l' (28+11+3) l' «1-2s)/2) l' «28+3) 12) r (s+2) sin (n (2s+n+2» ] 
+ 2,,+21'(n+2)f«4s+n+7)/2)r«2s-I1+3)/2) sin(n(2s+1)I2) , 

(A3) 
where pF.(a1, ••• ,ap;/31> ••• ,/3.;z) is a hypergeometric 
function. Thus, the expression for R(s,n), which enters 
in formula (6), will be for the flux in momentum space 

R (8, n) = 4n'c. {B (n+2, -2s-n-2) (1 _ sin(n (28+2n+3)/2) ) 
(s+1) (28+3) sin(n(2s+1)I2) 

( n+2 n+2s+2 1-28 28+., ) 
X,F, 2' ---2--' 1; -2-' 2-; 1 -B(28+4,n+2) 

+B( -2s-n-.'. 2s+4) -B(n+2. -2s-n-5) 
,,'(2s+1) (2s+3) (4s+n+7) (4s+n+9)r(s+2) } 

- 2"+'1' (-2s) l' «2s-II+3) 121 r «4s+n+ 11) 12)sin'(n (2s+ 1)/2) . 

(A4) 
We have considered in detail the case of a quadratic 

dispersion law. Consideration of an arbitrary disper
sion law9) E=pS/a 1 (/3 and a are certain constants) leads 
to complications only in the calculation of the expression 
for R(s,/3,n). On the other hand, to find the exponents 
corresponding to the nonequilibrium distribution func-
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tions that conserve the particle flux (energy flux) in mo
mentum space is a rather simple matter for a transitior. 
probability W which is homogeneous in the momentum. 
It is convenient for this purpose to introduce the dimen
sionless variable p/p and then the collision integral (2) 
reduces to an integral that is independent of p, and to a 
factor p2B_+n+6-B. Calculating the fluxes in momentum 
space in analogy with (5) 

Ji\.(.i....!.)=-(P') ('.Ii) . 
/) ':£\ fJt j' 

1.=~:t':1.I'-'p' ... -·-'--1 R(s. ~.II) A'. 
~~.,-"-!l-?(i-I) 

we see that conservation of the flux Ii corresponds to 
a value of SI that causes the exponent of p to vanish under 
the condition that R(s, (3, tl) has a first-order zero for 
this value of Sl' Consequently 

S. = 
11-9-~(i-l) 

~? 

which agrees with expression (1) obtained earlier(9] by 
a group-theory method. 

I)W ith the exception of Sec. 5, where we deal with the non
equilibrium distribution of fast electrons produced under the 
influence of laser radiation. 

2)On the basis of an analysis of the behavior of the character
istic collision frequencies for the scattering of plasmons by 
particles and by one another, regions of the existence of dif
ferent spectra have been found[:[ as functions of the values of 
the parameter krD (rD is the Debye radius). 

3\Ve note that the expression for R(s.l/) in the case of an in
homogeneous transition probability follo\\'s from (18) (see be
low). 

4 )This demonstrates the possibility of determining the pOII'ers 
si (which coincide with (1» by a method differing from that 
used by Kats et al. [9 J 

5)At this transition probability. only the dil'ergence of (8f otl st ' 

corresponding to collisions with small momentum transfer is 
eliminated. ' 

S)It should be noted that the I'anishing of expression (18) at S 

= - 3 4 does not correspond to the solution of the kinetic equa
tion, since the distribution with 5 = - 3 4 is nonlocal (see 
Sec. 2), i.e., at 5=-3 4 the expressions for (of otlS! con
tain divergent terms in addition to (18). 

7)In this connection, II'e call attention once more to the need for 
making the locations of the source and sink consistent with 
the flow direction. 

8)Strictly speaking. the question of the source power needed to 
establish a stable power-law distribution is quite complicated, 
and its solution, likely, cannot be based on the thermodynamics 
of nonequilibrium processes, which is valid only at small de
viations from the equilibrium distribution function. but must 
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apparently be solved in the spirit of the Lyapunov theory. 
9)A Boltzmann collision integral with a transition probability 

that is homogeneous in the momenta and with an arbitrary 
power-law dispersion for the particles was considered ear
lier[9J by a group-theory method. 
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