
large stationary magnetic fields, in the case elm = 103 , 

we have the parameter X-1O-5, whereas in modern la­
sers it appears that fields can be obtained with values 
~ = 0.1 at W-1015 sec-I. For the values given above, a 
contribution to the anomalous magnetic moment of the 
electron, due to the electromagnetic wave, can exceed 
the contribution from the constant magnetic field by two 
orders of magnitude. When account is taken of the con­
tribution to the anomalous moment of the vacuum cor­
rections in the next higher approximations in (l (- (l2, (l3), 

it turns out that the corrections obtained here generally 
speaking make a smaller contribution than the term 
- a2, but a larger one than the term - (l3. [19] 
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We study the vibronic problem in the simplest Iahn-Teller and Renner-Teller systems in the quasi­
classical energy and momentum range. The method developed in this paper leads to a transcendental 
equation for the levels, which includes the action in the adiabatic terms, the interference phase, and the 
probability for non-adiabatic transitions. We discuss the consequences and possible generalizations of the 
theory. 

PACS numbers: 32.20.Vh, 31.10.Cc 

The basic features of the nuclear motion in symmetric 
molecules are caused by the existence of those surfaces 
in the nuclear coordinate configuration space on which 
the molecular electronic terms are degenerate, The 
adiabatic approximation is violated near the correspond­
ing symmetric configurations and the motion of the nu­
clei on anyone of the degenerate potential surfaces be­
comes coupled with the motion on the others. 

These features of the nuclear dynamics manifest 
themselves strongly in the electronic-vibrational spec­
tra of Jahn-Teller and Renner-Teller molecules. Op­
tical transitions connecting electronic terms in the re­
gions of adiabatic nuclear motion are collected in rela­
tively wide bands with a simple Franck-Condon struc­
ture, while anamolous spectra arise for transitions be­
tween terms in symmetric nuclear configurations. The 
data from spectral studies at those frequencies, which 
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give information about the dynamical coupling of elec­
tronic states, cannot be understood without a detailed 
study of the dynamics of the nuclear motion in the ap­
propriate regions of space. Meanwhile all calculations 
of electronic-vibrational wavefunctions and energy lev­
els performed for symmetric molecules up to the pres­
ent[1-4) refer to low-lying excitations corresponding to 
initial values of the series of quantum numbers m and 
n (see Figs. 1 and 2 below). In those states the nuclear 
motion of real molecules is localized close to stable 
molecular configurations which are far from being com­
pletely symmetric. Completely symmetric configura­
tions are reached only in states with large quantum 
numbers when the motion of the nuclei along connected 
potential surfaces is complicated. 

Notwithstanding the complexity of such a motion the 
conditions m» 1 and n» 1 give us the possibility of ap-
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plying a quasi-classical approximation and to overcome 
the basic difficulty in the study of nuclear dynamics in 
the region where terms get close to one another-a Sig­
nificant interaction of the electronic states. 

1. SEMI-CLASSICAL APPROXIMATION FOR 
JAHN-TELLER MOLECULES 

The main features of the dynamics of the nuclear mo­
tion in Jahn-Teller molecules appear in the Simplest 
E-e model[lJ which corresponds to the following Schro­
dinger equation for the nuclear amplitudes (11 = M = 1): 

( 
T(p, or) +U, (p, <p}-E, 

1 a 
\ - 2p'o;' 

2p' aa<p ) 'If =0. 

T(p, <p} +U,(p, <p} -E, 

(1) 

Here T is the kinetic energy operator and U1 and U2 are 
the adiabatic electron potentials. Neglecting the angu­
lar dependence of U1 and U2 we can split off the angular 
part of \}to 

After rotating the vector (\}tl' \}t2) through rr/4 we are 
led to the following set of equations for the radial nu­
clear amplitudes with half-odd-integral angular momen­
tum: 

1 d' m' 

( 
---+-+U,(p}-E 

2 dp' 2p' ' 

m 

~, ) 
1 ~ ~ ~=Q 

2p' 
---+-+ U,(p}-E 

2 dp' 2p' 
(2) 

The most popular model of adiabatic potentials 

U,. ,='/,w'p'±Fp (3) 

corresponds to the conic section, typical of two-dimen­
sional problems. The set (2) must be solved with the 
boundary conditions <1>1,2 - 0 as p - 0, 00. The prinCipal 
interest then is the sea:r:ch for the energy levels char­
acterizing the position of the spectral lines. 

We introduce a dimensionless variable and dimenSion­
less parameters 

(2E)" 
x=--p, 

m 

Fm 
6=--. 

2"'E''' ' 
(4) 

and we shall look for the solution of the baSic set (2) in 
the quasi-classical form: 

~, = :',>Xp (d P, dx)+ a;::" exp ( -i j P, dX), 
.TlO :\"LO 

(5) 

~,= ;:~ exp ( i j p, dX) + ~::" exp ( -i S p, dx ), 
.,":' xl 

( 1 Q' '/, 
p,,=m 1- x,-zx'±6X). (6) 

Here ~,2 are the external turning points (which are 
close to zero) on the adiabatic terms, while the coeffi­
cients satisfy the following set of first-order equations: 
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da 

o 
D' 

- 2~1 e-2iSI _i"_ e-i (8,-8.) _Iv_ e-i (8,+81) 
2(0,,,,)'/' ' 2(.,,,,)," 

o ~ ei(SI+St) ~ et (81-8z) 

2( •• ",)'/' ' 2C", .. )'/· 

_1_" _ i (SI-S.). _i_" _ e-i (St+St). 

2(,.,,,,)'/' 2(.,,,,,'/' 

~ei (8.+$.)' ~e-i(SI-S2) 
2 (p,,,,),it 2 (PI ".)'/, ' 

in which 

., 
S". = ~ p ... dx. 

x~" 

o 

~e2i81 -2", . o 

., 

(7) 

(8) 

We can simplify Eq. (7) if we bear in mind that when 
Sl,2» 1 the matrix elements connecting the incident and 
the reflected wave in one adiabatic channel can be omit­
ted if we guarantee the correct boundary conditions at 
the turning points ~,2' Moreover, if Sl,2» 1 Sl - S21 , 
and this condition is satisfied when Ii« 1 everywhere ex­
cept in the immediate vicinity of xt2 the set (2) can be 
split into two: 

(9) 

which are connected only through the requirement that 
the wavefuncdon is damped under the barrier (x- 0): 

4H (x,O) e-C"/'=-al_ (Xl G) e(fl/f., 

aH (XaO) e-1n/'=-4:_ (%2°) elK / i , 

If we change to a new variable 

(t is negative in the incident wave and positive in the re­
flected one) and bear in mind that 

, 
S,-S,=m6 S x(t)dt, 

• 
we find for amplitudes which are continuous at t= 0 

(10) 

the equations 

db, i ' 
-=---) exp (-im6 S x(t)dt )b,. 
dt 2x'(t • 

, (11) 

db, i (S ) -= ---exp imll x(t)dt b,. 
dt 2x' (t) • 

In this semi-classical system the motion along a sin­
gle trajectory is determined by the following equation: 

1 
x(t) = 2'/,Q (1-(1-4Q')'42 (1-4Q') 'h sin' Qt)"'. (12) 

The requirement that the radial motion is quasi-classi­
cal (n» 1) and the condition that there exists a single 
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trajectory in both electronic states ({j« 1) impose re­
strictions on the dimensionless frequency n. To find 
those we consider first of all the rough asymptotic be­
havior of the spectrum En,m in weak and strong Jahn­
Teller fields. It is of the form 

E., m=ro{n+m.+1) , F"<ro, 
Eft, m=I/2 (3nFn)''', n>m, F">ro, 

E.,m='/,{Fm)''', m>n, F">ro 
(13) 

and they represent the levels of a two-dimensional os­
cillator and a conical well. [61 We get then for {j and n 
the following order-of -magnitude expressions: 

F m m 
6=---- Q=--, F"<ro, 

fij'/l (m+n)I/I' m+n 

m 
6=-, 

n 

6=1, 

When 11» m the requirements 11» 1 and {j« 1 turn out 
to be satisfied for any value of the parameter F 2/3/W• 

Moreover, this condition leads to the restriction n« 1 
which allows us to reduce Eqs. (11) to the form 

, 
dc, 1 (J ) -=---exp -2ifl (1+t')'''dt c 
dt 2 (1 +t') 2, 

o , 
dc, -1 (J ) di= 2 (1+t') exp 2ifl (Ht')'I'dt c., 

o 

1- (1-4Q') 'I, 
fl=m6 2Q'(1-4Q')"" 

(14) 

Physically, the condition n« 1 means that the method 
used allows us to find those levels of Jahn-Teller mol­
ecules which correspond to an almost straight-line mo­
tion of the nuclei in the region where the terms ap­
proach one another. The set of Eqs. (14) can be solved 
in terms of parabolic cylinder functions for the ampli­
tudes: 

I 

(~l) = (cos g, - sin g) (Cl exp ( - i~, ~ (1 + t')'I'dt)) , (15) 

~. sin g, cos g, c, exp ( ill ~ (1 + t')'" dt) 
• 

The solution has the form 

2A 2B 
~. = - (Hill-t'l. DH • ((Hi)z) + (1+i) fl'" DH • (-(Hi)z), 

¢,=ADp«Hi)z) +BDp{- (Hi)z), (16) 
z=fl"'t, p=-1-ifl/2, 

where A and B are arbitrary constants. Equations (15) 
and (16) lead to the following asymptotic behavior for 
the Cl,2 (cp = hdl -lnt Jl»: 
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2e" 
c = ---(Be"""'-Ae-n.") 
• (1+i)fl'f. ' 

c,=A (2n) "e-"r-' (1+ifl/2) , t--oo; 

c.=B(2n)"y"r-· (1 +ifl/2) , 

2e" 
C2 = ___ (Ae:lIl"_Be-:l1l/.f.) l-+oo, 

(1+i)fl'h ' 
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(17) 

and, hence the formula for the coupling of the ampli­
tudes of the quasi-classical waves (5) has the form 

(18) 

To find now the energy levels of a molecule it is neces­
sary to use the second boundary condition for Eq. (2). 
It specifies the exponential damping of <1>1 and <1>2 beyond 
the turning pOints Xl and X2' When we use a quasi-clas­
sical description this imposes a well known connection 
on the coefficients a1,2.' a1,2- in the turning points: 

ai+ =aei {OI!4.-Qt), ai_=ae-f{n'.f.-Qt), (19) 

where the nj are the actions in the adiabatic terms. 
The condition that the sets (18), (19) are simultaneously 
soluble: 

(20) 

is the required equation for the energy levels of a Jahn­
Teller molecule in the quasi-classical sector 11» m. 
The limiting forms of this equation correspond to the 
quasi-classical quantization in a combined well when 
there is a weak coupling of almost degenerate states 
(Jl- 0, cos(nl + n 2) = 0) and the quantization in isolated 
wells in the strong coupling region (Jl - 00, cosn1 cosn2 

= 0). 

A detailed picture of the levels can be obtained 
through a numerical solution of Eq. (20). A compari­
son of the results of the corresponding calculations with 
all the data from [1-41 (a numerical solution of the set of 
coupled Eqs. (2) for m between t and -!, 11 ~ 20) shows 
good agreement (accuracy of O. 01 in units of w) even 
in the quantum region m, 11- 1. When 11-10 the accura­
cy is O. 001. Part of the comparison of the data is giv­
en in Fig. 1. 

In the quasi-classical region m, 11> 10 a solution of the 
set (2) through an expansion in a limited base for 
weak[l-41 or strong[7,81 coupling of the states would lead 
to conSiderable computational difficulties as the coupling 
parameter Jl changes for such values of m and 11 within 

FIG. 1. Energy levels of a Jahn-Teller molecule for m = i 
(a) and for m=1 (b) found from Eq. (20) and found in £1J(0), 
[21(0), l31(<t) , and [41(+). E and F in units wand w312 • 
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FIG. 2. Energy levels of 
a Jahn-Teller molecule 
for m = -¥- found by using 
Eq. (20). E andF in units 
wand w3/ 2• 

very wide limits while F changes in a small range. An 
example of the calculation of the levels in that region, 
using Eq. (20) is shown in Fig. 2. 

One can apply Eq. (20) to calculate the electron-vi­
~rational levels of the NHs molecule in the electronic 
B' E" state of symmetry D3h , interacting with a !l3 e'­
type vibration, for 

CH,(C'E" (D",) +v,(e'», CH,1 (B'E (c,.) +v.(e», 

CF,J(C'E(c .. )+v,(e», VCl.(X'E(Td)+v,(e» , 

and for a number of other simple molecules and radi­
cals. The best results are in that case possible for rel­
atively high levels with n> 10, identified in spectral ex­
periments. [8] 

2. SEMI-CLASSICAL APPROXIMATION FOR 
RENNER·TELLER MOLECULES 

The simplest Renner-Teller molecule is described by 
a set of coupled equations for the nuclear amplitudes 
which is similar to the set (2) with integral values of 
the angular momentum and adiabatic potentials: 

U,.,=U'(p) ±e'p'/2, (21) 

where UO(p) takes in the general case the anharmonicity 
of the oscillations into account while eZ is Renner's pa­
rameter. The semi-classical amplitude method of the 
preceding section can immediately be generalized to 
this case. For a model with UO=t W"'; the correspond­
ing semi-classical equations have for n» m the form 

where 

mA (1-(1-4Q')"')'" 
1 =2 2"'Q'(1-4Q')'" 

A=e'm'/2E', Q=rom/2"'E. 

(22) 

This set has four singularities-the zeroes of the adi­
abatic splitting-and can be studied rather completely 
for small and large y. 

When y« 1 one can use perturbation theory for the 
functions 
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( '1'1) = (c~s g, - sin g) (C1 exp ( - i~ ~ (1 + tl)dt)) , 

'1'. smg, cosg. c.exp (i'l'~(i + tl)dt) 

which satisfy the set of equations 

d'l',/dt-iy (t' -i) "', +2iyt",.=0, 

d.p,/dt+iy (t'-i) ",,+2iyt.p, =0. 

o 

(23) 

To first order in the off-diagonal and to second order 
in the diagonal elements of the S-matrix this leads to 
the following coupling of the amplitudes of the quasi­
clasSical waves[8]: 

( al+ ) = ( i (i-po') "'e-;·', (24) 
a2+ po, 

where 

n (2) ,/, 
po = r('/.) 3' 'Y''', (25) 

For large values of the basic Renner parameter y» 1 
the splitting off of the fastest oscillations in Eqs. (22) 
through the substitution 

~=c,(i+t')"'exp (iy('/,t'+t», 
.1.=c,(i+t')'" exp (-iy('f,t'+t» 

(26) 

leads to the following second-order equation for the 
function ~: 

d'~/dt'+ (y' (i +1') '-4iyt) ~=O (27) 

with a paired distribution of the zeroes of the adiabatic 
splitting: 

(28) 

This makes it possible to connect the asymptotic behav­
ior ~(_oo) with the asymptotic behavior ~(+oo) as fol­
lows. It is necessary to analytically continue the quasi­
classical representation of ~ from - 00 along the ad­
joint Stokes line entering the region t1,2+ (or t1,2-) and 
to join it on that line with the exact solution of (27) in 
that region. After that we must change in the exact so­
lution to the adjoint Stokes line which emerges from 
the region it,2+ (or t1,2-), join this solution onto the 
quasi-classical representation of ~, and continue the 
latter to t-+oo. As a result we get the coupling for­
mula: 

(29) 

Here 

The small phase l/! turns out to be undefined but it will 
become clear in what follows that this does not prevent 
us from establishing the main features in the behavior 
of the energy levels. 
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If we now use (24), (29), and the boundary conditions 
in the external turning points which are similar to (19) 
we get finally the following equations for the levels of 
Renner-Teller molecules in the quasi-classical sector 
n»m: 

COS (Q,+Q,)-(1-po')"'COS (Q,-Q,-1jlo) =0, ,,«1, 

cos (Q,+Q,)+(1-p')'I,COS (Q,-Q,-1jl) =0, ,,(>1. 
(30) 

One can simplify these equations bearing in mind that 
Po and p are small and introducing into our considera­
tions the complete actions taking into account the addi­
tional phases in the transition region 

In that case 

sin Q,sin Q,=±'/,p,', "(<<1, 

cos Q, cos Q,=±'/,p', ,,(>1. 
(31) 

When the states are weakly coupled ('Y - 0) the quantita­
tion conditions lead to narrow doublets E = w(m + n + 1) 
with a splitting of the order of wPo. 

One can use Eqs. (31) and their generalizations to find 
the vibronic levels of many Renner molecules and radi­
cals. Examples of this are C3(.4'JIu), CNc(.i2 II,.), 

-2 - 2 -2 - 2 -B02(A IIu), NH2(X B1, A AI), BH2(X A1,A2B1). For some 
of them the number of identified levels reaches 50. [9) 

3. QUASI·CLASSICAL APPROXIMATION FOR 
SYMMETRY MOLECULES 

When m» n and n - m » 1 it is impossible to use the 
semi-classical approximation of the preceding sections. 
In those cases the trajectories in the adiabatic electron­
ic states are circular or elliptic and they differ appre­
ciably from one another. The quasi-classical approxi­
mation remains, however, applicable. In particular, 
for the set (2) with Ut2 = ±Fp which will be used below 
one can find the quasi-classical asymptotic behavior of 
<1>1 and <1>2 as follows. 

Using the integral transformation (p= r) 

-~.= f dp p"'(~(p)K.(pr)+~ (p)K,(pr» , 
o 

~2= f dp p"'_(~(p)K2(pr)+~ (p)K. (pr», 

• 
where the combinations of Bessel functions K1•2(X) 
=J m+1/2(X) T iJm-1 /2(X) satisfy the equations 

(~ - i) (x"'K,) + .!!!:.-(x"'K,) =0, 
dx x 

( ~ + i) (x'I'K,) + !!!:....(x"'K,) =0, 
dx x 

(32) 

(33) 

the set (2) with U~.2 can be reduced to the following one: 

d~ m d~ m 
-- ie(p)~ +-~=O, -+ ie(p)~ +-~=O, 
dp p dp p 

e(p)=p'/2-E. (34) 

469 Sov. Phys. JETP, Vol. 44, No.3, September 1976 

In the quasi-classical region one can introduce the fol­
lowing representation for the solutions (33) and (34): 

() ( )( 
p ) l: cosg, sing c,exp (i6~W(P) dp) 

~ = - sin g, cos g c, exp ( - is ~ w (p) dp) , 

where w(p) =(£2 - m2/p2)1/2> 0 has the meaning of the 
adiabatic splitting, 

s=sign 8, g=-'/,arctg (im/pe), 

(rl.Kl)= (! f'( COSgl, sin gl) (exp (i~ (: - ::~: d: - i-r) n ). 

x'I'K,. -smg"cosg, exp(-'~(1-x') dX+'T) 

1 im 
g.= -2"arctg --;:. 

They enable us to integrate in (32) using the saddlepoint 
method around the points p·=(2(E±r»1/2. The calcula­
tions lead to the following results: 

(35) 

r mZ 1/. 

s.= f (2(E-r)-7) dr, '( m' )'" s.= f 2(E+r)--;:;- dr. 
,,' ,,. 

where we have used for obtaining them the exact equa­
tions 

p± ~+ r ,/ 

~ ro(p)dp- ~ (1-r;)"'dX=- ~ (2 (E=Fr)-;,') 'dr 
~ m ~ 

(x~=rp~). 

In Eqs. (35) et2 are the quasi-classical amplitudes 
to the right and to the left of the hump of w(P) in the p­
representation and, thus, the solution of the problem 
(34) determines the asymptotic behavior of the functions 
<1>1 and <1>2 in the r-representation. 

The conditions for the applicability of the quasi-clas­
Sical formulae for ~, .6., and K 1•2 determine the region 
where these asymptotic expreSSions are applicable in 
the form ro« r« E. For very low energies in the low­
er well (35) is applicable up to its boundaries; as E-oo, 
ro_El14. Thus, the non-adiabatic tranSitions turn out 
to be localized in a narrow region around the interior 
turning points and this makes it possible to consider the 
Jahn-Teller problem (2) uSing asymptotic expressions 
of the following form: 

(36) 
, 

S,.2= f (2 (E-U",» 'I, dr-n/4. 

If the motion is quasi-classical in the upper and the 
lower wells the solution of the set (34) gives the follow­
ing coupling formulae: 
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- (1-e-'D) 'I'e" 

1 

p, 

which are suitable for straight-line (n» m) and elliptic 
(11- m» 1) trajectories. In that case cp is the same as 
zp for 11» m and is a small, undetermined quantity when 
11,m»1. 

To find the energy levels it is now sufficient to guar­
antee the boundary conditions for 4>1 Z around the exter­
nal turning points rl,Z which are soo'Uar to (19). As a 
result one obtains a transcendental equation which for 
1/» m is the same as Eq. (20): 

(3S) 

If the classical trajectories are elliptic, D» 1 and Eq. 
(3S) simplifies to 

A special case is that of the circular motion, m» 11, 
when the quasi-classical representation of q,1{r) may 
turn out to be inapplicable as the radial nuclear motion 
in the upper electronic state may in that case corre­
spond to a purely quantal value 11-1. In that case, how­
ever, the quasi-classical picture is applicable for the 
motion in the lower state and Eqs. (34) lead to the follow­
ing coupling: 

x=-2arctg (2-"'n-'''r (-v)exp(-2D+v+I/,- (v+'/,)ln(v+'/,) )cos nv), 

1 3'· E-Eo 3 
v=--+-m-- E=-m'l. 2 2 E,' , 2 . 

Taking into account the sole boundary condition for 4>z{r) 
we get for the energy levels the following result: . 

cos (n(v+ II!) ) cos Q, 

=±2-"'n-",.exp( -2D- (v+I/,) + (v+I/,)ln (v+I/,» (39) 
r(1h) . 

The necessary condition for the applicability of this 
equation, apart from m» 11, n« 1 corresponds to a 
rather strong Jahn-Teller effect. 

The results obtained in this section for exponentially 
small splittings of the quasi-classical levels can be 
written in the form 

cos Q, cos Q,=±W,. ,14, 

where w1,z is the probability for a non-adiabatic transi-
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tion. This representation makes it possible to study 
Renner-Teller molecules in levels corresponding to el­
liptic trajectories by using Landau's method for finding 
the tranSition probability. [10] The role of the special 
momentum point Pl,Z is in that case performed by the 
origin so that 

D= S(2(U,-E»),I'dr- f(2(U,-E»),I'dr. 

In particular, for circular trajectories 

CONCLUSION 

Of most interest in experimental studies of symmet­
ric molecules is the determination of the electron-vi­
brational interaction constants F and e. They are found 
as the result of a spectral determination of the poSition 
of the molecular energy levels. The set of levels stud­
ied must then be sufficiently large as one must usually 
determine not only F and e but also the frequencies of 
the symmetric oscillations in the excited states. A 
study of a large number of levels can not be done cor­
rectly without knowing their interaction. In the quasi­
classical energy region the appropriate results are giv­
en in the basic sections 1 to 3. In this sense the widest 
application must be for the asymptotic relations for 
small or exponentially small level splittings. 

We note in conclusion that the method for determining 
the energy spectrum of symmetric molecules proposed 
here can be applied to a study of more complicated 
cases of a Jahn-Teller degeneracy. 

lH. C. Longuet-Higglns, V. Opik, M. H. L. Pryce, and R. 
A. Sack, Proc. Roy. Soc. (London) 224, 1 (1958). 

2C. W. Struck and F. Herzfeld, J. Chern. Phys. 44, 464 
(1966). 

3H. Uehara, J. Chern. Phys. 45, 4536 (1966). 
4C. S. Sloane and R. Silbey, J. Chern. Phys. 56, 6031 (1972). 
51. B. Delos, W. R. Thorson, and S. K. Knudson, Phys. Rev. 

A6, 709 (1972). 
GA.!. Voronln and V.l. Osherov, Zh. Eksp. Teor. Fiz. 66, 

135 (1974) [Sov. Phys. JETP 39, 62 (1974)]. 
7H. C. Longuet-Higglns, Adv. Spectrosc. 2, 429 (1961). 
BC. S. Sloane and R. Silbey, J. Chern. Phys. 55, 3053 (1971). 
9G. Herzberg, Electronic Spectra and Electronic Structure of 

Polyatornic Molecules, 1966, Van Nostrand. 
IOL. D. Landau and E. M. Lifshitz, Kvantovaya rnekhanika 

(Quantum Mechanics) Nauka, 1963 [English translation pub­
lished by Pergamon Press, Oxford, 1965]. 

Translated by D. ter Haar 

Voronin et al. 470 


