
region of lower frequencies. The influence of the Cou­
lomb field on the collision process (which is not taken 
into account in the Born approximation) leads to an addi­
tional decrease of the height of the peaks. This influ­
ence, however, is less Significant than for quantizing 
magnetic fields, owing to the increase of the effective 
values of the impact parameters at b « 1. In any case, 
it cannot lead to a vanishing of the peaks at 

kT:>ftro.>Z'me'/ft' (B>Z'·10' G). 

At b -1, the values of An,J. can be obtained by numeri­
cal integration with the aid of formulas (30) and (31). 
We present the results of the integration for All J. at 
b = 10 and b = 3 (Fig. 1) and for AJ. at b = 0.01 (Fig. 2). 
In the calculations we used formula (47), which takes 
the ion motion into account. 
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Interactions and bound states of solitons as classical 
particles 
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The interaction of localized nonlinear waves (solitons) is investigated. A theory is developed of weak 
interactions whose energy is small compared with the total field energy. In this case, for solitons with close 
velocities, the motion is described by the classical Newton equations with potential forces determined by 
the structure of the field far from the maxima. Three basic types of interaction are distinguished; a 
necessary criterion for the formation of bound states is given. In particular, the bound state of a pair of 
solitons with tails with an oscillatory structure is investigated. The results are presented of experiments 
with chains of nonlinear oscillators, in which oscillating solitons and all the types of interaction considered 
have been observed. 

PACS numbers: 03.6S.Ge 

1. INTRODUCTION 

The question of the interaction of solitons has already 
been studied, by analytical and numerical methods, for 
a number of years. It has been found that, as a result 
of the interaction of infinitely separated (for t - - 00) soli­
tons there remain (for t- +00) diverging solitons with 
the same parameters as before the interaction (this 
property has even been used to define solitons[1]). At 
the same time, there are now certain exactly soluble 
equations which permit the existence of bound states of 
two or more solitons. By means of numerical methods, 
it has recently been made clear that solutions in the 
form of unrestrictedly diverging and bound solitons are 
characteristic not only of exactly integrable types of 
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equations. [2.3] Thus, the n~merical calculation carried 
out in[3] by Kudryavtsev for application to the Ginzburg­
Landau equation showed the possibility of the existence 
of a bound pair of solitons. This question is interesting, 
in particular, in connection with the possible interpreta­
tion of the solitons as field particles. However, up to 
now there do not exist any general criteria determining 
the character of the interactions of solitons. 

As shown in the present work, this question can be 
elucidated in a fairly general formulation applicable to 
weakly interacting solitons, when at each moment of 
time the total field differs little from the superposition 
of the fields of the individual solitons. The most im­
portant case of weak interactions is realized when the 
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difference in the velocities of the solitons is small and 
the distance between their maxima remains large com­
pared with their effective sizes over the duration of the 
entire process. Such processes yield to a universal ap­
proximate description, which enables us not only to 
solve concrete problems but also to give a classification 
of the possible types of interactions (one of these is con­
sidered below for the first time), from which follow 
simple criteria for the possibility of formation of bound 
states, valid not only for two but also for a larger num­
ber of interacting solitons. 

2. THEORY 

First of all we shall give a general qualitative de­
scription of the process of interaction of solitons. 
Since, by assumption, the solitons are separated from 
each other, each given (test) pulse is in the weak field 
of the tails of the other pulses. The pulse energy E 
changes on account of the work A performed by these 
tails.l) Because of the weakness of the interaction, we 
can assume that the field of the tail is fixed and that the 
work A is related linearly to the magnitudes of the fields 
of the other solitons at the position of localization of the 
test soliton. 2) As a result, the whole process is de­
scribed by the equations 

i= 1,2, ... ,N , 

where N is the number of interacting sOlitons, v I are 
their veloCities, / (Vk , S I,!,) is the field of the k-th soliton 
at the position of the i-th one, and S I,!, is the distance 
between the maxima of the solitons. Of course, be­
cause the system is conservative, the sum of the right­
hand sides of (1) over i should be equal to zero. 

It is clear that change of the character of the motion 
of the solitons when they intereact weakly can be sub­
stantial only when the differences in the energies (and 
velocities) of the solitons are small-only then can the 
work done by the small tails have an appreciable effect 
on this difference and, consequently, on the differences 
in the velocities of the pulses. This means that in the 
right-hand sides of (1) we can assume that all the VI are 
constant and equal, so that only the dependence of / on 
sI,!, remains. But since dS/k/dt=v;- Vk , and EI is related 
to Vb the system (1) is easily reduced to N - 1 equations 
for the quantities S /k' Thus, for a pair of solitons we 
obtain one equation: 

s,,=2a.v.'f(v, s), (2) 

where v = const. 

We note immediately that, in the given approximation, 
we arrive at the problem of the interaction of two clas­
sical particles, the force fields of which correspond to 
/(s). The function/(s), determined by the exponential 
tails (which can also OSCillate), have, in the general 
case, the form 

!(s)-exp(-A,S) ,_ { sin A,s } 
cos A,s 
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and, thus, Eq. (2) can be solved in quadratures. Quali­
tatively, however, the character of the interaction is 
determined as follows. 

a) For a monotonic f (s) (X2 = 0) the interaction corre­
sponds either to repulsion only, or to attraction only. 
For most of the exact N-soliton solutions that have been 
found at present, repulsion is realized. In this case 
the relative velocity of approach of the solitons (if they 
were converging in the beginning) decreases, and, for 
suffiCiently small initial values of ~v, the solitons, 
having approached to within a certain distance smlll of 
each other, begin to diverge again. If here aE /av > 0, 
the mutual work has signs such that the soliton that is 
ahead always increases its energy and the soliton behind 
decreases its energy. It is easy to see that these con­
clusions are also valid for an arbitrary number of mu­
tually repelling solitons. 

b) If, for monotonic tails (X2 = 0) the force of the in­
teraction of the solitons corresponds to attraction, then, 
even if they were diverging in the beginning, later, hav­
ing moved apart to a maximum separation smax at which 
their energies become equal, the pulses begin to con­
verge until their fields overlap strongly, after which 
Eq. (2) is not valid for describing the process. 

However, if the solitons, slipping through each other, 
begin to diverge again at this stage, then later Eq. (2) 
is valid again. In this case the process is repeated-at 
the distance smax the solitons converge again, and so on. 
As a result there arises a bound state, in which the soli­
tons perform an OSCillating motion over an interval 
2smax• For example, the numerical solution found in[3], 
in which a similar explanation of the appearance of the 
bound state is given, corresponds to preCisely this case. 

c) Finally, X can be complex (X2* 0); then the soliton 
can have OSCillating tails. In this case the sign of the 
right-hand side of (2) can vary. Here, in prinCiple, 
both infinite motions and bound states are pOSSible, the 
latter existing entirely in the framework of weak inter­
actions of the solitons. 

It is clear that this simple classification of the weak 
interactions of solitons is basically also valid for an ar­
bitrary number of solitons of a single type, inasmuch as 
the character of the tails that determine such interac­
tions is conserved. We shall give now a more systematic 
analysis of the interaction of solitons, as applied to the 
generalized Korteveg-de Vries (KdV) equation 

au au a'u 
-+uP-+~=O. at ax ax' (3) 

For q = 3 and any p > 0 a solitary solution can be found in 
analytiC form[5]: 

As already mentioned, we can assume that, for weak 
interaction, a given soliton lies in the small field of the 
tails of the other pulses. To describe such interactions 
we can apply an asymptotic-expansion method, in a form 
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close to that which we gave in[I)J for the case of aperiodic 
almost-stationary waves. Namely, we seek the field in 
the vicinity of a given soliton in the form 

u,(X, t) =v, (~" '1") + E v, (s" '1") + I: e"u,(ft) (s" '1"), (4) 
A""j 

where the Uj correspond to stationary solitons with slow­
ly varying parameters Vj(T), ~j=x- lvjdt, T= et is the 
II slow" time, and e« 1 is a small parameter of the order 
of the relative magnitude of the field of the tails of the 
k-th soliton (Uk) at the position of the given (the i-th) 
soliton. Substituting (4) into (3), we obtain the equations 
of the successive approximations: 

(5) 

where, e. g. , 

(I) P Ed H, =V,,+- -(V-V,) 
p+l ax . . 

" .. i 

The requirements that the corrections ur) be bounded 
are, as usual, equivalent to the conditions for the or­
thogonality of Hr) to the functions conjugate to the eigen­
functions of the operator in the left-hand side of (5), and 
this, in the given case, leads to the equations 

d " 2p E( de,) -<u->= --- V·P-
d'1"' (p+t)· • d~, ' 

It".i 
(6) 

where 

+w 

<. .. >,= J ... ds;. 

These equations are equivalent to (1), and, for close 
velocities, for two solitons an equation of the type (2) 
follows from them. 

It is natural to clarify, first of all, what this approach 
gives for the ordinary KdV equation (p= 1, q= 3), since 
here there is the possibility of comparison with the ex­
act solution of the problem. In this case, Eq. (2) takes 
the form 

s,,=Hiv2 exp (-v·:s). 

This equation does not have equilibrium states (apart 
from S - 00), and the solitons always diverge. From the 
first integral of this equation it is easy to determine the 
quantities 

2 8v 
slUln=-ln--, 

v' (.'.v) " 

thus, 

4v 
1jl=ln-­

(t1O) w 

u' 4v 
s(t~oo)=(-"v)~t +-~-In--; 

_ (-"v) ~ 

is the resulting shift in the phases of the solitons. The 
value of the field at the point of the minimum between 
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the solitons for s=smlD is umlD =3(Av)_ All this agrees 
with the exact solution[7J for Av« 1; it is curious that 
for UmiD we even obtain the exact value. [8] 

If q = 3, P < 4, the character of the interaction is quali­
tatively the same as in the ordinary KdV equation. 
However, for q = 3 and p > 4, it is not difficult to see that 
the soliton energy falls with increasing v, and we have 
the second of the cases considered above-interaction 
of solitons, with an attractive potential. Here we can 
expect the appearance of bound states, if, after passing 
through the region of strong overlap, the solitons again 
diverge. 

We now consider the case p = 1, q = 5. There is no 
analytiC expreSSion for the stationary solitons in this 
case; they have been investigated numerically by Kawa­
hara. [9] However, as follows from consideratiOnS of 
scaling, the general structure of the solution is given 
by the formula U=V(p(Vl/4~), whence the relationship be­
tween the amplitude and duration of the soliton is im­
mediately determined. By linearizing the equation for 
the stationary wave near U = 0 it is also not difficult to 
determine the structure of the tails, which is important 
for the analysiS of the weak interaction. It is easy to 
see that for v < 0 (a slow SOliton), 

i. e., the tails oscillate. [9] In this case Eq. (2) can be 
written in the form 

. (V'" V'I. 
s,,=Rv' exp - '2 s ) cos 2(s+s,), 

where 

R=1'2MC-' (A'+B') , 

s,=al'ctg (AB-'). 

A=<<p'(z)e-' •. os z>. 

B=<<p!(z) e-' sin z>. C=<<p'(z) >. 

M is determined from the condition 

lim <p(z)=Me-' cos z. 
1%1_'" 

(8) 

The prinCipal types of motion in the framework of Eq. 
(8) are conveniently depicted in the phase plane (see Fig. 
1b; for compariSOn, in Fig. 1a the phase plane of Eq. 
(7) is also shown). For certain initial conditions the 
solitons diverge without limit after the interaction (in­
finite trajectories). However, there exist regions of 
closed trajectories, corresponding to bound states with 
mutual oscillations of the solitons. As we have pointed 
out, these states remain present in the framework of the 
weak interaction. At the same time, it is natural to 
assume the existence of strongly bound states, due to 
the oscillatory character of the field of a soliton at small 
values of I~I. 

Also of interest is the presence of points of equilibrium 
in the phase plane. In the given approximation these 
points correspond to nonoscillating bound states, i. e •. 
stationary two-soliton waves (more preCisely, double-
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-------------------------------------------------------------

ds 
([if 

a 

b 
FIG. 1. 

humped solitons). The possibility of the existence of 
such stationary waves with two and more maxima in the 
principal part of the solution merits further study for 
immediate application to strongly bound solitons. 3) 

To conclude the theoretical section we note the possi­
bility of a weak interaction of another type, opposite in 
a certain sense to the type conSidered, when the ener­
gies (velocities) of the solitons differ greatly, i. e., Va 
«Vl (cf. also[lO]). Usually this also means a large 
difference in the sizes and durations of the solitons. 
Then one of the solitons serves as a smooth perturbation 
(a pedestal) for the other. The solution of such a prob­
lem for a short pulse can again be sought in the form of 
the series (4), but Ua now corresponds not to the tail of 
the second soliton but to its entire field, assumed fixed. 
Then, e. g., in the case p = 1 the change in the amplitude 
of the fast soliton is described by the equation 

2q-1 
m=---. 

q-1 

The values Ua and Ua:r: are here taken locally, with x 
= IVjdt. 

(9) 

Since Ul,a - Vl,a, to within terms of order VdVl « 1 we 
obtain VlT = (1- m-l)UaT• From this it follows directly 
that the total field Umax at the symmetry point, at which 
the fast soliton reaches the peak of the slow one, is 
equal to [Vl" + va .. - m-lvz .. q>(O) ]q>(0). In the case of the 
KdV equation (q = 3) it follows from this that umax = 3(~v) .. , 
as for the case of a small difference in the velocities 
Vl,a. This result is again found to be exact. After in­
tegration of the expreSSion for VlT in the case q = 3, we 
obtain that the resulting phase shift of the soliton is 
equal to 4vilv~/a, which also follows from the exact solu­
tion for va« Vl' [7] Of course, in the given case, in view 
of the large difference in the velocities the formation of 
bound states is impossible, and from this pOint of view 
it is less qualitatively interesting, although the possi­
bility of a calculation of the resulting phase shift that 
does not require knowledge of the exact solution can 
again be seen here. 

Of course, the theory expounded above is not fully 
rigorous and complete, Since, in the first place, in cer­
tain cases its results lead to the necessity of taking 
strong interactions into account, and, secondly, there 
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is no rigorous proof of the asymptotic convergence of 
the given method (the latter, however, is not especially 
important physically, since the character of the approxi­
mation is sufficiently clear). At the same time, the re­
sults obtained give an intuitive interpretation of the pro­
cess of interaction of solitons and find quantitative con­
firmation in comparisons with exact analytic solutions 
in those cases where the latter exist. The possibility 
of the existence of bound states of solitons with oscil­
lating tails is confirmed by experiments in an electro­
magnetic system, the results of which are given briefly 
below. 

3. EXPERIMENT 

To investigate the interactions experimentally, artifi­
cial wave-guides (lines) in the form of chains of identi­
cal links consisting of constant inductances and nonlinear 
capacitances (semiconductor diodes) have been used 
(Fig. 2). As has already been noted, such lines are ex­
tremely convenient and suitable analog systems for the 
study of nonlinear waves. Solitons and a number of pro­
cesses associated with them, including damping and in­
teraction, have already been observed in them. [4] 

In the simplest case, the waves in such a system are 
described by the KdV equation. However, the introduc­
tion of inductive coupling between neighboring links, 
as shown in Fig. 2, changes the character of the dis­
perSion, adding terms with higher derivatives to the 
corresponding equation. When the coupling coefficient 
has the value M = O. 085 the equation for the traveling 
waves in such a system coincides with (3) for q = 5, P = 1, 
i. e., the existence of solitons with oscillating tails and 
the formation of bound states are possible. Experimen­
tally, the processes have been studied prinCipally in 
such a system (an MLC-line), but for comparison we 
also give certain results pertaining to systems without 
inductive coupling (LC-lines), describable by the KdV 
equation. 

As is well known, in an LC-system, from a sufficient­
ly long initial pulse a group of unrestrictedly diverging 
solitons, arranged in order of decreaSing amplitudes, 
is formed. In an MLC-system, under certain initial 
conditions the process can proceed in an analogous way, 
but in this case solitons with a field of alternating sign 
in the tails are formed, as can already be seen from 
Fig. 3a. 

The process of decay of the longer pulse shown in Fig. 
3b is interesting. Here the initial duration of the pulse 
is approximately four times greater than the duration To 

of the stationary soliton of the corresponding amplitude. 
Therefore, as we might have expected, four solitons 
arise; however, three of them remain bound in a group, 
and only one splits off and stands apart from this group. 
This figure visually confirms the possibility of the for-

---~---
_n ! Cluj! T __ FIG. 2. 

n-1 n+1 
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FIG. 3. Decay into solitons 
of pulses with initial dura­
tion T~TO (a) and T-4To(b). 

mation of bound states of solitons in the framework of 
Eq. (3) with q = 5, P = 1. 

The interaction of two solitons, which is illustrated by 
Fig. 4, has been studied in more detail. Here, on suc­
cessive oscillograms of the process, we also show the 
position of one of the initial pulses, moving without in­
teraction and serving as a reference pulse that demon­
strates the phase shift arising on account of the interac­
tion. 

In the KdV equation (Fig. 4a), solitons that are not too 
greatly different in amplitude approach until they form a 
symmetric two-humped state and then diverge again ow­
ing to the forward transfer of energy. This process, 
which is described by Lax, [8] has already been observed 
in an LC-system, [4] but Fig. 4a makes it possible to ex­
hibit certain details of the interaction. In particular, it 
can be seen that, practically up to the point of closest 
approach, the maximum of the leading soliton propagates 
with unchanging velocity; but the larger pulse slows 
down while overtaking it. After the symmetry point has 
been passed, the solitons exchange roles: the leading 
soliton begins to accelerate and the trailing one moves 
with an almost constant velOCity. Consequently, the 
resulting phase shift is acquired extremely sharply near 
the symmetry point, in a time much shorter than the 
total time for the exchange of energy between the soli­
tons. 

Figure 4b shows the interaction of solitons in the frame­
work of Eq. (3) with q = 5, P = 1 (an MLC-system). Here 
the process of formation of a bound state can be clearly 
seen. After the approach, the solitons do not diverge 
at all, but (moving, as a whole, somewhat faster than 
the smaller of the initial pulses, which serves as the 
"reference" pulse) begin to oscillate about the overall 
"center of gravity" in such a way that the energy cir­
culates between the solitons, and their amplitudes and 
velOCities vary periodically. One complete period of 
these oscillations is shown in Fig. 4b. 

We note that, here, at no time during the period of the 
oscillations do the solitons overlap each other complete­
ly (the profile of the wave remains two-humped through­
out) and, roughly, we can always distinguish time in­
tervals during which the solitons are either only attract­
ing each other or only repelling each other. In this 
sense their binding is relatively weak. 4) The pattern 
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changes, however, when the oscillations of the field of 
the tails are deeper. This can be achieved by increasing 
the coupling coeffiCient to M = O. 13, which corresponds 
to the appearance of a term with a third derivative in 
Eq. (3). In this case the work performed over the first 
oscillations of the solitons turns out to be so large that, 
when they approach, the distance between their maxima 
is found to be shorter than their characteristic sizes and 
the wave profile becomes single-humped (the absorption 
of one soliton by another). After this a pair of solitons 
is formed again, and the smaller of them begins to grow 
monotonically and the larger to diminish monotonically 
(see Fig. 4c). It is characteristic that, right up to the 
point of complete overlap, the small soliton only de­
creased during the approach, and the large one only 
grew. As a whole, this process proceeds as in the case 
of interaction of solitons with an attractive potential. 

The results obtained confirm the prinCipal conclusions 
of the theory-in particular, the conclusion that the for­
mation of bound states of solitons is possible as a result 
of oscillatory structure of their tails. 

In conclUSion, we note that the approach described 
here is, in prinCiple, also valid for describing the in­
teraction of two- and three-dimensional solitons. In 
this case, inasmuch as the motion is not one-dimen­
sional, the pattern of the interaction is qualitatively 
Changed. ThUS, in the case of attraction the bound state 
can have the form of solitons rotating about each other. 
On the other hand, even in the case of solitons diverging 
without limit after a collision, the result of the interac­
tion is not as trivial as for one-dimensional motion: the 
energies (velocities) of the individual solitons before and 
after the interaction are, in the general case, different. 
In turn, this should lead to motion of mixed character in 
an ensemble of a large number of solitons, and to the 
establishment of stationary distributions, as in an ordi­
.nary gas. 

Finally, we indicate other physical situations in which 
the bound states described can be realized. Thus, the 
propagation of magnetosonic waves at a certain critical 
angle to the magnetic-field direction is described by Eq. 

a 
b 

FIG. 4. Interaction of two solitons in an L C line (a) and an 
MLC line (b,c). In (a) and (b) the reference pulse is also 
shown. 
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(3) with q = 5, P = 1, inasmuch as the term with the third 
derivative vanishes for this direction. [11] Another ex­
ample of interest for applications is the propagation of 
capillary-gravitational waves in shallow water, for 
which the realization of solitons with oscillations and the 
formation of bound states are also possible (cf. [9]). 

The authors are grateful to E. N. Pelinovskil for use­
ful comments. 

tlThe possibility of such an interpretation of the interaction of 
solitons has already been noted previously. [41 

2 lIn the following we consider solitons each of which is deter­
mined by only one phase, of the type x - vt; this excludes "en­
velope solitons" (e. g., Langmuir solutions) from consideration, 
although, in principle, the given approach appears to be per­
fectly possible for these also. 

3lThis possiblity has now been confirmed by means of a numeri­
cal investigation of E q. (3). 

4 lWeakly bound states in which the solitons are coupled by os­
cillations further from their maxima have also been observed 
experimentally. In this case the characteristic period of the 
oscillations is substantially Increased, too changes in the 

amplitudes and velocities turn out to be considerably smaller, 
and the oscillograms are less revealing. 
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An analytic stationary model of the "corona" of spherical laser targets is considered with account taken 
of the major physical processes, viz. hydrodynamic processes, laser radiation absorption in the vicinity of 
the critical point, and electron thermal conductivity. Exressions for the "corona" parameters are derived as 
functions of the laser pulse parameters (radiation flux and frequency) and of the target (radius and 
thermophysical properties). 

PACS numbers: 79.20.Ds 

1. As follows from a number of studies, Cl,2] all the 
known schemes for laser initiation of thermonuclear re­
actions consist of three physical stages: evaporation, 
compreSSion, and thermonuclear combustion. These 
stages are governed by different physical processes and 
exert different influences on the set of final parameters 
characterizing the laser-induced thermonuclear fusion 
process as a whole. 

The initial stage of the interaction of the laser radia­
tion with the target material consists of evaporation and 
heating of a definite fraction of the medium, i.e., forma­
tion of a "corona," which is a hot plasma of relatively low 
density that expands in a direction opposite to the incident 
radiation. During this stage, a pressure pulse is gener­
ated at the boundary between the corona and the dense 
cold material and accelerates the unevaporated part of 
the target towards the center. The prinCipal parameter 
characterizing the evaporation stage is the hydrodynam-
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ic efficiency, (3) i. e., the ratio of the energy of the un­
evaporated part of the target to the total laser-emission 
energy. The magnitude of this ratio determines both 
the energy balance in the system, i. e., the temperature 
of the central region of the target, and the maximum . 
value of the thermonuclear-fuel mass that can be com­
pressed by the radiation to a high density at a given en­
ergy. [1] Moreover, the degree of the compression of 
the target material also depends on the shape and am­
plitude of the pressure pulse. 

The indicated quantities-the hydrodynamiC efficiency 
and the pressure amplitude-depend essentially on the 
physical state of the corona, a state determined by the 
parameters of the laser pulse (flux density, duration, 
radiation frequency) and of the target (radius and ther­
mophysical constants of the evaporated layer). 

It should be noted that the process of formation and 
expansion of the corona as well as the compression pro-
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