
It should be noted that the numerical value of hi must 
be approached with caution becau.se of the random nu
merical smallness in the denominator of (15) for the 
threshold hi' but one can hope the qualitative picture 
of the transitions to remain valid. 

We note also that in the presence of dissipation imag
inary increments appear in the expressions for the 
squares of the frequencies of the natural oscillations, 
but all the conclusions concerning the stability and the 
expression for the thresholds remain in force. 

In conclusion, the authors thank V. E. Zakharov for 
interest in the work, G. A. Levin for a discussion, and 
M. I. Shliomis for a valuable remark. 
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Features of the volt-ampere characteristics and oscillations 
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The physical nature of the supercritical resistive current states in narrow superconducting channels and 
the connection of this phenomenon with relaxation processes of "mixing" of the electron and hole 
components of the normal-excitation spectrum are discussed. The exact solutions of the kinetic equations in 
the vicinity of the singular points of the structure of the resistive state are investigated and the effective 
boundary conditions at these points for the macroscopic equations of the structure are found. The solutions 
of these equations for large currents of the order of the upper critical current jc2 and the volt-ampere 
characteristics of a long channel are constructed. The role of the principle of minimum entropy production 
in the formation of the structure of the resistive state is noted. At low currents the static structure is found 
to be unstable, generally speaking. The physical reasons for the instability are analyzed together with the 
corresponding manifestations of the nonstationarity in the resistive state. 

PACS numbers: 74.30.Hp 

It is well known[il that the peculiar diamagnetic prop
erties of a superconductor are, in a certain sense, a 
more fundamental characteristic than the infinite con
ductivity. Significant in this respect is, e. g., the ex
planation of the nature of the dissipative current states 
in bulk type-I and type-II superconductors. From a 
microscopic point in view [2,3l the electric fields that 
arise in these superconductors on passage of a trans
port current have, in essence, an induction origin. 
They are associated with the dynamics of the magnetic 
fluxes in the superconductor and with the acceleration 
of the superconducting condensate in the vortex elec
tric fields: 

{)p,!{)I=eE, rot p,=-eH (1) 

(Ps is the condensate momentum per electron; Ii= c= 1). 
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A different situation arises in narrow super conducting 
"channels" connected to a current source. In view of 
the small transverse dimenSions of the samples the dis
sipative current states observed experimentally in them 
are not explained by vortex mechanisms[2l or by the 
structure of the intermediate state, [3l and, thus, a new 
physical aspect of superconductivity is manifested 
here-a Singularity in the response of the superconduc
tor to a nonequilibrium longitudinal electric field. 

As already noted, r'l the question of the nature of the 
resistive states in narrow channels abuts primarily 
upon the study of the Cooper instability in the normal 
current state at below-critical temperatures T < Te. 
Unlike a condensate-accelerating vortex electric field, 
which is associated with the change of magnetic flux and 
(in accordance with Anderson's theorem[Sl on violation 
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of time-reversal symmetry) suppresses the supercon
ductivity, a longitudinal field, if it is sufficiently small, 
should not, generally speaking, impede the formation 
of superconducting droplets. The condensate can rapid
ly "adjust itself" to the distribution of the chemical po
tential of the Cooper pairs ~ = ecp + ~ ax/ at (cp is the elec
tric potential and X is the phase of the superconducting
order parameter), which modulates the magnitude of 
the order parameter, whereas the slow relaxation of 
the normal excitations in the field <I> via diffusion fluxes 
ensures normal conduction in accordance with Ohm's 
lawl). 

In previous papers[4,8l we have already considered 
certain fundamental aspects of the problem of resistive -
states and have analyzed qualitatively the structure of 
these states and the volt-ampere characteristics for 
not-too-large currents. In the present report we give 
a more detailed discussion of the physical nature of the 
phenomenon and adduce, together with a treatment of 
certain important mathematical aspects omitted in[4.9l, 
a number Of further results on the structure at large 
currents and on the characteristic manifestations of the 
nonstationarity in the reSistive state. 

The starting point is the kinetic equations for "dirty" 
superconductors[9.1ll (with nonmagnetic impurities) 

ua,u = <1,. a,-;;'; - uw:!, "" i,D'i' (~,a, 'i'~'), i, = ::':: i; 

U., Iw. 71 a, -:- a, I';), iJ ~_ = iD \' (a,,7 T u+'J;iluJ -';- ; •. 'J,'u., I 
-';- '/VU_<1,;'J. (2) 

[a"Il=O; (3) 

w = <7,'" - a,eq: - ~, ;i = (~. ~), 
_ , f} ( ) 
w" (t"t.)=i-.-Ii t,-I" . ot, 

(4) 

Here u.,(r; tl , t2) are the reduced "propagation functions" 
of the electrons (in the normal state, u(tl , t2)= li(t1 - t2), 

fixed by the "retarded" and "advanced" conditions 
u,,(t1 - t 2) - 8(± (t1 - t 2»; J(r, tl , t2) is the two-component 
(J = /+ u.f.> "distribution function" of the normal exci
tationsZ); u. is a Pauli matrix and D=tVFl is the elec
tron diffusion coefficient. In the matrix multiplication 
in Eqs. (2) and (3) contraction of the functions u,,(tl> t2) 

andj(tl , t2) with respect to the time is implied. In view 
of the unimportance of the intrinsic magnetic field of 
the current in narrow channels, the vector potential is 
omitted in Eqs. (2) and (3): A = o. 

Equations (2) and (3) are supplemented by formulas 
for the maeroscopic quantities-for the order param
eter a, current denSity j and electron-density change 
liN: 

where v is the nondiagonal (with respect to the spin in 
the electron-hole isotopic space; cf. [12l) part of the ma
trix u. 

In the chosen gauge A = 0, the gauge transformations 
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in Eqs. (2)-(7) reduce to the following: 

(Ii,a,!) -+-exp(icr,a) ("',li, f)exp( -icr,a), 

e'f-+-eqJ-iJa/iJt (a=a(t), Va=O). 
(8) 

Since the resistive states should be observed near 
Te , where the Joule heat can be neglected,3) the dis
tribution function of the excitations is close to equilib
rium, and, since the operator w(O) in (4) corresponds 
to the total energy, includingthe potential of the non
equilibrium electric field, the distribution function can 
be represented in the form[9l 

(9) 

where j' is the kinetic correction to the equilibrium dis
tribution function[9.11l and 

i'" (e) = ~ (1 + lh -!-) = T \"1 eXll(- iu),.0j , 
2 2T ~ e - to)" 

". (10) 

('),,=:IT(2n+1) , n=O, ±\. ±2., .. 

Considering a stationary current state, we can fix 
the constant ax/aT (vax/aT= 0), i. e. , fix the origin in 
the electric potential (cf. the transformations (B» 

(11) 

Proceeding, after this, to the Fourier transformation 
of the homogeneous functions of the time in Eqs. (2)
(7), (9): 

'( J de J 1,-1,)= '2n f(f),'xp[-idl,-t,)j 

and, in analogy with[9J, carrying out the calculations to 
the first nonvanishing terms in the parameter 1] = (1 
- T/TY/2« 1, we obtain (taking the one-dimensional 
character of the problem into account) 

[_T:.-:T + _" D(!!")'- 7~(;\) :.!,r,'+"\']_\ 
7, ST, dJ: S (:11 ,.j' 

S df eli'" (e) 
=-2 ("+-l'-),!r~. (12) 

(13) 

S de elf'" (e) 
hN=\'r --(lI.+/L)\I'----\',<D, 

:! . dE 
(14) 

Here u, v, and ii are the elements of the matrix u: 
_ (U V) • _ • _ . 
u = _ ,ll_ = ll+, v+ = v_ t v_ = v+ , 

L' U (15) 

and the function lJ!' is defined by the formula 

~, ai"" (e) d/'" (e) 
J =cr,---(<D-'I')=cr,---lj:, 

de de 
(16) 

We emphasize that, under the assumption of ideal 
,heat transfer, it is precisely the u .. -component (16) of 
the correction j' to the distribution function that turns 
out to be important, and the principal role in the kinetic 
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equations (3) is played by the particle-number detailed
balance equation associated with this correction (cf. [9]); 
for the function l}1 of (16), this equation can be written 
in the form 

d (( v+v_ + v+v_ ) d'¥ ) Da; 1. + u+u_ + 2 a;;-

+~(~'(v+ - v_)+ ~(v+ - v_)) 'I' = O. (17) 
I 

From Eqs. (12), (13) and (17) follows the conserva
tion of the current (13): dj/dx= O. The electroneutrality 
condition 

1\.\'=0 

determines, according to (14), the potential «P for a 
given current (13). 

(18) 

For the functions u, v and v (15), we obtain from (2) 
the equations (u 2 - vv = 1) 

(19) 

We shall consider first a characteristic feature of 
Eqs. (12)-(14), (17)-(19), as manifested in the problem 
of a superconducting droplet (.6. - 0). As in the case of 
small currents, [9] the key role here is played by the 
fact that the nonequilibrium correction (16) to the dis
tribution function, despite the electroneutrality require
ment (14), (18), is not identically equal to zero, i. e. , 
l}1 * «P, in view of the energy dependence of the function 
IJ! (cf. (17». This entails important consequences. In 
the calculation of the left-hand sides of Eqs. (12), (13) 
(cf. [9]) with the aid of the equilibrium distribution func
tion (10), owing to the analyticity of the functions it,(e) 
in the upper or lower half-planes the characteristic en
ergies were determined by the poles of the function 
1(0)(0) (10): F - Te. The situation is completely dif
ferent in the right-hand side of (12) (the" anomalous 
term" in the terminology of Gor'kov and Eliashberg[S]). 
It can be seen from Eq. (17) that the function l}1 has 
singularities on both sides of the real energy axis, and, 
as a result, the characteristic energies in the integral 
(12) are determined, according to Eqs. (19), by the 
quantity .6. - O. For given boundary conditions u(oo) = 1, 
v(oo)=O, the gradients in these equations (19) tend to 
zero (a/ax-O) as (.6., c)-O. Since the size of a droplet, 
~(T) - (~0Z)1/2/1J (~o - vF/Te)' remains finite, in Eqs. 
(19) we can replace 

!i!:r)--+-I.I\(X), A= S dx~(x). 

Omitting, after this, the unimportant constant phase 
factor (transformations (8», we can put 

v=v=sh? u=ch? (20) 

and obtain from (19) the equation 

i,D d'fl 
e sh p - ).6 (X)c11 ~ = -""'2 dx" cl'l3(oo) =1. (21) 
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It is not difficult to integrate Eq. (21). However, for 
the following it is sufficient to use it to estimate the 
characteristic energies f in the integral (12). It can be 
seen from (21), that, for .6.-0, ~-O, 

Comparing these estimates with the' formulas (12), (13), 
(17) and (20), we find that for any finite values of x the 
right-hand side of Eq. (12) vanishes more rapidly than 
the left as .6. - O. As a result, the term linear in the po
tential «P drops out and the droplet is described by the 
equation that was used in the paper[4] to find the upper 
critical current jcz' 

The developed structure of the resistive state for cur
rents j < je2 is (in a homogeneous channel) a periodiC al
ternation of "normal" and "superconducting" re-
gions. [4,9,14] Here, as can be seen from (11) and (12), 
because of the unbounded increase of the electric poten
tial cP it is necessrry to introduce discontinuities «Po, 
determined by the discontinuities of the derivative ax/ 
at (11) of the phase and cancelling the increment of cp 
at the limits Of the period, into the chemical potential 
«P of the Cooper pairs. [4,9] From a physical point of 
view this is the requirement that the chemical potential 
of the Cooper pairs be constant on the average, and 
generalizes the analogous requirement of constancy of 
«P when we pass across a Josephson junction. [15] The 
accumulation of electric charges on the plates of the 
capacitor, which is what this junction is, produces a 
discontinuity CPo in the electric potential, whence fol
lows (cf. (11» the Josephson relation for the phase dis
continuity: axo/at= - 2ecpo. In contrast to this, in the 
resistive state the potential cp and the charges are dis
tributed continuously and (for a periodic structure) the 
increment in the potential over a period appears in the 
Josephson relation: axo/at= 2eEd, where E is the av
erage field intensity and d is the period. 

It should be emphasized that the construction consid
ered4) is not connected with any inhomogeneities in the 
:;;ample, as it is in the case of the Josephson effect, [15] 

although the presence of inhomogeneities should, of 
course, affect the periodicity of the structure. This 
construction is a typical (for self-consistent field the
ory) construction of a special singular solution, and, in 
this sense, as already noted, [4,9] it does not differ 
from, e. g., the construction of the vortex singularities 
in type-II superconductors. [19] 

The "centers" at which ax/at experiences a discon
tinuity ("phase-slip centers, " in the foreign litera
ture[l71) should naturally be associated with the points 
at which .6. = O. [4,9] Since the order parameter has a dif
ferent time dependence exp(± i«Pot) within the limits of 
each period, there arises the important question of the 
exact solutions of the initial equations (2)-(7) in the 
neighborhood of the Singularity: these solutions should 
determine the boundary conditions to the local equation 
of the form in[4]. The characteristic size of this neigh
borhood is of the order of (~Ol)1/2. Therefore, the cor
responding gradients here are large: d/dx -1/(~01)1/2 
»l/~(T), while the other quantities remain small: a/ 
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at, ~, q; - 1/. From this it follows that, in the neighbor
hood of the singularity, Eqs. (2), (5) and (9) give, in 
the leading approximation in the parameter 1/, 

Ll(x,t)= J Q(x-x').'l(.1:',t)dx'. 

Q(x-x')= IglvF Jdef''')(e)~[(e- iD (.-!!...\')-I 
2 2 2 dx 

(22) 

( iD ( d )')-1] + e+ 2 d;' I\(x-x'). (23) 

Placing the Singularities at the coordinate origin, we 
have 

(24) 

We shall substitute this relation into Eq. (22) and con
sider, e. g., the region x > 0: 

Ll+ (x) = 6(x) f Q(x - x'):l+ (x') dx' + e-"'" O(x) J Q(x - x'H- (x') dx'. 

" 
(25) 

Since the kernel Q (23) is localized over short distances 
(~Ql)1/2, the second term in Eq. (25) is small, since, 
unlike the first term, it is determined by the weak non
local "overlap" of values of ~ from different regions. 
Therefore, we can make use of the averaging principle 
(exp( - 2iat) = 0) and conSign the second term to the 
terms of higher order of smallness. Thus, in the lead
ing approximation ~.(x) is determined from the equation 

Ll+(x)=6(x) J Q(x-x')~\+(x')rlx'. (26) 

The latter equation is equivalent to the equation de
scribing the change of ~ near the boundary with a nor
mal metal. The linear asymptotic forms of the solu
tions of Eq. (26) determine (cf., e. g. ,(20) the bound
ary condition to the local equations, which, to within 
small higher-order terms, reduces simply to the re
quirement ~(O) = O. 

The small oscillating corrections (25) to the "av
eraged" solutions do not enter into the problem of the 
present paper. We remark only that these oscillations 
will, obviously, be manifested in all quantities and will 
give a weak Josephson effect. (15] Despite the small
ness of this effect, it has been poSSible, according to 
the communication, (17) to observe it experimentally. 

From the above discussions flows one important con
sequence, concerning the volt-ampere characteristics 
and the structure of the resistive state in the immedi
ate vicinity of the upper critical current jc2' As was 
seen in the droplet problem (Eqs. (19)-(21», as ~- 0 
the range of nonlocality in the functions u, v and v in 
the "anomalous" term in (12) becomes large. For finite 
but small~ this should lead to complete "overlap" of 
the periods of the structure in the "anomalous" term, 
which, generally speaking, is now not small compared 
with the left-hand side of Eq. (12). It is obvious that 
in these conditions the treatment of the" cente.rs" of 
singularity as isolated regions with small radius (~0l)1/2 
loses its meaning and the problem becomes essentially 
nonstationary. However, according to (19), the order 

144 SOy. Phys. JETP, Vol. 44, No.1, July 1976 

parameter ~, at least in this region of currents, is 
equal to (d/ dx) 2 - 1/ 2 « 1/, and this region itself turns out 
to be very narrow (see below). Therefore, we can 
postulate that, because of fluctuations not taken into ac
count in the kinetic scheme of (12), the exact solution of 
the problem in this region of currents has no special 
physical meaning. 5) 

In view of these arguments we shall consider the de
veloped structure of the resistive state (for currents j 
< jc2) when all quantities have their "natural" orders, 
determined by the left-hand side of Eq. (12): 

(27) 

For these orders, the local approximation is valid in 
Eqs. (19), so that, e. g., in the leading approximation 
we have 

U""8 (e'-I LlI') -''', """j. «('_I :l12)-, 

v""Ll' (e'--I j,I') -'\ 
(28) 

As in the treatment of an isolated droplet, this enables 
us to fix the potential "shift" ax/at (11) within a period 
and, by using the transformations (8), to reduce the 
problem to a stationary problem with effective bound
ary conditions ~ = 0 at the singularity" centers. " 

Turning now to Eqs. (12)-(14), (17)-(19), we note 
that, as can be seen from formulas (28) and Eq. (17), 
for energies I E I < I ~ I inside the gap the "field" lJI( E ,x) 
undergoes rapid exponential damping (- e-1/n) in the in
terior of the superconducting regions. Outside the gap 
(I t I > I ~I), according to (28) the difference v+ - v_ "" 0 
and it is necessary to take into account the next terms 
of the expanSion in the parameter 1/ in Eqs. (19). A 
straightforward analySiS confirms the consistency of 
the orders of the quantities (27) in the left- and right
hand sides of Eq. (12). Unfortunately, because of the 
"anomalous" terms in (12), (13), the asymptotically ex
act equations that arise in this process are exceedingly 
complicated. It is therefore worthwhile to model Eqs. 
(12)-(14), (17) qualitatively by simpler equations, mak
ing use of the following considerations. 

Since, according to (17), for v.-v_*Othe"field" lJI 
attenuates exponentially, we shall assume that, effec
tively, 

(29) 

and for the functions u, v and v we shall make use of 
the leading approximation (28). Then, as is not diffi
cult to see from (12), the resistive state is described 
by a real parameter ~ and, according to (13), (17) and 
(29), the function lJI (within the limits of the period d 
= 2a; ~(± a) = 0) is equal to 

(30) 

Substituting this expression into Eqs. (14) and (18) and 
taking (28) into account, we find the potential q; and the 
average intenSity of the electric field: 
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_ 1 j' dt''' 2 
E = Z;;(Q) (- a)-IlJ(a»= 20na S dx S dE de 1 +(E' + ~2)/IE2 _ ~21 ' 

_a (31) 

E-~(l-~) 
- 0" 3T,' 

where (Tn is the conductivity of the normal metal and a 
is the average value of the order parameter. 

Thus, in the model approximation (29), the "excess" 
current for a given voltage has a different nature near 
jc2 from that in the case of "small" currents j - jc 
«jc2. [9) In that case it was associated with the addition 
of the ordinary superconducting current to the normal 
current (cf. (13», while here it is associated with the 
increase of the "normal" conductivity in conditions of 
superconducting pairing of electrons. 

Taking (29) into accowlt in Eq. (12) and confining our
selves, in the potential <1>, to the leading approximation 
in the parameter 7), we obtain 

[ 1',-T +2-D(~")'- 7~(::;) (2(eix)"~:l')]:l=(). (32) 
T, ST. dx S(:TTY 0" 

Together with formula (31), Eq. (32) solves qualita
tively the problem posed about the structure of the re
sistive state and the volt-ampere characteristics of a 
superconducting channel at currents j - jc2. This equa
tion can be integrated in the limiting case I (j - jc2) I / 
.ic2« 1. We write (32) in dimensionless variables: 

( :TD )'" . (8(1' .. - Tl) . 
x~ 1>(7:.-1') x, :l~ .• L 7~(:1)T .\= \,\, 

(33) 

where[4) 

4(T - 1') ( 2:TT. )" K,=-"--'-
p 7~(:I)D' 

We then have 

d ' 
((-;t;;f+1-i'x'-:l').\=11, :l(=a)=(). (34) 

As j - 1 (j - jc2) the quantity a - 0, and the period in
creases: a-co. We shall denote by j(a) the eigenvalue 
of the linear problem: 

(35) 

Obviously, j (a) - 1 as a - 00. 

Regarding the difference j - j(a) and a 2 as a perturba
tion in Eq. (34), we find that, in the first approxima
tion, the solution for a is proportional to the solution 
of Eq. (35), and the condition for solubility of the equa
tion of the next approximation has the form 

• a 

S :l'dx=2j(a) (j(a)-j) S x'',,'d.r. (36) 

For large a the solution of Eq. (35) is approximately 
equal to A exp(- x 2/2), and, taking (36) into account, 
we find in the first nonvanishing approximation 

~"'2'1. (j(a) -j) "'exp (-x'/2). (37) 
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Hence follows 

t,= (nly2l '/, (j (a) -j) 'I'la. (38) 

Applying standard methods of mathematical physics to 
Eq. (35), we can find the asymptotic formula for large 
a: 

2 Y2e 
1- j(a) "" --ae-a'. 

ct (39) 

In the solution found «37), (38» the magnitude of the 
period d= 2a remains undetermined, and this is also 
typical for the singular solutions of the self-consistent 
field theory (cf. (19). To determine the period it is 
necessary to make use of additional physical considera
tions. In view of the nonequilibrium character of the 
resistive state we must postulate[9) that the stationary 
regime corresponds to the minimum entropy produc
tion. [21) Thus, the period is determined from the con
dition minimizing the average electric field E (31) (i. e. , 
maximizing A (38» for a given current j. Using formu
las (38) and (39), it is not difficult to convince oneself 
that this minimum indeed exists and corresponds to the 
following values of A and of the period of the structure: 

As j - 1 the period increases (on account of the in
crease of the sizes of the normal regions) fairly slowly: 
a - (-In( 1 _ j»1 /2. 

Together with the dimenSionality formulas (33), the 
formulas (31), (40) give a parametric repre~entation of 
the volt-ampere characteristics near jc2' Using them 
we can estimate the range of currents in which the sta
tionary picture of the resistive state is inapplicable. 
Since as 7) 2 in this region, we have, according to (40), 

(j.,-j)lj,~[ (1)T)ITJ'. 

With decrease of the current the period of the struc
ture decreases and, having reached a minimum value 
determined by the size ;( T) of the droplet, beginS to in
crease again, this time because of the increase of the 
sizes of the superconducting regions. On further de
crease of the current, when j reaches values of the or
der of the lower critical current jc _7)3, the period of 
the structure increases to such an extent that effects 
associated with the depth of penetration of the electric 
field from the normal region to the superconducting re
gion become important and the description of the struc
ture of the resistive state becomes qualitatively dif
ferent. [9) The qualitative difference between "small" 
currents j - jc and "large" currents j - je2 is fairly 
sharply displayed in the experimental volt-ampere char
acteristics (cf. [121) for T - Te, when jc2l.ie - 1/7)>> 1. 
Without repeating the derivation from[9), we give the 
final system of equations for currents j - jc in dimen
sionless variables[9): 
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T, ( D)'!. x->-- x 
~,:r(T,-T) , 

t ->- T/t 
11 (T, - T) !1o' ' (41) 

. eVFt'!o'(rtD )';' (8(T T) 'I 
J ->--T... -_n (L-T) j, !1 =rrT, '-) '. 
.' 0 7~ (3) T, ' 

here we have 

~'+p,'+CIJ'=l, ~'p.+E=j (E=-iJrJ>/ox, ~*O), (42) 

S~ de [ 0 ( p '1. )' ((j) '] \;,,,,(e, x) =0, -:-+2 -'- - -:- 1j" 
o C E rJt:n:£ ax 

[ ( p.~)' f)' =2- -- <[l 
:Ie (oJ]· (43) 

Here A denotes the modulus of the order parameter 
and P.=taX/ax is the momentum of the condensate. In 
the kinetic equation (43) for the nonequilibrium correc
tion I/J (16) to the distribution function the small time 
derivative a/at-(a/ax)2 _TJ4 has been kept for what fol
lows (cf. the initial equation (3». 

The boundary conditions to Eqs. (42), (43) contain, 
besides the continuity of the quantities A, P., E, I/J and 
dl/J/dx, the discontinuity ~o of the potential ~ at the 
pOints A=O. For a given current (cf. (42», the mag
nitude of the discontinuity ~o is uniquely determined by 
the period d of the structure. As at large currents, the 
period is fixed by the condition for minimum entropy 
production and determines the average electric-field in
tensity E = ~o/ d, i. e., the volt-ampere characteristic 
E{j). In vi~w of the complexity of Eqs. (43), the cal
culation of E{j) in[9] was performed by modeling (43) by 
a simpler equation. It must be emphasized, however, 
that for a comparison of the theory with experiment a 
large volume of information is contained in the dimen
Sionality formulas (41). These formulas not only en
able us to estimate the characteristic orders of all the 
quantities, but also establish, to within certain unknown 
dimenSionless functions (of order unity) of the current 
ratio jlie' the different temperature dependences (in 
the spirit of laws of corresponding states (see below». 

Certain Simplifications are possible in a long channel 
for currents j - je' when the period of the structure be
comes large and we can consider the homogeneous equa
tion 

(44) 

for an isolated singularity. The asymptotic solutions 
of Eq. (44) at large distances d» 6E , where A, P. 
-const, 

'I' -exp( -const· die) 

determine the potential ~ (cf. Eqs. (14), (16), (43»: 

- d CIJ(x)=S-I~ 'l'(f.X). 
C l- f 

o 

ThUS, the electric field inside a superconducting re
gion is, in order of magnitude, 

E (d) -exp (-const .1jd). (45) 

According to the second Eq. (42), to ensure the mini-
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mum entropy production the field (45) must be made 
equal to the difference j - j e' since the critical current 
je = 2/3..[3 is the maximum value of the super conducting 
current j. = A2p.. Since, on the other hand, as j - j , _ e 

~o - const and d = ~o/ E, the asymptotic volt-ampere 
characteristic of a long channel for j - je follows from 
(45): 

j~/' - exp [ - const . ( ai' ) '1. (46) 

We shall discuss the physical meaning of Eqs. (43) 
in more detail. As already noted, the key role in the 
phenomena under consideration is played by the circum
stance that, unlike in a normal metal, in which the elec
troneutrality condition makes the kinetic correction I/! 
to the distribution function vanish identically, in a su
perconductor this condition is fulfilled only integrally 
(the first Eq. (43» and I/! '* O. According to (14), (16), I/J 
determines the charge denSity in ordinary space and in 
energy space, and Eq. (43) is the detailed-balance 
equation for the charge in the superconductor. It fol
lows from Eq. (43) that the electric field is damped 
over a fairly large distance 6E - (~Ol)1/2 (1- T/Tc>-l into 
the superconducting regions, and that the electric 
charges -divE/4lT compensating the field are distributed 
over these same distances. The essential point is that 
I/J (16) defines the correction (to the distribution func
tion) that is nonsymmetric (the a.-component!) in the 
electron-hole "space, ,,[12] and, thus, the kinetic equa
tion (43) essentially describes, as it should, the "mix
ing" of the electron and hole components of the excita
tion spectrum. Here the quantity 2(P.A/lTd 2 in this 
equation plays the role of the characteristic "mixing 
frequency." 

From this point of view it becomes clear that the in
clusion of any factor that violates the time-reversal 
symmetry in the sense of Anderson's theorem should 
have a substantial effect on the processes considered. 
The time-reversal operation "interchanges" the elec
tron and hole states, and the specific correlations be
tween these states constitute the nature of supercon
ductivity. [22,23] The appearance of the quantity p~(t 
- - t, P. - - P.)in the "frequency" of mixing in Eq. (43) 
is already comprehensible from these conSiderations. 
Indeed in the case of a condensate at rest (P.= 0), owing 
to the full symmetry between excitations of the electron 
and hole types, scattering by ordinary impurities does 
not lead to "mixing" of the excitations. 6) A more radi
cal way of "mixing" electrons and holes is by scatter
ing by paramagnetic impurities. In the "dirty" limit 
T. TeO« 1 (Ts is the time between spin-flips of an elec
tron and TeO is the temperature of the "clean" super
conductor), the energy gap in the spectrum of the super
conductor disappears[25] and the dynamiCS of the con
densate ceases to have any influence at all on the en
ergy distribution of the excitations. This circumstance 
also affects the electroneutrality equations (43). Ac
cording to the work of Gor'kov and Eliashberg, [8] in 
this case the constant T. appears in Eq. (43) in place 
of the energy-dependent factor Dp~/E 2. As a result, in 
such a superconductor it follows from the electroneu
trality condition, as in a normal metal, that I/J = 0 and 
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this ensures the validity of the non stationary Ginzburg
Landau equation. 

Equations (42), (43) possess an interesting feature. 
The static structure described by them for the resis
tive state at sufficiently small currents can turn out to 
be unstable. As already indicated, [9J the reason for 
this instability is that, generally speaking, the thermo
dynamically unstable "falling" parts of the so-called 
"pair-breaking" curves, i. e., the curves of the depen
dence of the superconducting current js= A2ps on the 
condensate momentum Ps (cf. formula (42», are used 
in forming the structure. The mechanism of the de
velopment of the instability is determined by the de
tailed-balance equation (43) for the charge and consists 
in the following. On a decreasing part of the pair
breaking curve the order parameter A increases with 
increasing superconducting current j s' In view of the 
conservation of the total current (cf. (42», this is ac
companied by a decrease of the electric field. But this 
tendency agrees exactly with the electroneutrality equa
tions (43), according to which, the greater is A the 
more rapidly are the electric fields attenuated, and, 
thus, "positive feedback" for small fluctuations of A is 
ensured. 

In the case of a long channel, owing to the uniformity 
of the conditions in space and time, motion of the struc
ture as a whole, with constant velocity u, can arise as 
a result of the instability, i. e., in (43) we can replace 
a/at- -ua/ax. The magnitude u of the velocity is fixed 
by the requirement that the processes of redistribution 
of charge in the moving structure be consistent, i. e. , 
it should be determined as the nontrivial eigenvalue u 
"* 0 of the system of equations (42), (43). In this case, 
in view of the symmetry u--u, x--x, cf>--cf>, both 
signs of the velocity are possible. 7) 

Irrespective of its concrete form, the motion of the 
structure should be manifested experimentally in small 
oscillations of the electric potential over a finite length 
of the sample. Evidently, it is by just this mechanism 
that the generation of monochromatic electric oscilla
tions in the resistive state of narrow superconducting 
films, observed by Dmitriev, Churilovand Beskor
syl[26J (cf. also[14,27J), can be explained. From the gen
eral dimensionality formulas (41) there follows the law 
of corresponding states for the frequency of the oscilla
tions: 

dT,·l 1-TIT, )'~g(j/i (TI '. (47) 

which is in fair agreement with the experimental re
sults (cf. [13J). It must be emphasized that, owing to the 
extra temperature factor (1- T /Tc) 2 in (47), the fre
quencies of these oscillations are found to be anomalous
ly small (-108 sec"l at T"'" O. 99Tc' in agreement with 
the observations of [14,26] compared with the frequencies 
of the aforementioned Josephson oscillations (-1010 
sec"l). [17] 

For real samples of finite length (superconducting 
"bridges"), Eqs. (42), (43) must be supplemented by 
boundary conditions at the junction between the normal 
and superconducting metal, which would take into ac-
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count the character of the penetration of the electric 
field into the superconductor. The effect of these con
ditions is particularly important on the initial part of 
the volt-ampere characteristic, where voltage across 
the sample first appears. The idea of a periodic struc
ture of the resistive state is inapplicable in this region. 
However, for a sufficient degree of "supercriticality " 
j -jc >0, "centers" of singularity should inevitably ap
pear inside the sample, and the positions of these, to
gether with the magnitude of the discontinuity cf>o, will 
be determined by the minimum of the entropy produc
tion. The observations by Meyer[28] of small voltage 
discontinuities in the volt-ampere characteristics of 
whiskers are interesting in this respect. Although the 
electric potential cp remains continuous in the mathe
matical sense, the "penetration" of a new" center" of 
singularity into the sample is accompanied by a rapid 
change of cp, and this should register as a voltage "dis
continuity" within the limits of the experimental ac
curacy. 

The author is grateful to L. P. Gor'kov, A. I. Lar
kin, Yu. N. Ovchinnikov and G. M. Eliashberg for use
ful discussions. 

t)This situation is not described by the so-called nonstationary 
Ginzburg-Landau equation, [6,7] which gives a negative re
sult (1 ) in the droplet problem. This equation (cf. 18,9)) is valid 
only for dirty superconductors with paramagnetic impurities, 
which explains the agreement of the results ofl1 ,IO) (inI4 ) this 
was explained, not entirely correctly, as a consequence of the 
the treatment of the vortex fields inl1 ,101). From the pOint of 
view of the problem of resistive states, such superconductors 
are closest to a normal metal, and do not, as it were, "dis
tinguish" longitudinal and vortex fields. 

2)In19 ,111 this function was denoted by ~. 
3 )Yu. N. Ovchinnikov has noted that, owing to the long energy

relaxation times of the electrons, this condition can turn out 
to be rather severe. In practice, temperatures T:::' O. 99Tc 
are found to be sufficient. H3] 

°Discontinuities of 4> in the resistive state were also intro
duced in the above-cited work of Fink(6) (cf. also(161). Un
fortunately, Fink uses the nonstationary Ginzburg-Landau 

. equation, and this practically reduces his results to nought. 
From a physical point of view, the treatment of resistive 
states proposed in the recent paper of Sl:ocpol, Beasley and 
Tinkhaml111 is close to that expounded here (especially in its 
understanding of the problem of the depth of penetration of 
the electric field from the normal region into the supercon
ducting region(181). However, the specific model proposed 
inl171 for the phenomenological description of resistive states 
does not find confirmation in the microscopic theory. 

5)In this, the resistive state is essentially different from the 
mixed state in type-II superconductors near the critical field 
H c2 ' in which one can trace the gradual "development" of the 
vortex singularities, starting from the field HC2 ' This dif
ference is due to the nonequilibrium nature of the resistive state. 

6lThis can be seen particularly clearly in "clean" supercon
ductors, for which it is possible to construct the Boltzmann 
integral for collisions of quasi-particles with impurities. 1241 

llThe "forces" moving the structure have a thermodynamic 
origin and are not connected directly with the electromagnetic 
interactions. This explains the symmetry u --u. Since the 
instability of the initial symmetric structure can develop in 
both directions with equal probability, in the framework of 
the approximation used the final direction of motion is deter
mined by chance causes. 
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The nonlinear current-voltage characteristics of microscopic copper point junctions are investigated at low 
temperatures (~4.2'K). The electron-phonon interaction function g(w) = a 2(w) F(w) is reconstructed from 
the voltage dependence of the second derivative of the current-voltage characteristics. It is found that g(w) 
differs appreciably from the phonon state density F(w), owing to the strong mean square matrix element 
dependence. of the electron-phonon interaction energy a2• New effects are observed at low energies 
corresponding to large mean free paths. These include oscillations of the second derivative and a minimum 
of conductivity at V = O. These effects are apparently due to quantum size effects and to nonequilibrium 
occupation of the electron states near the Fermi level. 

PACS numbers: 71.85.Ce 

1. INTRODUCTION ly demonstrated for point junctions with dimensions on 
the order of several dozens angstroms made of metals 
such as Pb, Sn, [1) and In, [3) for which the function g(w) 
is known from tunnel measurements in the superconduct
ing state. [4) 

One of us[lJ has proposed a new method of investigat
ing electron-phonon interactions (EPI) in normal metals. 
It has turned out that at T", 0 the second derivatives of 
the current-voltage characteristics of point junctions 
are directly proportional to a function of the EPI 

g(w) =«'«(,»)F(w), (1) 

equal to the product of the square of the matrix element 
of the EPI, averaged over the Fermi surface, and to the 
density of the phonon states. [2) This was experimental-
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For many metals, however, an investigation of non
linear effects in point junctions is the only way of deter
mining the function g(w) over the entire energy interval. 
This pertains primarily to noble metals with weak EPI, 
such as Cu, Ag, and Au. The present paper is devoted 
to an experimental investigation of the spectrum of the 
EPI in copper. The function g(w) obtained by us differs 
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