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Penning ionization by highly excited atoms is considered. The asymptotic two-center electron wave 
function is set up for an arbitrary ion + atom system. This function is needed for the solution of many 
atomic-collision-theory problems involving nonresonant transitions of the electron from one center to 
another. The results of the calculations are applied to the case of ionization of noble-gas atoms and 
hydrogen molecules by highly excited helium atoms. It is shown that the process proceeds mainly via the 
exchange channel. The conclusions of the theory are in good agreement with the experimental results. 

PACS numbers: 34.50.Hc 

1. INTRODUCTION FORMULATION OF PROBLEM 

In gas-discharge physics, besides the Penning ioniza­
tion processU ] (ionization by metastable atoms), great 
interest attaches also to ionization by more strongly ex­
cited atoms. In experiments with ionization cham-
bers, [2-5], for example, an increase of the ionization 
current due to one fast a particle was observed in gas 
mixtures in which ionization by metastable atoms is en­
ergywise impossible in one collision (He + Ne, Ar + Xe 
etc.). To produce a gas laser in a recombining plas­
ma[6] it is important to know the cross sections for the 
ionization of the impurity gas atoms by the excited he­
lium atoms. Results of the direct measurements of the 
cross section for the ionization of Ne, Ar, Kr, Xe atoms 
by He (3' P, 33 P, 33S, 3'S) atoms at a collision energy 
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600 OK were recently reported. [7] 

We consider processes of the type 

A'+X-A+X++e, 

the excitation energy of the atom A* being larger than 
the ionization potential Jx of the atom X. When such 
particles approach each other, an auto ionization state 
is produced, the decay of which leads to reaction (1). 
The magnitude of the decay width and the potential ener­
gy of the interaction of the produced state depend strong­
lyon the excitation number of the atom A*, so that the 
cross sections of the reactions (1) can differ significant­
ly in absolute magnitude and in the character of the de­
pendence on the collision energy for the different excited 
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states of the atom A. 

Getting ahead of ourselves, we can state that ioniza­
tion by strongly excited atoms diffe rs significantly from 
ionization by metastable atoms. The reason for the dif­
ference is the following: Owing to the rapid decrease 
of the decay width with increasing distance between 
atoms, the characteristic radius of the reaction (1) 
turns out to be much smaller than the dimension of the 
orbit of the strongly excited states, so that decay takes 
place deep inside the orbit of the excited electron. The 
ionized atom then interacts principally with the core of 
the ionizing atom, i. e., with the ion A +. This circum­
stance increases the decay probability for two reasons. 
First, the polarization attraction decreases the distance 
between the particles, making thereby the decay more 
effective. Second, owing to the attraction by the Cou­
lomb field of the ions, the probability that the electrons 
of the atom X will stay near A+ increases, thereby in­
creasing the role of the exchange channel of the reac­
tion. 

The decay can proceed via two channels. In the first 
channel the excited electron of the atom A* drops to the 
ground state of the atom A, and the electron of the atom 
X becomes ionized. The decay width corresponding to 
this channel is given by (we use the atomic system of 
units) 

1dd=2rr 1 < ¢nl (r1) 1jJx (r,) 1 r~, 1 lj'E (r,) ¢o (r1) ) 12 (2) 

and has been calculated in[8-121 for the case when a di­
pole transition from the excited state 1/1"1 of the atom A 
to the ground state 1/10 of the atom A is allowed (1/1E is the 
wave function of the continuous spectrum and 1/1x is the 
wave function of the atom X). The ionization cross sec­
tion, without allowance for the exchange channel, can 
then be expressed in terms of the photo ionization cross 
section of the atom X, if the decay manages to occur at 
large interatomic distances. In the second, exchange, 
channel the electron of the atom X goes over to the 
ground state of the atom A, and the excited electron of 
the atom A* is ionized. The decay width is in this case 

(3) 

The matrix element (3), in contrast to (2), is determined 
by the region of the electron coordinates when the sec­
ond electron is near the atom A, since 1/10 is a more 
strongly bound state than 1/1x. 

We investigate in this paper the decay of strongly ex­
cited atoms A* via the exchange channel. In this case, 
as already noted, the decay takes place mainly within 
distances much smaller than the radius 1/ J* of the re­
gion in which the excited electron is distributed 

R«lIF, 

where J* is the ionization potential of the excited atom. 

The matrix element (3) is determined by the region 
r 1-1/J*, r2« l/J*, so that in the calculation of (3) we 
can use the expansion 
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where r 1 and r2 are the distances of the electrons from 
the nucleus of the atom A. Using this expansion, the 
orthogonality of the functions of the initial and final 
states, and (5) we obtain 

The emitted electron interacts both with the ion X+ 
and with the atom A. The field of the atom A can be 
neglected as being much weaker. The function 1/1"1 of 
the excited state of the atom A*, if the condition 

(4a) 

is satisfied, can be regarded as centered at X. More 
accurately speaking, when this condition is satisfied it 
does not matter at which of the centers the excitation is 
located. Here Ro is the characteristic radius of the re­
action (1) and A is the wave length of the electron in the 
excited state, i. e., the dimension of the inhomogeneity 
of the function 1/1"1' If (4) is satisfied, the distance r1 in 
(5) can be regarded as measured from X. Then, using 
the Ehrenfest theorem operators, we reduce M~ to the 
form 

M.'=w' ~ i <ifnI (r 1 ) I r,xi'iJE" (r,) > i " 

" 
w = Ef - EI - JA - J x at R» 1, and the summation is car­
ried out here over all states to which a dipole ~ransition 
is allowed. 

The exchange decay channel, just as the direct chan­
nel, [8-121 turns out to be connected with the characteris­
tics of the photo ionization process. The dipole matrix 
element (7) between hydrogen functions was tabulated 
in [l3l. The exchange decay channel is due to symme­
trization of the total wave function of the system of two 
colliding atoms with respect to permutation of all the 
electrons. In the case of ionization of atoms with filled 
shells, we obtain formula (3) after integrating over the 
electrons that do not change their states. For the case 
considered by us, that of ionization by an excited helium 
atom, we have neglected here the other exchange ampli­
tude: the electron of the atom X ends up at the ground 
state of the helium atom together with the exciting elec­
tron, and the core electron of the helium goes off to the 
continuous spectrum. The amplitude of this transition 
has an additional smallness in comparison with the tran­
sition taken into account in (3), since it describes a si­
multaneous transition of three electrons. 

The asymptotic expansion which will be obtained below 
for the two-center wave function makes it possible to 
consider only those states of the electrons of the atom 
X which have a zero prOjection of the orbital angular 
momentum on the axis joining the nuclei. The contribu­
tion made to the decay probability by states with non­
zero projection is small in comparison with the contri­
bution of the electrons, and for its determination it is 

V. p, Zhdanov and M. 1. Chibisov 1090 



necessary, strictly speaking, to evaluate the succeed­
ing terms of the asymptotic expansion of the wave func­
tion. We neglect the contribution of the higher projec­
tions in this paper. 

In the calculation of the matrix element M2 we en­
counter an additional difficulty: it is necessary to know 
the wave function !/Ix of the electron of the atom X in the 
region far below the barrier-near the ion N, where it 
is strongly perturbed by this ion. We therefore proceed 
now to the construction of this function. 

2. TWO-CENTER SINGLE-ELECTRON WAVE 
FUNCTION FOR A COULOMB POTENTIAL WITH A 
CORE 

A characteristic feature of the considered reaction (1) 
is the difference between the properties of the atoms A 
and X. In particular, the difference between the ioniza­
tion potentials of these atoms is of the order of the ion­
ization potentials themselves. Consequently, the elec­
tron of the atom X interacts with the ion A+ under non­
resonant conditions: the probability of observing it near 
A+ is exponentially small at all distances R. The inter­
action with the excited electron can be neglected if the 
condition (5) is satisfied, so that the problem reduces to 
a solution of the single-electron SchrOdinger equation 

[-11/2+ VA (rA)+ Vx (rx)-E]1jlx=O 

with the boundary condition 

(8) 

(9) 

where !/I(O) is the electron wave function of the isolated 
atom X; r A • X is the distance of the electron to the nuclei 
of the atom A and X, while VA • X are the interaction po­
tentials of the electron with N and X+. It is required to 
determine !/I near A+, i. e., at r A -l. 

Using the Green's function for the field of the ion A+, 
we rewrite (8) in integral form: 

(10) 

The construction of this equation is such that our prob­
lem is solved already after the first iteration, if we sub­
stitute in the right-hand side the X-atom function that 
takes into account the influence of the Coulomb part of 
the potential VA [14-16J: 

(11) 

The coefficient a is determined here by matching with 
the numerical wave functions of the atom X at rx - 1 [16J; 
L and M are the quantum numbers of the electrons in 
the atom X. 

Since GA decreases exponentially with increasing dis­
tance from the point to the nucleus A, while !/Ix de­
creases exponentially (with practically the same expo­
nent) with increasing distance from the nucleus X, the 
main contribution to the integral (10) is made by a 
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cylindrical region of length R and radius - Rl/2 near the 
internuclear axis. The regions near each of the nuclei 
where (11) does not hold make a contribution of the next or­
der of smallness inK1 to the integral of (10) in comparison 
with the main contribution. A similar situation takes 
place also in resonant Single-electron exchange. 

We consider the case when A+ is a pure Coulomb cen­
ter, i. e., VA = -lIrA' The analytic expression for the 
Green's function takes in this case the form[17J 

G. r(l-n)n (~-~)w '(-=-)M ,. (~) 
2:tirA-r/1 ijy ax n,t: n n,'" Il I 

(12) 

Here Wand M are Whittaker functions. [18J 

In our case, when r A -1 and ~ - R, we obtain 

(13) 

Here x is a unit veCtor in the direction from the atom A 
to X. Using the asypmtotic behavior of W(~) at large ~ 
and expressing M in terms of a confluent hypergeometric 
function, [18J we find that the Green's function (12) takes 
in the coordinate region of interest to use the form 

G _r(1-n)2n(rA),n-l. ( rA+rA')F(1 'l.rA+xrA) 
A-~ -;; exp --n- -no '-n- . (14) 

r./-R>rA • 

The integral in (10) is calculated, taking (11) and (14) 
into account, by first integrating over a plane perpen­
dicular to the internuclear axis, and then integrating 
with respect to rl from 0 to R. After integration we 
obtain 

( rA) ( r,+xr,) 1j:x""D(R)exp ---;;: F 1-,,;1;-' -n-' , 

(15) 

(2R)'" (II) D(R)=aT(1-n) - R"'-' exp -- YL.U(U), 
ne no 

which agrees with the known result, [19,20J obtained by 
matching solutions that are valid in different coordinate 
regions. The use of an integral equation in place of a 
differential equation has greatly Simplified the problem: 
the solution has reduced to evaluation of a trivial inte­
gral. The integral equation automatically matches the 
wave functions of the different regions. 

The function (15) can be applied to the reaction (1) 
only in the case of ionization by an excited hydrogen 
atom. Of greater practical interest is ionization by ex­
cited helium atoms, etc., for which it is necessary to 
take the core into account. In this case we use the 
series representation of the Green's function[21J 

where the radial Green's functions are equal to 

g =w-'j, (r<) tz \r», r" ~max, min {rA' r/}, 

Ie = (f'/; - t: j,]I" ~,.:, = canst: 
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[ d' 1(1+ 1) . 1 ] . 
---+2VA +---r-- 1=0 

drA 2 rA~ ,(2. I • 
(17a) 

Here 11 is finite at zero, and 12 at infinity is equal to 12 
- ~ e-rln. The eigenvalues of (17a) do not coincide with 

-2 n • 

Substituting (16) in (10), we obtain 

(18) 

(18a) 

This expression for the wave function is practically the 
final answer, since the selection rules for the matrix 
element Ml automatically select from the sum (18) only 
one or two terms, depending on the angular momentum 
of the ground state in the field VA(rA). 

The partial functions (18) are orthogonal to all the 
eigenfunctions in the field VA that have a binding energy 
larger than J x • For this reason, the constructed com­
plete two-electron functions of the initial and final states 
are orthogonal to one another. For the levels in the 
well VA lying above - J x the overlap integral with the 
function (18) is determined by the region near the X nu­
cleus. 

The result (18a) is valid, generally speaking, only 
for small angular momenta satisfying the condition l2 < R 
(in dimensionless atomic units I ). Under this condition 
the centrifugal energy in (17a) is small, and we can use 
for the functions 121 a Coulomb asymptotic form of the 
type (11). 

The electron wave function constructed here is needed 
for many problems in the physics of atomic collisions. 
In addition to the problem considered here, this function 
is essential for the ionization processes considered 
in[19J, for two-electron charge exchange, etc. To make 
further progress, we shall specify below more con­
cretely the type of the potential VA> since it is impos­
sible to connect in simple and reliable manner the ma­
trix element M2 with the characteristics of the isolated 
atom A. 

3. CALCULATION OF THE DECAY WIDTH AND OF 
THE REACTION CROSS SECTION 

We consider a model potential 

(19) 

in which the parameter B is chosen such that the ground 
level in this potential coincides with the observed binding 
energy of the atom A. The energy levels in this poten­
tial are known exactly, and the wave functions are ex­
pressed in terms of a confluent hypergeometric func­
tion. [15] Calculation of the matrix' elements with these 
functions and with the function (18) for the same poten­
tial reduces to a calculation of a tabulated integral. 
Omitting the Simple manipulations, we present only the 
final result (for the final ground state without the angu­
lar momentum): 

M, (R) =CR'n.-' exp ( - :, ) ; 

C=a (2L+1) 'I. (2..-) n'2"n,'" (2nov-')"+'" f(s.+1-n o)f(s,+s.+4) 
n,e (1+nov-,),·+·,H f(2s,+2)r"(2s,+3) 

X,F. (s.+l-no, 50+s.+4; 2s.+2;~); 
\,+n, 

s,=[ (l+'h)'+v(v-i) l"'-'/2' v= (21A)-'I •. 

(20) 

It is assumed that the electron of the X atom has a zero 
projection of the angular momentum on the internculear 
axis. 

For the pure Coulomb case (ionization by an excited 
hydrogen atom), when B= 0, Eq. (20) is transformed into 

C(B=O) =8a(2L+1) 'I. (2..-) n. (~)'( no-l) n.-' f(i-no). (20a) 
noe no+i no+l . 

We write down the decay width in the form 

1 exch (R) =10R'n.-' exp (-2R/no) , 10=2:df.'C'. (21) 

The constants that characterize the exchange width (21) 
are listed in Table I. The .amplitudes a were deter­
mined by matching the asymptotic form (11) with the 
Hartree-Fock wave functions. [22J These amplitudes are 
overestimated in[16J, since only one term of the asymp­
totic expansion (11) is taken into account; in our calcu-

TABLE I. Parameters characterizing the exchange width of the decay of the initial state, Ml is averaged 
over the direction of the internuclear axis" (all the quantities are given in atomic units, and in the case 
of Li averaging was carried out over the possible spin states). 

He Ne .\1 KI Xe H, l\lg 

n" I 0.741, 0.794 0.828 0.986 1.0;;9 0.939 L589 1.334 

" ~.:::!:)=O.lO 1.5±0.05 2.0i±O.O:? 2.12±0.03 2.1;;±O.OJ 2.64 0.84±0.01 2.00±0.2 
rIx 1.38 2.76 11.1 16.8 27.2 2.52 165 120 

C 171.0 18.6 11.8 7.41 12.3 0.4.50 1.431 

Hl'(3'S) { .1112 1.48.10-3 2.1.l·1O- 3 2.65.10-3 2.82.10-3 2.50.10-3 7.63.10-3 4 .. 50.10-3 

10 272.0 3.33 2.32 0.97:\ 2.38 9.69.10-3 6.28·10-' 

He(3'S) { .1/\2 1.18.10-3 2.26.10- 2 2.48'10-3 2.67.10-3 2.30.10-3 7.58.10-3 4.47'10-3 

10 217.0 4.91 2.17 0.921 2.19 9.63.10-3 6.24.10-2 

He(33P) { .1[1 2 7.97±10-· 7.73·10-' 7.34·10-' 6.97·10-' 7.73·10-' - -
10 146.0 1.68 0.630 0.241 0.703 - -

Jle(3'P) f ..1/]2 7.20·10-' 7.43.10-4 7.10·10-' 7.81·10-' 7.37·10-' - -
i Yo 132.0 1.61J 0.621 0.232 0.701 - -

1I"(4"S' f .1/12 5.05·10-' 9.38·10-' 1.03.10-3 1.11.10-3 9.57·10-' - -
\ Yo 92.8 2.04 0.901 0.383 0.910 - -

HeWS) f J/12 4.60·10-' 9.10·10-' 1.00.10-3 1.08.10-3 9.28·10-' - -

Ii 
Yo 84.5 1.98 0.875 0.373 0.882 - -

He(43P) .1/12 8.65·10-' 9.46.10-4 8.99·10-' 8.65·10-' 9.42·\0-' - -
10 159.0 2.06 0.786 0.298 0.895 - -

He(4'P) { If]2 8.fi4·10-4 9.31.10-4 8.98·10-' 8.56·10-' 9.2HO-· - -
y, I"D.O 2.0::J 0.786 0.29;, 0.877 - -
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TABLE II. Comparison of the dipole-dipole l81 width and 
the exchange width given by1211. 

R, atu 

3 
4 
5 
6 
B 

10 
Il 

I Ue,3'PI +Ar I He(3'Pi-Xc I 
Y~d' eV 17exch. eV 'Ydd' eV 17exch, eV 

O.lUti 
v.OIU 
O.OO~, 
O.OO~ 

0.460 
0.087 
0.015 
0.003 

0.072 I O.~:;3 
0.013 0.D73 
0.003 0.018 
0001 0.004 

H(;)'P)+Li 11ICrrp)-;-)lg 

'"(exch, eV "Yexch, eV 

0.539 (J.!~n 
0.339 0.0 .. 
0.096 0.010 
0.010 U.002 
0.002 

*'Ydd=81T~~e~~R-6;~~e(3'P)=O.0433 is the square of the matrix 
element of the dipole transition He(3 ·P) .... He( \'S), ~~ is the same 
for the photo ionization of the atoms X. [7[ 

lations we choose five terms of the asymptotic expan­
sion. The mean-square value of this amplitude, aver­
aged over the orientations of the molecule axis is given 
for the hydrogen molecule in[23]. The excited-state pho­
toionization matrix element Ml is taken from the calcu­
lation in[l3]. The analytic expressions for this matrix 
element as functions of the excitation number are quite 
complicated. For very high excitations we can use the 
Kramers average quasi-classical limit (see below). 

Table II shows a comparison of the exchange width 
calculated here with the dipole-dipole width. [8] It is 
seen that even for resonant states in the wo rking region of 
internuclear distances, the exchange width is larger 
than the dipole width. In addition, any of the excited 
states of helium can decay via the exchange channel re­
gardless of the angular momentum or the spin. The dis­
perSion decay channel should prevail in the case of col­
lision of heavier atoms, when the collision velocities 
are relatively small and the working distances turn out 
to be the relatively larger interatomic distances. 

To calculate the reaction cross section we describe 
the motion of the nuclei with the aid of classical tra­
jectories. The ionization probability for a trajectory 
with impact parameter P is equal to[8] 

P(p)=l-exp[-~~S y(R)dR ] 
Vo (l-p'IR'-['(R)/E) " : 

n, 

(22) 

where u(R) is the interaction potential of the atoms, Ro 
is the closest-approach distance of the atoms, and e 
= /wV2 is the relative collision energy. Allowance is 
made here for the fact that each attainable distance R is 
negotiated twice in one collision. 

We introduce the quantity p(p, R 1 ), which is the proba­
bility of ionization when the particles approach to within 
a distance Rl for the given trajectory. Since we have 
determined only the prinCipal term of the asymptotic ex­
pansion of the width 'Y in the reciprocal powers of R, we 
are justified in integrating only the exponential in (22). 
We then have 

P(p,R,J=l-exp[- n,Y(R,)], V(R,)=v,(l-~- F(R,) )". 
v(R,) R i ' E 

(23) 
The interaction between the particles constitutes po­

larization attraction of the atom X to the ion A+: 

U(R) =-ax/2R', 
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where ax is the polarizability of the atom X. In this 
potential as is well known, [24], there are two classes of 
trajectories. At p > Po = (4axft..LV~)l/4 the trajectories are 
practically straight lines, with Ro'" Po. At thermal col­
lision energies, the probability of ionization on these 
trajectories is negligibly small. On trajectories with 
impact parameters p.; Po, the particles come very close 
together and the decay is more effective. The cross 
section of reaction (1) can then be expressed in the form 

(24) 

where Pn is the ionization probability and is the same 
for all the capture trajectories (n is the excitation num­
ber of the atom A*). For thermal energies f< 1 eV, 
this quantity is also independent of the collision energy, 
inasmuch as in the closest-approach region the velocity 
of the atoms is determined by a relatively large inter­
action; u(R-l)>> E. For ionization of nOble-gas atoms 
by helium atoms excited to states n = 3 and n = 4, it is 
easy to ascertain with the aid of formula (20) and the 
data of Table I that the ionization probability P(p, R) 
becomes equal to unity at R - 5, where the foregoing 
asymptotic expansion is valid. For these cases, the 
ionization probability Pn in formula (24) is equal to 
unity, and the cross section of the reaction coinCides 
with the polarization-capture cross section. 

Table III shows a comparison of the theoretical and ex­
perimental[7] cross sections. The latter are on the 
average 10 5-2 times smaller than the theoretical ones. 
The discrepancy is apparently due to the unaccounted­
for interaction between the atom X and the excited elec­
tron prior to penetration into the interior of its orbit. 
This interaction is most readily of the repulsion type 
(not withstanding the fact that the lengths for the scat­
tering of electrons by the noble-gas atoms Ar, Kr, and 
Xe are negative). The theoretical cross section must 
therefore be multiplied by the penetrability of the bar­
rier at the given temperature. It can be concluded 
from a comparison of the theoretical and experimental 
cross sections that for He* (n = 3) this quantity is - O. 2-
O. 8. For the ionization of the atoms He* (n = 4), this 
interaction is much weaker, and the cross sections of 
this reaction (1) should be closer to the theoretical ones 
given in Table III (at the same collision energy). 

To analyze the reaction (1) with more highly excited 
helium atoms it is necessary to examine the behavior of 
the terms of the systems He* + X at short distances and, 
in particular, at R = O. The wave funct ion of the electron 
of the atom X has an additional nodal surface near the 
ion A+, since the ionization potential is J x < J He• [20] This 

TABLE ill Comparison of the theo­
retical and experimental(7) ionization 
cross section (A2). 

a from (~4) :lR.7 11 .. -, \):).1 121 54.7 
withl',,~1 

II('(:J'I') ~8:;,;: ~ ,lfi± 10 ,")[1::::1') 7:~:!:1~ 
lIq:H') :!'-b:~ 2.-I::::ti :!.:.!.:::::) I.i~=': 10 -
Ilq3'S) :.!-~:;,;: 'l :.!.;)::::4 :.!.i::::ii -'a,~l:;';:9 

IIl'n'S) 21:;,;:::) t 'j=3 1f):::~ hl±1O 
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means that in the compound-nucleus limits one of the 
electrons of the atom X goes over into a state in which 
it has larger quantum number than in the atom X 0. e. , 
this electron is excited). The produced vacancy is filled 
by the ground-state electron of He+. Thus, the electron 
shell of the He+ +X system turns out to be excited in the 
R = 0 limit. For example, for the He+ + Ne system one of 
2p electrons of Ne should go over to the 3p state of the 
compound excited ion Mg+(ls2; 2S2; 2p6; 3p). If we now 
recall the presence of a highly-excited electron, then 
we obtain a two-electron-excited (i. e., autoionization) 
state of the compound atom. It is natural to assume 
next that the behavior of the electron energy with the ad­
ditional nodal surface as a function of R is similar to 
the behavior of the energy of the lUll electron in the II; 
ion. This assumption is supported by a comparison of 
the terms E1a,,(R) of the II; ion[25] and EHe++H • [26,27] From 
this comparison we can conclude that at distances (2-3)aa 
the He+ +X terms are "repulsive" so that the distance 
between the atoms at thermal energies is apparently not 
smaller than R - 3aa• At low energies, consequently, 
the effective region of the internuclear distances is the 
asymptotic one. 

For ionization by strongly excited atoms it is possible 
to use the Kramers classical limit 1283 for the photo ion­
ization probability, according to which ~'" O.l23n-5• 
Using this result and the data of Table I, we can write 
down the cross sections for the ionization by an atom in 
any excited state, in the form 

_p (2ax) 'I. p = {1, n,;;m;;>3 } 
0- "rt -8- , 1l (noln):i; n~nil ' 

(25) 

where na- 4 for ionization of noble-gas atoms, and no 
- 5-6 for such relatively weakly bound and strongly po­
larizable atoms as Li and Mg. 

At n-l/Va, ionization of the excited electron as a re­
sult of elastic scattering by the atom X is possible. 
At such large n, however, the cross sections of the two 
processes are small and vary independently. 

For collision energies of the order of and larger than 
several dozen electron volts, the ionization is the result 
of the decay of the compound atom 0. e., at R - aa) and 
can be estimated at a- 1ra~(aa/VaT 0)' where TO is the life­
time of the auto ionization state of the compound atom 
and aa is the Bohr radius. 

Notwithstanding the expectations, [1,6,293 the cross sec­
tions of Penning ionization by a helium atom excited to 
the level n = 3 turn out at thermal energies to be larger 
by 1. 5-2 times than the corresponding cross sections 
for the state n = 2. [1,73 This circumstance is an addi­
tional obstacle to population inversion. 

We note in conclusion that the results obtained here 
(particularly formula (25» are valid for ionization by 
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any strongly excited atom having an excitation energy 
larger than the ionization potential of the atom X. 
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