
are relatively small. So the point is that in perpendicu
lar pumping of spin-wave instability there are excited 
PSW with polar angle 9k "" 45°, having a shorter lifetime 
and consequently a shorter range in comparison with 
the PSW excited in parallel pumping. In addition, the 
spectral density of the distribution of the spin waves, 
which determines the magnitude of the two-magnon 
scattering by the surface inhomogeneities, is minimal 
precisely for waves with 9k =45°. U) In view of these 
circumstances, the size effects described above were 
much weakened in this case. For example, whereas 
in parallel pumping of spin waves in a sample with 2r 
= O. 18 mm there was no hard excitation at all, in the 
case of perpendicular pumping only the lower limit of 
the hard excitation of the PSW was shifted: for the 
sample with 2r= 0.52 mm it was equal to 1300 Oe, as 
against 1500 Oe for the sample with 2r=0.18 mm, cor
responding to excitation of spin waves with k"" 2X 105 

em-I. For waves with large k the scattering by the in
homogeneities, which increases in proportion to k, sup
presses the hard excitation of the spin waves in the case 
of perpendicular pumping. 

Ilwhen a YIG sphere is magnetized along the easy axis, an 
instability appears in the lowest homogeneous mode of the 
low-frequency self-modulation of the magnetization, which 

has a zero gap in an unlimited according to the theory. [9) 

Allowance for the inhomogeneities causes the value of the 
gap to differ from zero. [ttl 
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ferromagnets 
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Weakly nonlinear magnetoelastic oscillations in ferromagnets, propagating in the direction of a uniform 
external magnetic field parallel to the magnetic anisotropy axis, are considered. A nonlinear parabolic 
equation that {fescribes quasistationary disturbances of this type is found. It is shown that the 
magnetoelastic coupling has a qualitative effect on the modulation of a spin wave (modified by the 
magnetoelastic interaction) and also results in modulation of transverse sound (modified by the 
magnetoelastic interaction). It is further shown that the nonlinear excitation of a low-frequency modulated 
longitudinal sound wave by a high-frequency magnetization disturbance can take place under certain 
conditions. 

PACS numbers: 75.80.+q, 15.30.Fv 

Nonlinear stationary magnetization disturbances in 
ferro magnets, and in particular, nonlinear periodic 
waves and solitons (solitary waves), were investigated 
in[l,2l but the time variation of the stationary profile 
was not discussed. On the other hand, considerable 
success has recently been achieved in investigating 
weakly nonlinear wave processes in media exhibiting 
spatial dispersion. [3, 4l It was found that in a number 
of cases the evolution of the prOfile of a weakly nonlinear 
disturbance can be described by a nonlinear parabolic 
equation. This, in particular, is the case for mag
netization disturbances in ferromagnets and antiferro'" 
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magnets, which makes it possible to use a well devel
oped mathematical apparatus in studying the latter. 

In this paper we consider weakly nonlinear magneto
elastic oscillations propagating in a ferromagnet in the 
direction of a uniform external magnetic field parallel 
to the anisotropy axis. It is shown that a quasistation
ary disturbance of this type is also described by a non
linear parabolic equation. On analyzing the coefficients 
of this equation we find that a relatively weak magneto
elastic coupling has a qualitative effect on the modula
tion of a spin wave (modified by the magnetoelastic in-
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teraction). This effect manifests itself both in changes 
in the characteristic parameters of the modulated wave, 
which are especially marked near the magneto elastic 
resonance predicted by the linear theory, and in the 
appearance of a new region in which this wave can 
exist. We later consider tile acoustic branch as modi
fied by the magnetoelastic interaction and show that 
the nonlinearity associated with the magnetostrictive 
effects can lead to modulation of a transverse sound 
wave. 

Finally, it is shown that when the group velocity of 
the high-frequency spin wave is close to the phase 
velocity of longitudinal sound, which (in the case under 
consideration) does not interact with the spin wave in 
the linear apprOXimation, nonlinear excitation of a 
low-frequency modulated longitudinal sound wave by a 
high-frequency magnetization soliton can take place. 
This effect is analogous to the excitation of electro
acoustic waves discussed inCt1 (also seeC51). 

In describing weakly nonlinear magnetoelastic oscil
lations we shall start with tile equations proposed inC6J 

for treating parametric phenomena in ferromagnets. 
For the case of disturbances propagating in the direc
tion of a uniform applied magnetic field (along the z 
axis) and depending on the variables z and t, these 
equations take the form 

f)M+ ( 2b. f)U,) f)u+ 
--=-ig B,-4nM,--- M+-igb.--

f)t M, f)r. f)r. 
f)'M+ f)2M 

+iga(M'o;;--M+ f)/)' M,=(Mo'-M1.2 ),\ 

f)'u+ f)'u+ b' f) --= v,' __ + ___ M,M+ 
f)t' az, pM,' az 

(1) 

f)'u, 2 f)'u, b. f)Mz' 
--=v, --+----

at' az' pM,' f)z ' 

in which M+ and u+ are the circular components of the 
magnetization and the displacement, respectively, g is 
the electron gyromagnetic ratio, O! is the inhomogeneous 
exchange constant, bl and b2 are the magnetostriction 
constants, V, and vt are the velocities of longitudinal 
and transverse sound, p is the density of the ferro
magnet, and Bo =H + 41TMz is a constant magnetic induc
tion that appears when the magneto static equations are 
integrated under the assumptions adopted concerning 
the character of the disturbances. Cll In writing Eqs. (1) 
we have neglected the anisotropy field as compared with 
the external field and have taken the conservation of 
I MI into account. 

It is known that linearized spin waves propagating 
along the magnetic anisotropy axis interact only with 
transverse sound. C7l In the following we shall there
fore be interested in weakly nonlinear disturbances 
whose fast phase corresponds to one of the branches 
of the linear dispersion equation for interacting spin 
and transverse sound waves. Bearing this in mind, we 
express ~ and u· in the form 

and assume that MJ" qJ, UJ.> 1/1, M", and u" are slowly 
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varying functions of the coordinates and time. It is 
easy to derive equations for these functions from Eqs. 
(1), but since they are very cumbersome we shall not 
give them here. We shall be interested in weakly non
linear solutions of these equations that represent dis
turbances propagating along the z axis with some ve
locity V. 

Now we pass to the wave system by meanlt of the 
transformation Z =Z - Vt, T =t, introduce the formally 
small parameter e associated with the smallness of the 
amplitudes, define the reduced coordinate ~ = eZ and 
time T = e 2t, and expand the slowly varying functions in 
power series in e with slowly varying coefficients: 

-
O(t,'!")-~ enO'n)(t,'!"). (3) 

n_' 

On substituting expansion (3) into the equations for 
the slowly varying functions and equating the coefficients 
of different powers of II to zero, we find that w and k 
satisfy a linear dispersion equation for coupled spin and 
transverse sound wavesC71 : 

(cu.-cu.(k» (cu.'-cu,'(k) )-gb,'k'/pM,=O, 

where 

cu.=g(B.-4nM,+aM,k') , cu,=kv" 

V coincides with the group velocity 8w/8k of these 
waves, u(1) and M(l) are connected by the relation 

(4) 

(5) 

(the ambiguous sign is to be chosen so that s >0), and 
the longitudinal displacement is determined by the mag
netization amplitude in accordance with the equation 

f) (I) 
u, b. M(!)' 

M'(V' ') (1. . po-v, 
(6) 

Finally, M<f) and qJ(O) are determined by the closed set 
of equations 

(7) 
f) (0) ()' () (0) , ()' a'M'" 

2M(!)-'P-=--..!!!..M(I) (_'P_) +~ __ 1._+d(M(t)3 
1. a, ()k'.J. a~ flk' fI~' .J.' 

in which 

~=_ 2 (cu-cu,) {(V'-v,')-~ av. cu'-cu,' 
flk' 2cu (cu-cu,) +<0'_<0,' 2 ak <0-<0. 

-(V-v _ cu-cu.)' cu'-cu,' } 
, k (cu-cu,)' 

, • 4b' } d =.!.. cu -cu, {ak'-4tt + cu-cu, _ • 
Mo cu'-cu,'+2cu(cu-cu.) gM. pMo'(V'-v,') 

v,=2gaMok. 

We note that up to now we have considered only the 
case of nonresonant nonlinear generation of low-fre-
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quency longitudinal sound when the group velocity of the 
coupled magneto elastic waves differs appreciably from 
the phase velocity V1 of linear longitudinal sound (V2 

_ v~ - eO). 

Equations (7) are well known in geometric optics, and 
the substitution F =M'f> ell> (0) reduces them to the non
linear parabolic equationcu 

(7a) 

The simplest solution of this equation is a nonlinear 
plane wave of constant amplitude whose frequency de
pends on the square of the amplitude. Because of 
Lighthill's condition, Cal this stationary solution is un
stable against sufficiently long-wavelength perturba
tions for wave numbers satisfying the inequality 

'V=~(~)-'>O 
2 Ilk' . (8) 

In the region in which a nonlinear wave of constant am
plitude is unstable, there exist, generally speaking, 
stationary solutions of the type 

(9) 

in which the constant C and amplitude M<}>(t) depend on 
the boundary conditions. In particular, in the case of a 
solitary wave, 1> for which 

M.L(')(±oo)=O, (IIM1')la~)t_±~=O, M.t)(~.)=M_ 

(IIMi') liJ~h_to=O 
(10) 

(M max is the maximum value of the transverse compo
nent of the magnetization, which is reached at some 
point to), we have 

(11) 

Above we have presented a few well known results of 
the analysis of Eq. (7a). In the following we shall make 
these results more specific for application to the case 
of weakly nonlinear magnetoelastic oscillations under 
consideration. When the time comes for numerical 
estimates we shall use the following values: 

Mo"'1O' G, Ho"'10'Oe, 0:"'10-12 em', v,""3·10' cm/sec, 
v,"'5·1O' cm/sec, Igl =2·10' Oe-! . sec-! , b,"'b,"dO' G', p"'10 g/em3 . 

It is known from the linear the roy that the effect of 
the magnetoelastic interaction on the dispersion be
comes stronger on approaching the magneto elastic res
onance defined by the condition 

(12) 

The wave numbers corresponding to this condition are 
given by the formulas 

k(,,~= __ V_'_[1=F(1_ 4lgl~0loool )'1'] 
r 2lglc:tMo OOo=gHo, (13) 
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which yield k~l> '" 106 cm-1 and k~2> '" 107 cm-1• 

The effect of the magnetoelastic coupling is negligible 
in the wave-number region in which I we I and wt differ 
in order of magnitude. In the following we shall there
fore always assume that I we 1- Wt. We shall first con
sider the wave-number region 

(14) 

which we shall call the extraresonance region. Here 
the frequency separation characterizing the deviation 
of the dispersion of proper spin and elastic waves is 
proportional to the small parameter J.I., and in the case 
of a spin wave it has the formC71 

(15) 

From this it follows that the coefficient ~ virtually 
coincides with the value 

~=-lgIMo-'(o:k'-4n), (16) 

appropriate for a proper spin wave. As regards the 
derivative of the group velOCity, when II we I - wt I - Wo 

it, too, is given by the expression 

iI'oo/ilk'=-2Iglo:Mo, (17a) 

corresponding to a proper spin wave, whereas closer 
to the magneto elastic resonance we should have 

iJ'oo 4/100.1 , 
.- "" - ---(v,+v.) . 
akz (f)/'-CiJ/' 

Finally, 

Whence it follows that 

1/>(') =<p(0)+n/2, 00,> I 00, I; 

",(0) =<p(o)-lt12, 00,< I 00.1. 

(17b) 

(18) 

(19) 

These results allow us to draw the following conclusions. 

At sufficient distances from the resonance we have 

v "" _1 ( k' _ 4n) 
4Moz a 1 

(20) 

from which it follows that the magneto elastic coupling 
affects neither the width of the solitary wave nor the 
region in which such a wave can exist, that region being 
determined, as in the case of a proper spin wave, by 
the inequality 

k'>4n/o:. (21) 

This region usually lies to the right of the near mag
netic resonance (k =k~l», and it does so lie for the nu
merical values that we have adopted. For wave num
bers such that Ik2 -41T/al -41T/a and under the assump-
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tion that M maxiMo -10-1, the width of the soliton is 
A - (IIM~axt1/2_7 ·10-6 cm and decreases with increas
ing k, reaching the value A -10-6 cm at k - k:2). The 
part played by the magnetoelastic coupling is as follows: 
The solitary magnetization wave "accumulates" the dis
turbance of the elastic-displacement field. Then the 
perturbation of the transverse-displacement field is 
due to the linear coupling (5) and is therefore char
acterized by the same t dependence as the magnetiza
tion at the amplitude U!max =sMmax . Numerical esti
mates show that u!max -10-12 cm for wave numbers such 
that I k 2 - 471/ a I - 471/ a and decreases with increasing 
k, reaching a value U! max -10-13 cm at k - k:2). The per
turbation of the longitudinal-displacement field is as
sociated with the purely nonlinear magnetoelastic ef
fect (6) and, as can easily be seen, leads to the t de
pendence 

u;"(~)= 2b, (k,_4n)-'I'M_{1_th Mm .. (k'- 4n)'/'1 _ I} 
p(v<,- V') a Mo 2Mo a ~ ~o • 

(22) 

The amplitude of the longitudinal displacement is of the 
order of 10-12 cm and changes little within the range of 
wave numbers under consideration. 

Close to the magnetic resonance, in the region where 

11-1 <Uel/<ud -10-'-10-" 

the magnetoelastic interaction leads to qualitative 
changes. In fact, in this region we have 

Igl (ak'-4n) <u,'-<u,' 
V= 

8tM,krv, (v,+v.)' 
(23) 

and the width of the soliton depends on the elastic char
acteristics of the medium. Further, it follows from 
Eq. (23) that in the vicinity of the near resonance, 
where a(k~1»2 _ 41T < 0, a soliton can appear for wave 
numbers wt > I we I, whereas in the vicinity of the far 
resonance, where a(k:2»2 - 41T > 0, a soliton can appear 
for wave numbers wt < I we I. In other words, in both 
cases the region in which a soliton can arise lies to the 
right of the resonance value of k. We should note the 
appearance of a region in which there can exist a soli
ton corresponding to a spin wave modified by the mag
netoelastic interaction for such values of k that ~ > O. 
This is due to the fact that a2w/ak2 for the modified 
spin wave is positive to the right of k =kr • It is also 
important that the soliton broadens because 

1 {)'<u/{)k'i ;$>I{)v,./{)kl 

near the resonance. In particular, for the numerical 
values we are using we find A (1) -10-4 cm and A (2) -10-5 

cm near the respective resonances k~) and k~2). Fi
nally, we note that on approaching the resonance, the 
intensity of the disturbance of the elastic-displacement 
field accompanying the magnetization disturbance in
creases strongly. Numerical estimates give 

i. e., these quantities are one or two orders of mag
nitude larger than their values far from the resonance. 
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Now let us consider the modulation of the acoustic 
branch of the OSCillations, whose frequency separation 
has the following form in the extraresonance region2): 

(24) 

It is convenient to use the function Fu =u(1) exp(i¢(O», 
which satisfies a nonlinear parabolic equation with the 
coefficients a2w/ak2 and A,. = A/s2. Since in the model 
under consideration the nonlinearity of the elasticity 
equations and the deviation from the linear dispersion 
law are due to magnetostriction, these coefficients owe 

·their origin to the magnetoelastic interaction, and the 
leading terms in the expansion of these coefficients in 
the magnetoelastic interaction constant are given by the 
formulas 

(25) 

(26) 

From this we find that 

, ak'-4n 
v_""flgl p<u,(6l,-I<u.I) -( + )" 

v, Ve 
(27) 

in the wave-number region wt - I we I of interest to us. 
Then a solitary wave corresponding to an acoustic wave 
modified by the magneto elastic interaction will be de
scribed by Eq. (11) with M! replaced by U! and " by "y. 
The amplitude of the magnetization disturbance will be 
related to U max by the formula 

from which it follows that 

",(O'=<p(O'+nI2, <u,< 1 <u,I; 

1jl(O, =<p(O'-nI2, <Ul> 1 <U, I. 

(28) 

(29) 

It follows from Eq. (27) that solitons can arise near 
both resonance values of the wave number. Moreover, 
in the vicinity of the near resonance the region in which 
a soliton can exist is determined by the condition w t 

< I we I, and in the vicinity of the far resonance, by the 
condition wt > I we I. In other wordS, in both cases the 
region in which a soliton can exist lies to the left of the 
resonance value of k. Using the numerical values 
adopted above together with the values umax/a -10-2 and 
a -10-7 cm (a is the lattice parameter), we obtain the 
respective values A~l) -10-4 cm and A~2)-10-5 cm for 
the width Au - ("u U~ax)-1/2 of the soliton. Here the maxi
mum deviation of the magnetization reaches 1O-1M o• 
Thus, we see that the widths of solitary waves corre
sponding to spin and elastic waves are of the same or
der near both magnetoelastic resonances. This is due 
to the fact that in the frequency region where I we I - Wt, 

these widths differ by the factor ff, which is of order 
unity close to the resonances. 

In discussing modulated magneto elastic waves in the 
intraresonance region we shall limit ourselves for sim
plicity to the exact resonance, i. e., we shall assume 
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that the wave number is equal to one of the resonance 
values (13). Using the well known expression for the 
frequency separation at resonance, [7] 

and retaining only the leading terms, we obtain the 
following expressions for the coefficients in Eq. (7a): 

1l(±)",,_J!!..[ak'_4lt_W(±)-Wr 4b.'] 
2M, IglM, pM,(V'-v,')' 

iI'wC±) "" v,' (1 4IglaM:lw,I). 
ilk' 4(wbt )-wr) V, 

From this it follows that at k =k<;) we have 

,(I)"" 4nlgl ( (±)(kU»_ (.» 
\, M v,z <t) , {J)", 

(31) 

(32) 

and a soliton can arise for the branch with positive 
deviation from resonance. In this case the width of the 
soliton will be A (.) (k ~1) -10-4 cm. 

At k =k~)we have 

and a soliton can arise for the branch with negative 
separation. In this case the width of the soliton is 
A <-)(k<;») -10-5 cm. 

(33) 

In completing our discussion of the intraresonance 
region, we note that 

(34) 

Numerical estimates give the following values for the 
amplitudes of the transverse elastic displacement: 

Now let us consider the excitation of low-frequency 
longitudinal sound vibrations by high-frequency weakly 
nonlinear magnetization disturbances under such con
ditions that the phase velocity of longitudinal sound 
differs little from the group velocity of the high-fre
quency disturbance, i. e., such that 

(V+v,)iv,=±e', I e I «1. (35) 

We shall assume that condition (35) is satisfied far 
from the magnetoelastic resonances of the linear 
theory, where the magnetoelastic interaction between 
spin waves and transverse sound waves can be ne
glected. For the case under discussion, this is equiv
alent to assuming that b2 = O. Since V = 2gaM ok for the 
spin wave, it follows from condition (35) that the wave 
number of the high-frequency exciting disturbance will 
be k'" v ,/21g I aM 0 - 107 cm-1 • Thus, it is a matter of 
a short-wavelength high-frequency magnetization dis
turbance, for which, however, a continuous descrip
tion can still be used. 

As the initial set of equations we can use Eqs. (1) 
with b2 =0. Using a coordinate system moving with the 
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group velocity of the high-frequency disturbance and 
assuming a weak spatial dependence of the unknown 
quantities (l; = £Z), we can put these equations for the 
steady-state case (a/aT=O) in the form3): 

(36) 

where w = au,/az. 

From the third of Eqs. (36) we find that the expan
sions of wand MJ. in powers of 8 begin with the second
order terms, and indeed 

ow") = __ b_, _ oM~') 
iJ~ 2vz'pMo' o~ 

(37) 

Expanding the slowly-varying phase qJ and the frequency 
w in powers of e, we obtain the correction to the fre
quency from the second of Eqs. (36), 

W\2)= ___ ' W (')+ aM _qJ ____ ' __ .L_ (38) 2gb ( iI (0)), gaM o'M(') 

M, g, iI~ Mi' o~' ' 

while the first of Eqs. (36) gives 

(39) 

Considering only weakly nonlinear disturbances of 
the solitary-wave type, we obtain 

oqJ(') 
--=0 

iJ~ 
(40) 

from Eqs. (37) and (39). Then by substituting Eqs. (40) 
into Eq. (38), we can express the correction to the fre
quency in terms of the maximum value ofthe transverse 
component of the magnetization, 

(2)=_~M2 >0 
W 2pv/Mo3 rna;; t 

(41) 

and can also determine the spatial dependences of M(2) 

and U~2) in the form 

(42) 

(2) ( M;;"'a )'''{ (b.' )'/. I} u, (1;)= 2p.;T 1-thMm= 2pvz'aM," 11;-1;,. 

This result is similar to the result given in[4] for the 
excitation of electroacoustic waves. It is important 
that the parameters of the modulated waves under con
sideration are determined by the magnetostrictive char
acteristics of the medium; numerical estimates give 
A-l0-3 cm. 

The authors thank L. L. Buishvili for his interest 
in the work. 
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1)We shall not pause here to consider other possible stationary 
solutions of this type, e. g., nonlinear waves with periodi
cally varying amplitude. 

Z)We shall consider only the branch of transverse acoustic 
vibrations that interacts strongly with the spin branch. 

S) For simplicity we neglect the effect of demagnetization. 
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Superc()nducting contacts with a nonequilibrium electron 
distribution function 
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The effect of nonequilibrium electrons on the current-voltage characteristics of superconducting contacts is 
found. In the case of bulk superconductors. when the length of the contact a> ~Tl/4 superconductivity is 
stimulated in the contact and the current through the contact increases considerably under small voltages. 
In film contacts nonequilibrium effects lead to suppression of the superconductivity. The current-voltage 
characteristic in this case has a portion with negative resistance and this leads to experimentally observable 
voltage discontinuities. 

PACS numbers: 74.50.Tk 

Superconducting contacts (film bridges, point con
tacts, bulk superconductors, etc.) possess, in a num
ber of cases, volt-ampere characteristics that differ 
from the hyperbolic dependence found for sufficiently 
short contacts. [ll For example, portions correspond
ing to voltage discontinuities at constant current can 
appear in the current-voltage characteristics of con
tacts. [2,31 A possible explanation of these effects is 
that the energy distribution function of the electrons in 
the contact is a nonequilibrium function. 

At currents exceeding the critical value a normal 
component of current flows through the contact and 
gives rise to a change in the electron distribution func
tion. As a result the superconducting order parameter 
and, correspondingly, the magnitude of the supercon
ducting current through the contact change. The 
changes in the current-voltage characteristic of the 
contact which then arise depend substantially on the 
dimensions of the contact. 

When a current flows through the contact, the order 
parameter and the gap in the electron spectrum are 
smaller in the region of the contact than outside the 
contact. Electrons whose energy is less than Ao, the 
value of the gap outside the region of the contact, can
not go beyond the boundaries of the contact. For these 
electrons the time T e for establishment of thermal 
equilibrium is determined by the collisions withphonons 
and is very long at low temperatures. Therefore, the 
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distribution function of these electrons is greatly 
changed even in a weak electric field. 

If the dimensions of the contact are small, the chang~ 
in the distribution function of these electrons does not 
lead to substantial changes in the current-voltage char
acteristic of the contact. However, if the size a of the 
contact exceeds the characteristic length 1] = ~T 1/4 

(here ~ is the '''size'' of a super conducting pair and 
T=(T-Tc)/Tc; Tc is the critical temperature), then 
this change in the electron distribution function leads 
to stimulation of superconductivity in the contact. As 
a result, even in a weak electric field, a large in
crease in the current through the contact arises. 

Electrons whose energy is higher than the value of 
the gap outside the contact diffuse out of the contact. 
Their relaxation time is determined by the diffusion 
rate. The effect of these electrons on the volt-ampere 
characteristic of the contact is substantially different 
for bulk-superconductor contacts (the th;ee-dimen
sional case) and for film bridges. In the three-dimen
sional case the change in the distribution function of 
such electrons is small and can be disregarded. In a 
film, however, diffusion of the electrons is made dif
ficult because of the two-dimensional character of their 
motion, and the electron distribution function is pro
portional to the logarithm of the long energy-relaxation 
time. 
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