
plained as follows. The particle density in the unper­
turbed field decreases sharply when Re> 8 cm (N(Re 
= 10 cm)/N(Re=8 cm)::; 10-1). During the perturbation 
the drifting shells expand outwards to Re - 10 cm and the 
particles go over from the region of absolute confine­
ment, X < Xc, into the unstable state, X' > X~, which 
leads to an increase in the count of the second detector. 
The analytic expression of the functional dependence 
n=n(x', T) (Fig. 4) can be represented in the form 

n=exp(-lh')' D"'4·1O' exp(-a/X.c'), 
a=O.7, l(.c';;'O.1, (1.,=n/2, (5) 
a=O.22, X.c';;'O.045, (1.,"'34°, 

where X~ is the peak value of the adiabaticity parame­
ter. The quantity D is the effective coefficient of 
pitch-angle diffusion, and describes the rate of non­
adiabatic losses due to "scattering" by the inhomo­
geneities of the magnetic field during the perturbation. 

Thus, the adiabatic reversible variation in time of 

the magnetic field (T3H/H« 1) gives rise to a reversi­
ble evolution of the particles if by chance the condition 
X':s Xc is fulfilled during the perturbation. The virtual 
coincidence of the critical value of X.L for the static 
dipole field C2 ] with X~c for the perturbed state is ap­
parently explained by the fact that the inhomogeneity of 
the resultant field is determined primarily by the di­
pole term (V(~-h)~VH~). 
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We consider the effect of a weak inhomogeneity in the plasma on the structure of the Langmuir spectra, 
taking into account the induced scattering by ions. We determine, in the framework of a one-dimensional 
model, the general properties of the solution for the spectral density of the Langmuir oscillations with a 
source and a sink for plasmons. In the case when the role of the induced scattering is relatively small we 
obtain numerical solutions. 

PACS numbers: S2.3S.Ck 

The theory of a weakly turbulent plasma shows that the 
processes of induced scattering of Langmuir oscillations 
by ions lead to a plasmon energy spectral transfer to the 
small wavenumber region and in the case of a one-di­
mensional plasma to the formation of the so-called 
"Langmuir condensate" at k = O. [l] By virtue of the 
plasmon-number conservation (w~ = w~+ 3k2V~,,= const), 
their propagation in a non-uniform plasma is accom­
panied by drift in wavenumber space which prevents 
the formation of a condensate, so that, as we shall 
show belOW, there may exist stationary solutions for the 
spectral energy distribution of the Langmuir oscilla­
tions. 

We consider the one-dimensional stationary problem 
with an external source which generates Langmuir 
waves in the direction of the density gradient in the 
plasma. 1) Taking the direction of the z-axis in the 
direction opposite to that of the density gradient in the 
plasma and assuming, for the sake of argument, that 
the plasma is isothermal and that the Langmuir oscil-
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lations are generated in a narrow wavenumber interval 
close to k.=-ko(ril»ko»(me/m,)1/2ril) we get, ne­
glecting the linear damping, thermal noise, and spon­
taneous scattering, for the one-dimensional spectral 
density Wof the Langmuir oscillations2) (see, e.g., Cl]): 

..!...aw = P6(x+xo)+AWJ W(x')$(x+x')sign(x'-x)dx'; (1) 
L ax 

L= I rD {)1{)nZ"'p I-I >1, A =~ m., 
18 m, 

y ( Y') $(y)=-=a(y)exp -- , 
Y2n 2 

aCyl = \ 1- ~ e-"I'S e"I'd-r 1-' , 
.~ 

rD J W(x(kz) )dkz=U.lnT, 

where U, is the energy density of the Langmuir oscil-
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lations, n the plasma density,' nTw~P the volume power 
density of the Langmuir oscillations source. 3) As the 
function a(y) is of order unity everywhere (a(y) = 1 
when Iy I «1, a(y) =4 when Iy I » 1) we shall in what 
follows for the sake of simplicity put a(y) = 1. 

The relative part played by the induced scattering in 
the spectral drift of the plasmons when we take non­
uniformity into account is characterized by the parame­
ter 8l=APL2. 

When a« I, when the scattering processes playa 
small role, we have the following solution of Eq. (1) (to 
first order in a)4): 

if z<-z. 

if x>-x. 

i. e., the induced scattering by ions expresses itself 
only in a certain increase in the level of the spectral 
density for 5) 0 <x <xo: 

(2) 

W=PL(1+a); x>1, x.-x> 1. (3) 

To see the form of the solution for a::: I, we deter­
mine some of its general properties. 

1. Integrating (1) (using the condition W(- oo)~O), 
we get 

W=O if x<-x., W=PL if x-x.>1, 

lim W(-x,+e)=PL (8)0). 

2. When Ix I » 1 and Xo - Ix I » 1 we can, assuming 
that the characteristic scale of the change in W is much 
larger than unity, get from (1) the following relations 
between W+=WI,,>oand W-=WI,,<o: 

W+(x) 
In---pr;- = ALW-( -x). (4) 

One sees easily that the only solutions of the set (4) are 

W+=W,+=const, w-=W,-=const. 

When a» 1 

W,+=PL(1-1/a)e, 

W,--PL/a=1/AL. 

(5) 

(6) 

3. One shows easily that against the constant-level 
background Wij there can exist solutions that have the 
character of oscillations, W~ = W~ + W~. Assuming the 
amplitude of the oscillations to be small and linearizing 
Eq. (1) with respect to them we get 

i1W'" S (x+x') [(z+x'): ] --= ±ALW,'" W"'(x') ---=- exp ---2- dx' 
i1x Y2n 
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Writing W~ in the form 

we have for the complex amplitudes 

W,-=-ALW, -e-x'''W, +. 

Hence 

x'= In (W,+W,-(AL)') 
+tnm, 

(m=±1, ±3, ±5, ... ), 

W,+/W.-=±i(W,+/W,-)". 

FIG. I. 

(7) 

(8) 

For a» 1 we get for the oscillatory solution with the 
smallest value of I Imx I (m = ± 1) 

Re x=(Hln a)''', 11m x I =n/4(Hin a),/o. 

Although the solution which has the form of oscil­
lations was obtained in the linear approximation in their 
amplitudes and for the case where Ix I» I, the pos­
sibility for the existence of such solutions gives us 
grounds for assuming that for a::: 1 the change from W(j 

to W'O in the region where Ix r::: 1 must in all likelihood 
be accompanied by the appearance of non-linear oscil­
lations in W which are damped with increasing Ix I . 

4. By integrating Eq.(l) we can obtain the relation 

e-'''' 1 W-
2SW(x)--=-dx=W,++-In-' , 

Y2n AL PL 

from which it follows (see (4) to (6)) that the integral of 
Wover the region Ix I :51 is, by order of magnitude, not 
larger than PL. 

Taking the general properties of the solUtion, obtained 
above, into account we may expect that the spectrum of 
the Langmuir oscillations has for a::: 1 the form shown 
in Fig. 1. 

We solved Eq. (2) for ~:5 1 numerically by the method 
of successive approximations (xo= 10). Fig. 2 shows 
the results of the numerical calculation for a = 0.1; 
8l = O. 5; and a = 1. O. The peak in the spectral density 
at x - 1 corresponds to the appearance of oscillations in 
W when changing from Wti to W'O. However, since the 
damping rate of the oscillatory solution (see (7» is ap-
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proximately equal to .j (IT/2) at a = 1, it is practically 
completely damped even after half a period. 

The analysis of Eq. (1) and the results of a numerical 
calculation thus show that the presence of a weak non­
uniformity makes it possible that there exist stationary 
Langmuir spectra of the kind considered (with a plas­
mon source and sink). We note that in a uniform plasma 
there are no finite stationary spectra (formation of the 
"condensate"). It is not excluded that stationary solu­
tions are also possible in a non-uniform plasma when 
there are no external sources. A qualitative analysis 
of Eq. (1) for that case shows that the position kl of the 
spectrum, its width f5k and its energy U, are (for 
rD kl < (me /m,)1(2) interconnected through the relation: 

( m.)'" U, 2 - -LrD k,M-1. 
m, nT 

According to the criterion for the modulational in­
stability[4) U,/nT>r~f5k2 it follows from this that when 

the strong turbulence effects will not manifest them­
selves, Le., such a spectrum will be stable. However, 
this problem, like the problem of the stability of the 
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solutions (with sources) found above, needs an addition­
al study. 

1)Lundin[2) has considered the evolution of the spectrum of the 
Langmuir oscillations (without sources) close to the minima 
of the density of a weakly non-uniform plasma. 

2)In order that we could use near k = 0 the equations of geomet­
ric optics for W, it is necessary that the width of the region 
in which the geometric optics approximation (Ok - (ri, Lo) II 3) 
is inapplicable be smaller than the width of the kernel of the 
integrand in (1) (AI?). Hence we have for the characteristic 
size of the non-uniformity: Lo > (mi /me)3/2rD' 

3)In deriving (1) we neglected a term with the derivative 8W / az. 
This neglect turns out to be valid when 

( I a In P I I iJ In ko I) 
(kOrD)' --a;- + --a;- '" 1. 

4)Taking the linear Landau damping into account shows that 
when krD"'" (21nLr1/2 (we assume that ko rD < (2lnLr tl 2) the 
solution decreases fast (plasmon "sink"). 

5)Such an increase in the level of W corresponds in fact to tak­
ing into account the term 2N/k in Eq. (2.5) in Lundin's pa­
per. [2] If the plasmons moved close to the plasma density 
minimum along a closed trajectory (without source or sink) 
the solution with 8W / 8k = 0 for I k I > AI? could not be a station­
ary one as an increase in the level of W would at each reflec­
tion lead to an increase of W with time; this agrees with the 
results of the above-mentioned paper. 
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