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The resonance multi photon transition between two levels due to the influence of a strong, low-frequency 
electromagnetic field is investigated in the adiabatic approximation. The case when a third level, 
intermediate between the two given ones, is also resonant, is investigated. The applicability of time­
dependent perturbation theory to this problem is discussed. Results are presented for the transition 
probabilities as a function of the resonance multiplicities, the multiphoton matrix elements, and the 
resonance detunings. It is shown how the present theory can be applied to resonance transitions in real 
atoms, which are irradiated by a strong electromagnetic wave. 

PACS numbers: 32.1O.Vc 

1. INTRODUCTION 

The theoretical analysis of experiments on multipho­
ton excitation of atems by an electromagnetic field be­
comes considerably complicated when the energy of 
some intermediate discrete atomic level turns out to be 
close to an integer number of the absorbed quanta. The 
basic difficulty in the solution of the problem lies in the 
fact that standard time-dependent perturbation theory 
is not valid near a resonance. On the other hand, the 
development of a resonance approximation is hampered 
by the "double resonance nature" of the system. 

The basic method, used in the present work for de­
termination of the multiphoton transition probabilities, 
is the adiabatic approximation. [11 It is mathematically 
equivalent to the WKB approximation for the problem of 
above-barrier reflection. The adiabatic approximation 
is applicable when the frequency of the external electro­
magnetic field is small in comparison with the separa­
tions between the atomic levels. In actual fact the pres­
ent restriction is not very stringent due to the same nu­
merical reason, according to which the WKB approxima­
tion usually works well even for not too large quantum 
numbers. This was demonstrated by Zaretskir and 
Krainov[21 in application to a calculation of the transition 
probabilities in a two-level system. 

The problem of resonance excitation for a real atom 
is very complicated. The basic qualitative aspects of 
this physical process can be seen from an idealized 
problem, whose solution is also presented in the present 
article. The idealization consists of the replacement of 
a real atom by a system consisting of three nondegener­
ate levels having energies £1. £2' and £3' Thus, all non­
resonant discrete states of the atom and the states of the 
continuous spectrum are discarded. The problem con­
sists in the determination of the probability for the mul­
tiphoton transition 1 - 3, and also the determination of 
the populations of the levels 1, 2, and 3. For example, 
the solution of the present problem describes the case 
when a three-level system is artificially created from a 
degenerate level by some kind of constant field. 

In Sec. 2 the simpler problem of a multiphoton transi-
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tion in a two-level system is considered first. The spe­
cial case when the transition probability is proportional 
to the time (the so-called linear regime) was investi­
gated by Zaretskii and Kralnov. [21 The calculational 
method is borrowed from the work of Bychkov and 
Dykhne, [31 which is devoted to the breakdown of semi­
conductors by a low-frequency electromagnetic field. 
The population of the states in a three-level system, 
when level 2 is resonant, is calculated in Sec. 3 by that 
same method. In Sec. 4 different limiting cases of the 
obtained general expression are considered, for which 
the results have a simple form and meaning. Finally, 
in Sec. 5 the competition of the resonance transition 
1- 2 - 3 with the direct transition 1- 3, which arises 
upon moving away from resonance, is investigated. Ap­
plications of the present theory are discussed in the 
Conclusion. The question of justification of the method 
is examined in the Appendix. 

2. A TWO-LEVEL SYSTEM IN A LOW-FREQUENCY 
FIELD 

In the adiabatic approximation the variation of the ini­
tial (lower) state of a two-level system due to the influ­
ence of an external field V=desinwt during a period of 
time T = rr / w is determined by the unitary matrix 

(1 ) 

(see the article by Bychkov and Dykhne[31). Here 51 and 
52 are defined by 

-,- fr/f» 

S,= S E,(t)dt- ; , S, = S E, (t) dt + ~ , (2) 
o o 

where the quantity 

E", (t) =+'/, (f'+4 V,,') ". (3) 

denotes the system's energy in the adiabatic field, [21 dl2 
is the dipole matrix element connecting the given levels, 
and'f (1/2) E are the unperturbed energies of these lev­
els. The correction terms ± rr/2 in Eqs. (2) arise upon 
allowance for the next order (i. e., the next after the 
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lowest order) WKB approximation. [21 The condition for 
the adiabatic method has the form f » w. 

Furthermore, the notation 
fa 

R=iexp { i J [E,(t)-E,(t) Idt}, (4) 
o 

is introduced, where t12 is the turning point in the com­
plex time plane, determined by the condition E l (tl2) 
;E2(t12). In the article by Zaretskil and Kralnov[21 it 
was shown that the quantity R - g'K as g' - 0, where K de­
notes the (odd integer) number of quanta absorbed. 
From the quasiclassical point of view, the quantity R 
denotes the coefficient of above-barrier reflection. 
Finally, D; (1- IR 12)1/2 denotes the transmission coef­
ficient. In perturbation theory the quantity R is of the 
order of the multiphoton matrix element. The quanti­
ties Sl.2 have the meaning of the change in the classical 
action of the states 1 and 2 during the period rr/w. 

The variation of the system after N periods, i. e. , 
during the time t; rrN / w, has the form AN. In order to 
evaluate AN it is first necessary to reduce the matrix 
A to diagonal form. In this connection the problem 
simplifies if it is taken into consideration that, to within 
terms of lowest order in R, expression (1) can be writ­
ten in the form 

A=e's, (R1 -R ) (5) 
l+iy . 

Here the quantity y=rr(e-Kw+Ae)/w characterizes the 
de tuning of the multiphoton resonance; Af is the dynami­
cal Stark effect, A£ :>:~2 g'2 /4£. 

Carrying out the indicated procedure, let us deter­
mine the probability for occupation of the upper level 2: 

R' [ Olt 1 
w,(t)= R'+(y/2),Sin' YR'+(1/2 )'-n . (6) 

In analogy to the case of exact resonance for K ; 1, [41 
in the exact K-photon resonance (y;O) the upper and 
lower levels are identically populated, i. e., population 
inversion is impossible in a two-level system. Formula 
(6) was derived by Manykin[Sl in the regime of perturba­
tion theory for the multiphoton matrix element (R - g'K) 

and for the limiting case of an exact resonance (y; 0). 

Expression (6) becomes invalid when the resonance 
de tuning y is so large that the usual nonresonant popula­
tion of the upper level, determined by first order per­
turbation theory, begins to dominate. The correspond­
ing condition has the form (du g' /e) > R/Y. In the linear 
regime in time (du lff/e«R/y«I, t«l/yw), from 
formula (6) we obtain the probability per unit time of 
the transition 1-2 found by Zaretskil and Kral'nov. [21 
The corresponding law of energy conservation has the 
form e -Kw +AE ;0. 

The results stated here are generalized below to the 
case of a three-level system. 

3. A THREE-LEVEL SYSTEM IN A LOW-FREQUENCY 
FIELD 

In the case of a three-level system placed in a low­
frequency field, 3 x 3 matrices appear instead of 2 x 2 
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matrices. The time evolution of the system, conSisting 
of levels with energies flo f 2, and f 3 , during the period 
rr/w is now determined in the resonance case by a prod­
uct of 3 x 3 matrices, one of which contains the block 
matrix for the transition 1 - 2 and the second contains 
the block matrix for the transition 2 - 3. Substituting 
the matrix (5) into the expression for each partial ma­
trix and multiplying, we find the matrix A (1- 2 - 3) of 
the resonance transition!): 

(7) 

Just as for the two-level system, only the main terms 
are retained in Eq. (7) The quantities 

n(e,-e,-KOl+Lle,,) 

0> 

n (e,-e,-nOl+Lle,,) 

0> 

appearing in Eq. (7), characterize the detunings of the 
resonance 1- 3 and 1- 2, respectively. The quantity 
R' is defined in analogy to (4) with the replacement of 
1- 2 by 2 - 3; Ae31 and Ae2l denote the dynamiC Stark ef­
fects for the corresponding detunings. 

The energies E l • 2• 3(t) are found from the solution of 
the cubic equation for the adiabatic approximation. The 
turning pOints (E j (t) ;E J(t)) are radical singular points 
in the complex time plane. We note that, as proved in 
general form by Zaretskil and Kralnov, [6] the quantities 
Rand R' are proportional to g'" and g'K-n, respectively, 
in the range of validity of perturbation theory in if. 

The eigenvalues 1 +ix (x« 1) of the matrix A(I- 2- 3) 
(formula (7» are determined by the solution of the cubic 
equation 

(x'-~') (x+~-2'() -R'(x-~) -R"(x+p) =0. (8) 

All three roots Xl. 2.3 of this equation are real; this is 
obvious from the conservation of total probability in the 
system. 

Over Nperiods (t;rrN/w) the state vector is deter­
mined by the expression AN. Diagonalizing A and raising 
the diagonal matrix of the N-thpower, weobtain the am­
plitudes of states 1 and 3: 

A, (t) =[p(x,-x,) (x,-xtl (x,-x,) I-'[x,x,(x,-~) (x,-x,) exp (ix,Olt/n) 
+ two cyclic permutations 

A,(t) =RR'[ (x,-x,) (x,-xtl (x,-x,) 1-'[ (x,-x,) exp (ix,,,,t/n) 
+ two cyclic permutations (9) 

An expression for A 2 (t) is not given since we shall deter­
mine the population of the second level from the law of 
conserv~nof the number of particles. 

We $ee. that in an external field each of the three levels 
e1> E., ~ £3 is split into three quasilevels. The sepa­
ration between these quasilevels is equal to 

respectively. If the values of f3 and y are increa.sed 
(departure from the resonance approximation), an infi­
nite number of additional quasilevels appears whose en­
ergies differ, according to Floquet's theorem, from the 
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energies of any three basis levels by nw, where n is an 
arbitrary integer. 

Expressions (9) are definitive when (3-y-R, R'. In 
such form they are not very clear due to the cumber­
some Cardano formulas for the roots of Eq. (8). Dif­
ferent limiting situations will be considered in the next 
section, enabling us to describe the population of the 
levels by simpler analytic expressions. 

4. SATURATION IN A THREE-LEVEL SYSTEM 

We note that the results derived above are valid for 
times t« RR '/ w. In the opposite case saturation asso­
ciated with the nonresonance transition described by the 
two-level matrix A(1- 3) will play an essential role. 

We shall assume that the system 1- 3 is tuned to ex­
act resonance, i. e., {3 =0. The solution of Eq. (8) has 
theformx1 =0, xZ.3=y±(yz+Rz+R'Z)1/Z. Substituting 
this solution into Eqs. (9), we obtain explicit expres­
sions for the amplitudes of the states. We present only 
the average values of the level populations for y = ° (just 
like the upper level, the intermediate level is tuned to 
exact resonance): 

n,=/A,(t) /'=(R"+'/,R') (R'+R")-" 
n,=R'/2(R'+R"). n,="/,R'R"(R'+R") -'. (10) 

The maximum population of level 3 is equal to n3 = 3/8. 
In this connection nz = 2/8 and n1 = 3/8. We see that here 
there is no inversion of the average population with re­
spect to the lower state 1. However, one can easily 
verify that for R 'z < RZ < 2R'Z we have n3 > nz and n3 > nh 
i. e., inversion of the average population with respect 
to both the intermediate level and the lower level. In 
order to realize such conditions it is necessary, in par­
ticular, to have the same multiplicity for the transitions 
1- 2 and 2 - 3, that is, K = 2n. Maximum inversion is 
achieved for R=R'..[2, whenn3=0.37, nz=0.29, and 
nl =0.34. By the same token a three-level system dif­
fers substantially from a two-level system, since in the 
latter case there is no inversion of the average popula­
tion. 

Let us mention a clear limiting case of formula (10). 
IfR»R', thenn1 ",1/2, nz ",1/2, andn3"'0. Thecase 
R «R I is also qualitatively understandable: 

It," I_~R'/Rn. 1I,=,r;~Rn. /13=31l';2R". 

The last case corresponds to a mUltiquantum first tran­
sition and a second transition involving few quanta 
(K < 2n). 

5. INTERFERENCE BETWEEN DIRECT AND 
RESONANCE TRANSITIONS 

In this section we shall investigate the interference 
between the direct transition 1 - 3 and the resonance 
transition 1 - 2 - 3 (see Sec. 3) which appears upon mov­
ing away from the intermediate resonance. In this arti­
cle the problem will be considered only in the linear re­
gime with respect to the time (between states 1 and 3). 
The total amplitude A(1- 3) of the direct transition 1- 3 
during time t is obtained from the results of Sec. 2. We 
obtain 
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A (1 .... 3)=R" exp(i(8,-8.)N-1) 
exp (i (8,-8.)) -1 . 

The quantity R" is defined in analogy to expression (4) 
with the replacement of the indices 1- 2 by 1- 3. The 
amplitude A (1 - 2 - 3) of the resonance transition is found 
from Eq. (9). The expressions for Xh xz, and X3 are 
determined by means of the appropriate limiting transi­
tion to the linear regime (y» (3» R, R') in Eq. (8). 
Adding the direct and resonance amplitudes together, 
raising the modulus of the sum to the second power, and 
changing to the linear regime in time, we obtain the 
transition probability per unit time 

200'1 ooRR' I' w" = - R" + {) (e3-e,-Koo+.1e,,). 
n 2n(e,-e,-noo+.1e2l)l'2 

(11) 

Formula (11) determines the interference between direct 
and resonance transitions as a function of the detuning. 

Let us turn our attention to the absence of width in the 
resonance denominator of expression (11). If y, by de­
creasing, approaches the value RR', the concept of prob­
ability per unit time loses its meaning. This confirms 
the results of Kazakov, Makarov, and Fedorov. [7 l Fur­
ther, in the case {3 = ° the population of the upper level 3 
is given by 

'R'R" t 
'f Sin'[~("+R'+R")"']' 

,'+R'+R" n 

If we set t - ° in this formula, the transition probability 
per unit time increases like t 3 • This is also in agree-
ment with the results of article[7l. ' 

6. CONCLUSION 

In conclusion let us investigate how the proposed 
theory might be applied in order to describe various 
experiments. The simplest case is a two-photon reso­
nance transition associated with the presence of an addi­
tional intermediate resonance. One of the effects which 
can be observed in this connection is resonance fluo­
rescence. In the radiation spectrum around the frequen­
cy w of the external field, there will be two satellites on 
each side; at exact resoance their distances to the cen­
ter of the line are equal to R and 2R. This generalizes 
the well known phenomenon of the appearance of satel­
lites for a two-level system. (8l In the case of a two­
level system there is, as is well known, one satellite 
on each side (one can easily see that there will also be 
one satellite in the case of a multiphoton resonance in a 
two-level system). 

Now let us consider the case of resonance multiphoton 
transitions. In the experimental formulation of the prob­
lem, usually only the first transition 1- 2 is a multipho­
ton transition, As a rrule the second transition 2 - 3 
takes place with the absorption of one or two photons. 
In the resonance denominator (10) the quantity RZ can 
always be neglected in comparison with R 'z due to the 
multiquantum nature of the first transition (R _Itn, R' 
_;?K-n). This means that saturation with respect to the 
transition 1 - 2 does not occur in resonance multiphoton 
excitation. In particular, the present result confirms 
the well known formula derived by Keldysh(9l for the 
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A 

8 

probability of resonance multiphoton ionization. 

In conclusion the author thanks N. B. Delone and A. 
M. Dykhne for a discussion of the work and for valuable 
advice. 

APPENDIX 

Let us discuss the question of the validity of the meth­
od presented in this article. Let us consider the com­
plex time plane (see the figure). Let us denote the 
point 

, 
s,=Im S E,dt, 

where t = t12 by A, the corresponding point where t = t23 
by B, and the point where t=t13 by C. The notation 1-2 
on the figure means that in the region where the numeral 
2 is placed we have S2 > s1> but in the region where the 
numeral 1 is placed, we have Sl > S2' These regions are 
separated by the Stokes line AO on which Sl =S2' The 
notation 2 - 3 and 3 -1 is defined in analogous fashion. 

Multiplication of two matrices was utilized for the de­
termination of the resonance transition matrices (7). 
In this connection, in the time plane one should move 
from the point A along the curve AO. [31 At the pOint 0, 
where Sl =S2 =S3, the direction of motion should change 
to OB, where S2 =S3' It is necessary for the validity of 

the method that one should have S3 < Sl =S2 on the Stokes 
line AO, and Sl < S2 =S3 on the Stokes line OB. This will 
be true in the case when the numerals 1, 2, and 3 are 
arranged in cyclic fashion. Precisely such a case is 
shown in the figure. In the case of an anticyclic ar­
rangement of the indices, the method becomes incorrect. 
The question of what numerical values of the problem's 
parameters will cause the arrangement of indices to be 
cyclic or anticyclic is solved separately in each specific 
case by numerical methods, and this question is not in­
vestigated in the present article. 
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An approximate method for calculating intermolecular 
interaction 
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A method is discussed which allows the determination for arbitrary molecules of the angular dependence 
of the intermolecular potential from the experimentally-determined averaged (over the angles) potential. 
The method is based on the effective pair interaction approximation. As an illustration, the potential curves . 
for different relative orientations of the molecules H2-H2 are computed. The curves are found to be in good 
agreement with the results obtained by other methods. 

P ACS numbers: 34.20.Be 

1. INTRODUCTION know the total and the differential cross sections for 
elastic and inelastic interactions of molecules. [1J How­
ever, partial transition cross sections and angular dis­
tributions have been measured directly in experiments 
only for a very limited number of molecular pairs: 

To solve a number of concrete problems (thermal dif­
fusion, the cooling of interstellar gas, relaxation in a 
shock wave, line broadening, etc.), it is necessary to 
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