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We have discovered a possibility of propagation of surface waves in metals with a cylindrical Fermi 
surface; this is due to the electron Fermi-liquid interaction. We evaluate in the framework of the theory of 
a degenerate Fermi liquid the frequency spectra and damping coefficients and find the conditions for the 
existence of such waves. 

PACS numbers: 75.30. F 

1. INTRODUCTION 

It is well known[ll that the surface states of electrons 
which have a "glancing" motion along the surface of a 
metal determine the electromagnetic properties of 
metals in the uhf band (1010 to 1011 Hz) in relatively 
weak magnetic fields (1 to 10 gauss). The centers of 
the Larmor orbits of the "glancing" electrons are dis
tributed outside the metal at distances which are almost 
equal to the Larmor radius (Fig. 1) and in momentum 
space the motion of such electrons corresponds to a 
closed orbit which bounds the hashed segment (Fig. 2). 
Transitions between the levels of the surface states lead 
to resonance absorption of radiation which manifests 
itself in experimentally observed oscillations of the sur
face impedance of the metal. 

The theoretical possibility of the existence of surface 
waves in metals with a cylindrical Fermi surface near 
frequencies of the resonance transition between sur
face levels was discovered in[2]. In the same paper the 
impossibility was pointed out of the propagation of sur
face waves in metals with a spheri.cal Fermi surface. 
On the other hand, up to now the problem has not been 
raised about the occurrence of effects which are con: 
nected with the electron surface states and which are at 
the same time caused by interelectron correlations. 
We shall present in the present paper the results of a 
theory of spin waves in an electron liquid, which takes 
into account the effect of electron surface states. The 
behavior of the surface spin waves found below enables 
us to confirm that the electron-electron interaction is 
one of the general causes for the existence of different 

FIG.!. 
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kinds of surface waves and of the resonance properties 
of a metal near the frequencies of the electron transi
tions between surface levels. This enables us to dis
connect the existence of absorption resonance and of 
surface waves from the necessity that there exist some 
particular shapes of the Fermi surface; this corre
sponds to a qualitative difference between the new kind 
of excitations which are considered by us and those 
predicted in[2]. 

2. QUANTUM KINETIC EQUATION 

To solve the problem in which we are interested we 
must first of all carry out a generalization of the quan
tum kinetic equation of a degenerate electron liquid 
(see, e. g., [3]), taking into account the role of the elec
tron surface levels. Bearing in mind that an electron 
state is characterized by a set of quantum numbers v 
and assuming that the density matrix of the ground state 
of the electrons is diagonal we can write down the non
equilibrium density matrix in the following form: 

(2.1) 

If we are interested in linear problems we can write 
down for the non-equilibrium correction to the denSity 
matrix the following approximate equation (cf. [4]): 

(2.2) 

FIG. 2. 
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This equation is the quantum analog of the quasi-classi
cal kinetic equation from the theory of a degenerate 
electron liquid (see, e. g., [5]). Here e{v) is the quasi
particle energy in the equilibrium state, (oA •• w is the 
amplitude of the potential of the non-equilibrium elec
tromagnetic field, 

lij",( -q) =Ii",eva'a (-q) -floci[qcr ]",la'a (-q), 

Va'a (-q) = 2~ < 0:' 1 e;q· ( p - ~ Ao ) + (p -+ Ao ) e;q, 1 0: ), 

fa'a (-q) =<0:' I e;q'l 0:). 

We have here taken into account the fact that the com
plete set of quantum numbers includes orbital (a) and 
spin (a) numbers (v:; a,O'~ while e = - I e I is the charge 
of the electron, J-Lo the electron magnetic moment, a 
the Pauli matrices vector, Ao the vector potential of the 
static magnetic field, and m the electron effective mass 
corresponding to a quadratic momentum dependence of 
the energy. We note that the generalization to a more 
complex dispersion law for the electron energy does, 
as usual, not pose any difficulties. 

The last term on the left-hand side of Eq. (2.2) de
scribes the Fermi-liquid interaction between the elec
trons. Neglecting the spin-orbit interaction we have 

(2.3) 

Aiming to show up effects which are connected with spin 
waves, we restrict ourselves to the simplest model for 
the Fermi-liquid interaction (cf. [3]) when 

a,a, ~ 
lJla'a =1Jl .",,,/a'a(-q)la,a,(q). (2.4) 

It is expedient for what follows to make a definite choice 
for the set of orbital quantum numbers a. We shall 
take them to be: the component p~ of the momentum 
along the direction of the constant magnetic field, the 
x-component Px of the momentum (or the y-component 
Yo = - cpj eB of the coordinate of the center of the elec
tron Larmor orbit), and the energy quantum number n. 
The choice of such a representation is convenient, in 
particular, when the metal occupies the half-space 
y> O. We note here that the appearance of surface 
states of the electron is connected with the satisfying 
of the boundary condition that the electron wavefunction 
must vanish for y = O. In agreement with[6] we have 

1 (y-y.) Io:)=_exp{i(p,z+p"x)h-'}'¥ --;a(p"n) . 
2nh 'A 

(2.5) 

Here 

Px' r (3n)'!' (2nhQm )'!'J a (Px, n) = {2mhQ l1 +"2 ----p;:- - for "glancing" electrons 

n .- for volume electrons 

(2.6) 
Here A= {cfi/lel B)1/2, 1{I{~,a) is a parabolic cylinder 
function, and n = I el B/mc . 

The division of the electrons in volume and surface 
ones is performed according to the following features. 
For the volume electrons the center of the Larmor orbit 
lies in the bulk of the metal which means 
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(2.7) 

Here RJ. is the classical radius of the Larmor orbit, 
and EF is the Fermi energy. In terms of the param
eters of the wavefunction (2. 5) condition (2. 7) takes the 
form 

y,'>2'A'a(px, n). 

For "glancing" electrons the condition is the opposite 
one: 

11- yo' 1 ~1, 
2'A'a(px,n) 

or, in other words, 

(RJ.'-y,')/RJ.2~1. (2.8) 

Condition (2. 8) means that for "glancing" electrons, for 
which Yo< 0 and Yo< I Yol, differs little from the Larmor 
radius RJ.. We shall assume everywhere the energy fin 
of a Larmor quantum to be small compared with the 
Fermi energy. For the surface electrons we can, ac
cording to[6], write down the following energy level 
spectrum: 

p' p' (3n)'t,(p')'f' ea""e(p"px,n)=-x_+-,-+ _ _x (n/iQ)'/'. 
2m 2m 2 2m 

(2.9) 

For the volume states we have 

e (p" px, n) =p,'/2m+nhQ. (2.10) 

To write down the kinetic equation we shall assume that 
the condition for quasi-classical behavior is satisfied: 

(2.11) 

We shall in what follows be interested in perturbations 
for which fikx = P: - Px = 0, which corresponds to the 
equality .y~ = Yo' In connection with this we can write the 
non-equilibrium correction to the density matrix in the 
form: 

lip",=lip (p" px, n', n, k" cr', cr). 

It is convenient to use the spin trace of the density ma
trix-the distribution function 

Ii/(p" px,n', n, k,) = Llip(p" px, n', n, k" cr, cr) 

and the vectorial spin distribution function which is the 
convolution of the density matrix and the Pauli matrix 
vector 

lio(p" Px, n', n, k,) = .EO",lip (p" px, n', n, cr', cr). 
,'a 

We can use Eqs. (2.2) to write down kinetic equations 
for the distribution functions. The influence of the 
Fermi-liquid interaction manifests itself in the equa
tion for the spin distribution function (oif = o~ ± iocr'). 
Such an equation can for the surface states be written in 
the following form: 

[Ol-k,v,-Q(n' -n)±Q. + ~ + ~] licr± (p"p., n', n, k,) 

a/. [, i i ] .E +- k,v,+(n -nH~=FQ.---- I n'n(-Q,Px) ae T T ,>. 
(2.12) 

{ ~ } i a/, 
X -fl.liB±(O, q, k,) +1Jl £ .. /,,(q, px)licr± (p,,, p.x, r, s, k,) = -;-ae' 

pl:cph 

Here 
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{ 2, e";;;e" 
fo=2po(e)= 

0, e>eF 

oB·(O, q, kE ) is the Fourier component of the non-equilib
rium magnetic field, T is the momentum relaxation 
time, and T is the spin relaxation time. For electron 
spin resonance T» T. In the classical theory[SJ it is 
just such a time T which determines the line width of 
the electron paramagnetic resonance, no =2yB/ff, y is 
the effective electron magnetic moment. The summa
tion in (2.12) is both over the volume and over the sur
face states, while 

(2, 13) 

The corresponding equation for surface electrons reads 
as follows: 

[w-k,U,-wn'n(p.)±Qo+ : + ; ]6a±(p"p"n',n,k,) 

+ :~o [k,V,+Wn'n(Px)+Qo-7- ~] ,Eln'nC-q,p.) (2,14) 

The characteristic frequency of the electron surface 
transitions has the form 

1 (3n) 'I, ( p , ) '1. 'I, 
Wn'n(p.)=- - -'- (fiQ)'I'Cn""-n''')~(~) Wn'n. 

fi 2 2m PF 

(2,15) 
We have used here for the limiting value of the frequen
cy the notation 

(2.16) 

The summation in (2,14) is over the volume and over 
the surface states. 

3. EIGENFREQUENCIES OF THE SPIN DENSITY 
OSCILLATIONS 

We turn first to obtaining the consequences of the 
kinetic Eqs, (2.12) and (2.14) for the spin distribution 
function under conditions such that we can completely 
neglect the effect of the variable magnetic field, For 
the quantity 

6s± (k) = ,E, In'n (k., P.) 6a± (p" p., n', n, k,), 
p;p:o:n n 

(3. 1) 

which is the Fourier component of the spatial electron 
spin denSity we can then write down the following equa
tion: 

6s± (0, k y, k,) + ,E Q (k" k., k:) 6s± (0, k:, k,) =0, 

\:>0 

where 

P:Pxn 'n 

[ t i ]-1 
X w-k,u,-W n ,. CP.) ±Qo + -::; + T 

{ [ t] i [ a f _1 } X 1jJ k,v,+f!Jn'n(p.)+Qo-r --::; ,E-i] . 

(3,2) 

(3,3) 

Here wn'nCpr) equals (n' - n)n for volume states and it 
equals expression (2,15) for surface electrons, From 
a consideration of the electron gas model[2J it follows 
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that surface waves cannot propagate in metals with a 
Fermi surface that is nearly sphericaL To understand 
better the new possibilities which are opened up in 
principle by the interaction between the electrons, we 
focus our attention on a metal with a spherical Fermi 
surface, For such a model we obtain all the basic re
sults, which can then be generalized to the case of an 
arbitrary Fermi surface. 

We write the kernel Q in the form of three terms: 
Q= QYol + Qnr + Q" (3,4) 

due, respectively, to the volume electrons, the non
resonance surface electrons, and the surface electrons 
with a maximum value of the transition frequency wn'. 
which is close to the value of the frequency w, Since we 
are interested in the case of rather weak fields when 
w» n, no, we can completely neglect the effect of the 
magnetic field on the volume electrons. In that case 

Qyol (k" k" k:) 

= ~ dlo n'h'v [ Bo(~,v,+(n'-n)I1)+iT-' ] 
L..J ae p/ w-(n -n)12-k,v,+lT-'+,T-' 
P,II " 

-' k'yvJ. kyvJ. W i w+kv 
XJ1n'-n,(-)J1n'-n l(-) =-6k,k,{ -Bo+ [Bo-, +-] In-}, 

&l U 2kv WT w-kv 

(3.5) 
where v = I vi is the velocity on the Fermi surface, 
Bo = m 2v/ff3 rr2j Js(x) is a Bessel function, and k = (0, ky, k.~ 
The contribution of the resonance electrons is given by 
the expression 

Qr(k"ky,k:)= - (2~fi)'J dp.dp,In'n(-k:,p.) 

Xln'n (k y, P.) 6 (eF-e (p" p" n» 
Bo[k,v,+wn'n(p.)+QoJ+iT-' n'fi' 

X'w±Qo-wn'n(p.)-k,v,+ir'+iT'" mpF ' 
(3.6) 

E(p.,px,n) is defined by (2.9). The possibility of sep
arating the resonance term is connected with the fact 
that we are interested in the solution of Eq. (3.2) in the 
case 

(3,7) 

By virtue of the fact that no« wn'. we shall in what 
follows neglect the no-dependence, drop the ± sign of 
os, and rewrite condition (3.7) in the form 

I w-w",,,1 «w. (3.8) 

We emphasize that the frequency w becomes resonant 
with the maximum value of the frequency w".(Px) given 
by Eq. (2.16). Condition (3.8) determines the numbers 
n' and n in Eq. (3.6), 

It is clear from Eq. (2,15) that when we write 
Px =PF sine for a spherical Fermi surface we can change 
in Eq. (3.6) to integration over the angle e: 

• fi 
Q,(k" ky, k:) =- J de In'n (-k:, PF sin e)In'n (k y, PF sin e)--

2mv 

8 0 [k,v cos e+wn'n sin'l, eJ +iT-1 

X W-Wn'n sinl!, 8-kz;v cos 8+iL- 1+iT-1 . 
(3.9) 

Because of condition (3,8) the main contribution to the 
the integral (3.9) comes from the range of angles close 
to e = rr/2, and therefore putting everywhere except in 
the resonance denominator e = rr /2 we get 
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Q,(k" k., k.') =-I.,.(-k.',PF)I.,.(k., PF)_h_ 
2mv 

X[B. +_i -121'3(Ll+i1}-'" arctg [~(Ll+i1}-'I']. 00.'., 21'3 
(3.10) 

Hp.re 

Ll = 00-00.'. _~(~)', 
((),,'n 4 (1)n'" 

1= (w.,.,) -'+{w •.• T) -'. 

It follows from (3.10) that in the case where the argu
ment of the arctangent is large compared to unity (and 
this is possible for small k~) there appears a resonance 
factor I (~+iy)"1/21» 1 in Eq. (3.10) when I~I« 1. We 
shall in what follows be interested in the case when the 
following conditions are satisfied: 

(3.11) 

We consider the contribution from the non-resonance 
electrons to the kernel of Eq. (3.3) 

Q (k k k') '\1' J dpx dp, , 
nr ,,'y, • =-L:: 2 (2nh)' I,,(-k, ,p,}/,,(ky,Px} 

« ( )} Bo[k,v,+w,,(px} ]+i,-' n'h' 
XU £.P-£ Ph Px) r . 

00-00" (p,) -k,L',+i,-'+iT-' mpF 

=-1:, fdaI,,(-k/,PFsina}I,,(k.,PFsina}. 
" 0 

n Bo[w" sin'/' a+k,v cos a] +i,-' 
2PF w-w" sin'l, a-k,v cos a+ir'+iT-' . 

(3.12) 

The prime on the summation sign in (3.12) indicates 
that r* n', s * n. The fact that under well-defined con
ditions the contribution from the sum of the non-reso
nance terms can be small compared to the contribution 
from the resonance term can be most simply demon
strated in the limit k~ = 0 and WT» 1. We evaluate sep
arately the real and imaginary parts of Qnr(O, ky, k~). 
We have 

, 3 h 
ImQnr(O,ky,k:}= '\1 ~BoJ d(sin'/'a}tgal,,(-k:,pFsina} 

'-;; 2PF 

X I,,(ky,PFsin a}1i (~- sin'l, 8) 
w" 

(3.13) 

3nh '\1 '( 00" )'1' ( (w' )'1') ( (w' )'1' = -2-.t..... 3~ • , Bo/" -k:, PF --"--"- I" ky, PF --"--"-
PF rs (Drs (J) 11'" (J)r~ OlT' 

In obtaining (3.13) we took condition (3.8) into account. 
The summation in (3.13) is over those r and s for which 
the condition 

(3.14) 

is satisfied. The real part of Qnon-res is given by the 
following expression: 

Re Qnr(O, k., k:} 

'nhl'3 ( r2/3_s2/3 )1/2 
=_'\1 -2 -BoI,,(k.,p.)I,,(-k:,PF} ~'2-/3-- 2/3 2/3 2/3 ' .t..... p. n -n -r +s 

(3.15) 
where the summation is over 

Using (3.5), (3.10), (3.13), and (3.15) we can write the 
integral equation (3.2) in the form 
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[ 
00 . W+k.V] lis(O,k., 0) HBo-Bo--In-- -I.,.(k.,pF} 
k.v w-k.v 

Jw dk: , ,nhl'3 ( 00.'. ) 'I, 
X --I.,.(-k. ,p.}lJs(O,k. ,O}B.-- ---

1t 2mv 00-OOn'1I. 
o 

- dk I r~ri_S'/' 1/2 

XJ-'-I,,(-k:,PF}IJS(O,k:,o}( "I 'I '1+ 'I) 
11: n 3_n I-r 3 S 1 

o 

(3.16) 

The integration over k~ is from zero to co, which cor
responds to an even continuation of the non-equilibrium 
spin denSity into the region y< O. We note here that if 
we use the wavefunctions of the surface states[6J in the 
form which is valid in the region y < I Yol: 

<n,pxl=W( Y~Y' ,a(pxo n}) 

=.!...cos[2a(p n} (1- (Y+IYol)') 'h_~] 
'A'I, 3" 2a(p., n}'A 4' 

(3.17) 

where the notation is the same as in Eqs. (2.5), (2.6), 
and (2.8), and using an expansion of (3.17) in powers of 
y/I Yol, we have 

lTr (y-IYol ( }) 1 . py(n,px} 
T -'A-;a p"n =;::sm--h--y, (3.18) 

where 

( 3n ) 'I, ( P 2 ) '10 
py(n,px}=(2m}'" '""2 2: (nhQ}". (3.19) 

The wavefunction (3.18) satisfies the condition that it 
vanish at the metal boundary. Substituting the wave
function (3.18) of the surface state into the matrix ele
ment In'n(- ky,PF) we find that the latter does not vanish 
for ky values that satisfy the condition 

hk,=p",±p.. (3.20) 

We have written here p/n,PF) =Pn • One checks easily 
that for such ky the condition kyv» W is satisfied which 
enables us to neglect the last term in the square brack
ets on the left-hand side of Eq. (3.16). We multiply the 
integral Eq. (3.16) by In'n(- ky,PF) and integrate over 
kyo We then get 

[ ntl VT 1 1 oc~ dk,,' I k ' IJ 0 k' 0 1 + Bo-Nn·nBo-- -,- -- "'n(- 'y, PF} s(, y,} 
mu L\ 'Z n 

" 
~ 3ntl!BM:·;n[(',"-S" )'_1]-" 
l..J mv 0 n 2 J _ 11/3 

r23_B'a>n'2a_H,2J 

L r. ,i'> '" )-'1' 
I ' ~ Tn'n (n '3_ n."_ T Bo1'l,·, , , 1 

2 2 ' 2 2 mv r .3 - S a 
1 3-S,.I<H J_H J 

(3.21) 

Here 
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(3.22) 

Using Eq. (3.18) we get the following explicit expres
sions for (3.22): 

R -. [P,-P' + Pn+Pn] -. . [P'-P. Pn'+Pn] R - ----- sm --±--
tl Ii Ii n 

+R-' [ p,+p, ± Pn+Pn] -. sin [P,+P. ± Pn'+Pn] R} 
Ii Ii Ii n ' 

M;;n ~ ~ PF { ±R-' [( n:';'-n'" ) ';, P,~P. ± Pn'~Pn]-' 
8 Ii r-;'-s', tz tz 

. [( n"I'-n'l, )'J. P,~p. Pn'~Pn] } 
X sm r""-s'l, -tz- ± -li- R . (3.23) 

In the left-hand side of the formula for M';.:n we imply in 
the braces a sum of the terms which differ by signs. 
We note that 

3 ) 'f, ( P 2 ) 'I. 
p"RIi-' ~ ~:~(2m)'h (-f 2:n (ntzQ)'h ~ 1O'n'I'B-'I, rOe]. (3.24) 

It follows from Eqs. (3.23) and (3.24) that N;;n and 
M';.:n are always much smaller than Nn'n except for those 
cases when the argument of the sine can vanish. This 
can occur for N;;n, if 

r"J_s'l.=n"I'_n'/3, 

and for the argument of the sine in M';.:n, if 

r'f'-s'li n"I3-n'f, 

1"/'+8'1. = n"/I+n 'I3' 

(3.25) 

(3.26) 

However, even when conditions (3.25) or (3.26) are 
satisfied, the contribution from the real part of the sum 
of non-resonance terms will still be small, if 

(3.27) 

while the contribution from the imaginary part of the 
sum of non-resonance terms can be neglected under the 
conditions 

(3.28) 

Conditions (3.27) and (3.28) are satisfied for small 
numbers n', n less than a few times ten. Just for tran
sitions with small numbers n' and n there are experi
mental dataU ] about oscillations in weak magnetic fields, 

If we take into account what we have just said, the 
dispersion equation for the surface spin oscillations 
near the frequency of the transition with numbers n' and 
n less than a few times ten takes the form 

nY3 
1+Bo~Bo-=. 

4YL'. 
(3.29) 

Hence we get the limiting value of the frequency of the 
surface oscillations for k6 = 0: 

CIl~CIln'. (1 + L:~J 2 !~'). (3.30) 
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The difference between the frequency of the surface spin 
oscillations and the value wn'n is caused by the Fermi
liquid interaction between the electrons, It is just the 
appearance of such a shift from the resonance frequency 
of the transition which enables us to speak about the 
possibility of the propagation of undamped spin oscilla
tions in metals with a spherical Fermi surface. 

Such a statement differs in principle from conclusions 
obtained when using a gas model of a metal with a 
spherical Fermi surface, in which the propagation of 
surface waves is impossible because of the strong col
lisionless Landau damping. We can therefore state that 
the electron-electron interaction is one of the general 
causes for the existence of different kinds of surface 
waves in the frequency range for transitions between 
surface levels and enables us to discard the idea that 
the presence of such waves is exclusively connected 
with cylindrical sections of the Fermi surface, as is 
done in the electron gas model. It is clear from (3.29) 
that the solution of the dispersion equation exists when 
the condition 

Bo/(HBo»O. (3.31) 

is satisfied. In fact, condition (3.31) means Bo> 0 for 
normal metals. 

4. ALLOWANCE FOR DISSIPATIVE EFFECTS, THE 
FINITE WAVELENGTH, AND THE SHAPE OF THE 
FERMI SURFACE 

In this section we consider the consequences from the 
integral equation (3.2) in which we drop the sum of the 
non-resonance terms which we can do, as we showed 
above, for values of n' and n less than a few times ten 

1 .. dk' 
( 1 + Bo + --) 8s (0, k y , k.) = S -" 8s (0, ky', k.) 

(iJn'"T 0 :It 

• Ii i 
Xln'.(-k, ,PF)ln'n(k"p,)- [Bo +--] 

2mv Wn'nT 

- n 
X 213(L'.+iy)-'I, arctg--:=-(L'.+iy)-'I" 

21'3 
(4.1) 

where the notation is similar to the one used when writ
ing down Eq. (3.10). Assuming first of all that 

IL'.l <1, 00 n'n't;$>1, 

we get as the condition that (4.1) can be solved the fol
lowing dispersion equation: 

[ i] nY3( ) 'I 1+Bo= Bo+-- -- L'.+iy -'. 
CIl n'"T 4 

(4.2) 

Intr oduc ing the not ation Re~ = ~ and Im~ + y =:y we have 
the following equations: 

-- - B. nY3 
(~+ Y ~'+,\,')'I' ~ Y2----

1+Bo 4 

-- - nY3 
(_~+g2+,\,')'I' = Y2[CIl n'n't(1+Bo) )-'-4-' (4.3) 

It follows from (4.3) that solutions exist only when ~> 0 
and Bo> O. Solving the set (4.3) we find 

3n' 
Re L'. = [Bo' - (CIln'n't)-'116(1+Bo)" 

1 1 1 3n' 2B. 
ImL'. = ------+------. 

CIln'nT CIl.'nT CIl.'.'t 16 1+Bo 
(4.4) 
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It follows from (4.4) that the eigenfrequencies of the 
spin waves lie above the frequency of the surface tran
sition. 

We can now write the frequency spectrum and damp
ing rate of the surface spin waves in the form 

{ 3n' 
W=Wn'n 1+ 16(1+B,),[8o'-(Wn,.~)-'1-i(wn'nT)-' 

-i(wn"~)-' 1-----'- +- -'- . [ 3n' 28] 3 ( k V)'} 
16 1+80 4 (i)n'. 

(4.5) 

Hence it follows that the line width of the surface oscil
lations is determined by the momentum relaxation time 
in contrast to the electron spin resonance line the width 
of which is determined by the spin relaxation time. [5J 

Neglecting small corrections we can write the surface 
spin wave spectrum in the form 

W=Wn"{ 1 + 31n: ( 1!~' Y - i(wn'n~)-' + ~ ( =:~J '}. (4.6) 

Formula (4.6) extends the limiting Eq. (3.30) to the 
case of a finite wavelength and a finite value of wn'n T. 

As in the preceding section we see that the spin wave 
spectrum can not lie below the surface transition fre
quency. 

In order better to understand the way the surface os
cillations spectrum depends on the shape of the Fermi 
surface we consider the dispersion Eq. (3.2) for a 
metal with a Fermi surface in the form of an ellipsoid 
of rotation. We neglect the non-resonance terms and 
dissipation and also assume that k£ = O. We put the 
origin in momentum space in the center of the ellipsoid 
in such a way that the axis of rotation makes an angle O! 

with the p£-axis. 

We can find from the Bohr quantization rule the fol
lowing expression for the frequency of the surface tran
Sition, which depends on the angle O!: 

( 3n ) 'f, ( m ) 'J, 
liwn'n (p" a) = 2 cos' a + m: sin' a (2m,) -'I, 

( eB) 'f, 
X [p; (p" a) rf , Ii-- (n"f'-n'I,). 

m,c 

Here ml is the transverse effective mass of an electron 
on the Fermi surface, and m3 the longitudinal one. 
When ml =m3 Eq. (4.7) changes to (2.15), as should be 
the case, because 

., ( COSZ a. sin2. a ) -, [ p,' (SinZ a. cos2 ex ) 
p. (p"a)= --+-- CF·-- --+--

2m, 2m3 2 m, m, 

+ p,'cos'asin'a(m,-m,)' ]. (408) 
2m,m, (m, cos' a+m, sin' a) 

It follows from (4.7) that the surface transition frequen
cy as function of Pe reaches a maximum which is equal 
to 

"( eB) Xc," Ii--
m,c 

when P£ = O. When m3> ml ("prolate" ellipsoid) the 
largest maximum is reached for O! = 0: 

(409) 

I maximorum_ ( 3" ) , '(h eB) (n"I'-n'I,) = h(i)~'~x(O), (4.10) 
lWn'n - 2 £F -;;;:;; 

If ml> m3 ("oblate" ellipsoid) the largest maximum lies 
at O! = 1T/2: 
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.. --. ------------------

fJ maximorum _ ( 3" ) '" '" (h eB) "'( m,) 'I, ("I 'I) Ii max ( n ) 
lWl"'r. -- 2 £F -;;;:;;; ma n '-n 3 = (01'1.'1'1. 2 . 

(4.11) 
It follows from Eqso (409) to (4.11) that the largest val
ue of the surface transition frequency is always reached 
on a central section, but not always on an extremum 
with respect to O!. In the case ml> m3 the central sec
tion corresponding to O! = 0 is larger than the central 
section for O! =1T/2. 

By virtue of the fact that the maximum of the transi
tion frequency is reached on a central section we can 
write the dispersion equation for the surface oscilla
tions 

Bo ,.. S dp, (i).'. (p" a) 
1=--h'n'n 

1 +80 v.(p" a) W-Wn'n (p" a) 
(4012) 

which O! follows from (3.12), by using the expansion 

Wn'n(P" 0.)= 00.,.(0, 0.)+ '/,w~~n(O,a)p,' (4.13) 

in the form 

Bo '" 2'1,. W"n(O, a) 1/ Wn'n(O, 0.)-00 
1 =--ll'n'n V--"',,-'--'-"":-.,.--

1+Bo v%(O, a) W-(i)n'.(O, a) w.'. (0, a) 

[ 1/ (i)".'. (0, a) ] 
X arctg p,' (a) V 2 [(i).'. (0, a) -w 1 • (4.14) 

Here 

Ii ~ 1 ds ]-' 
N n ,.= 4rrS dq l<n'le'QYln>I'[4" S!vT ' 

Ivl is the velocity on the Fermi surface and ds an ele
ment of that surface, 

2 S ds 
Bo=>IJ(2,,1i), !vT' 

the x-component of the electron velocity is given by the 
following expression: 

a C I ( cos' a sin' a ) 'I, 
v,(O,a)=- = (2CF)'" --+-- , 

rJpr Pz=O m l m.1 

• () (2 ) 'I (Sin' a + cos' a) -'10 pz ex = ep a -- -- • 

ml ma 

(4.15) 

(4016) 

(4.17) 

In order that undamped solutions of Eq. (4014) exist in 
the general case it is necessary that two inequalities be 
simultaneously satisfied: 

00.'. (0, a) -(i) ° (i).'. (0, a) -(i) B ° -7'--:::-.:.....,-- > , 0 < . 
(i):,,<O, a) (i).'. (0, a) 

As for an ellipsoid the transition frequency reaches a 
maximum on a central section, the resonance frequency 
is larger than such a maximum value and, correspond
ingly, the constant Eo must be positive. 

In the particular case of a Fermi surface which is 
nearly cylindrical, when the transition frequency is in
dependent of Pe, we get from (4012) an expression for 
the surface spin resonance frequency 

[ 2Bo N.,.p;(a) ] (4 18) 
(i)=(i).'. (0, a) 1 + 1+80 v.(O, a) . • 
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To determine the quantities which occur in Eq. (4.18) 
using Eqs. (4.15) and (4.17) we must put m3» ml" 

In the opposite case of weakly oblate Fermi surfaces, 
when the argument of the arctangent in Eq. (4.9) turns 
out to be large compared to unity, the frequency shift 
depends not linearly, but quadratically on Bo (cf. [5J): 

_, { _ 2OOn'n (0, a) [ nB, N, ]'} (4.19) 
u)-oon n (0, a) 1 oo'~,JO, a) 1+B, n n . 

Equations (4.14), (4.18), and (4.19) solve the problem 
of the limiting value of the frequency of the surface spin 
oscillations spectrum in the model of a metal with an 
ellipsoidal Fermi surface which is inclined at an angle 
a to the magnetic field. 

5. COUPLED SURFACE SPIN-ELECTROMAGNETIC 
WAVES 

In the foregoing we neglected the non-equilibrium 
magnetic field. In the present section we aim to ex
plain what is the result of taking into account the non
equilibrium magnetic field when we write down the dis
persion equation for surface waves coupled to spin-elec
tromagnetic oscillations. In a metal occupying the 
half-space y> ° we shall look for a surface H-wave, 
propagating along the magnetic field with a wavevector 
kz • In this sense the statement of the problem is anal
ogous to the one given in[ZJ. 

The expression for the Fourier component of the x
component of the current density, obtained by using 
quantum kinetic equations, in which the interaction is 
approximated by a single constant Bo is the same as the 
one obtained earlier in the gas model[2J when the elec
trons are reflected specularly from the boundary. We 
can therefore immediately write down a set of equa
tions for the quantities 5s(O, ky, kz) and the Fourier 
component of the non-equilibrium magnetic field 
5B(O, ky, kz ). In fact, the set consists of Eq. (3.2), in 
the right-hand side of which we must take into account 
the non-equilibrium magnetic field, and the Maxwell 
equation. The quantity Q(kz, ky, q) occurring in (3.2) is 
determined by Eqs. (3.3), (3.5), and (3.10). We have 

nr:ln S~ dq . 
6s(0, k" k,) [1+B01-Bo-- -In'n(k"pF)In'n(-q,p.)6s(0, q, k,) 

:!.mv,).' n 
o 

mrs 1 ~ dq 
= --., --;-In'n(k .. PF) j-In'n(-q, PF) 1106B(0, q, k,) 

2nh- 1'1 ' n 
o 

m2v 
+ 110--. 6B(0, k" k,), 

nZh3 

3niooL.'oo 6B (0 k k) 
26B' (0) + (k.'+k.') 6B (0, k .. k,) = 4c'v (k.'+k.') '/, "" 

+4nk.'1L06s(0,k"k,). (5.1) 

Here 

, a 
6B (0)=-6B,I,_" 

iJy 

/.Lo is the electron magnetic moment. Solving the set 
(5.1) for 5B(O, ky, kz)/5B' (0), we get 
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oB (0, k y , k,) 

oH'(O) 
[ 

2 2 3niwL/CO 4m2 v ]-' 
=2 k, +ky - , k.'lLo'--

4c'v (k,'+k.') I, nh' 

[ an'n(k,)8 ] 
X -1+In'n(k y,p,) 1+~n'n(k,)8 . 

We have introduced here the following notation: 

8 = 3Y3hooL.'n + 2k.'110'my3fz-' 1 

(5.2) 

SC2PFt.'I' 1+B, 1'1';' 1+Bo-BoNn'nn1ir3 (mv)-' (1'1)-'1, 

2 j~ ['2 2 3niwLe2w 2 z4m2V]-' 
an'n (k,) = -;- , dk,In'n (k" PF) k, +k, - 4c'v (k,'+k.')," - k, 11, nh' 

? ~ 

pn'n(k,)= ~ j dk,In'n (k,PF)In'n (-k"PF) 
, 

X [k.' + k,2 3niooL.'OO k' 2 4m'v ]-' 
4c'v (k.'+k.') 'I, - '1L0----;Ji3 

The remaining notation is similar to that used in (3.21). 
Integrating Eq. (5.2) over ky and equating it to the free· 
space impedance 41Tiw/ e2 \ kz \ we get a dispersion equa
tion for coupled spin-electromagnetic surface oscilla
tions: 

_1_=~joodk 6B(0,k"k,) =-f(k)+ a:'n(k,)8 
Ik,1 n" y oB' (0) '1+pn'n(k,)8 ' 

2 00 [ 3nioo 200 4m'V]-' f( k)--jdk k'+k'- L. -k' , __ 
, - n " 0 4e'v (k,'+k,')," ,11, nh' 

o ~.~ 

The expression for the surface impedance of the metal 
obtained from (5.2) has in the long-wavelength limit the 
form 

, 
16nooo . I' + 4niID an'n (0)8 

Z(k,-O)=~e-" e' 1+pn'n(0)8 
(5.4) 

The first term describes here the impedance of the 
metal when there is no magnetic field and when the elec
trons are reflected specularly from the surface; 
5 = (31T wi. w/4e2vt1/3 is the anomalous skin depth. The 
vanishing of the denominator of the second term in the 
right-hand side of (5.4) corresponds to the possibility of 
the excitation of surface waves and describes the reso
nance properties of the impedance. 

We rewrite the dispersion Eq. (5.3) in a more con
venient form: 

3Y3hooL.'n 1 +k 2 211,mY3 [-Vt. --~N ' nhY3]-' 
Se'PF 1'1'1, 'h2(1+B,l' 1+B, n n mv 

=-Re 1+lk,lf(k,) (5.5) 
pn'n (k,) -a:,.(k,) Ik,1 

The solution of this equation can be written in the form 

.. B,DH (k,)-A--Gk,'± «B,DH(k,)-A-Gk,')'+4H(k,)B,DA)'I. 
1'1'1 = 2H (k,) • 

(5'.6) 

where we have used the notation 

A= 3l'3ooL.'fzn G= 211,'mY3 D=~ 
Se2PF' fz'(1+Bo)" 4(1+B,) ' 

H(k,)= Re 1+lk,;/(k.) , 
pn'n (k,) - an'n (k,) Ik,1 

To obtain the dispersion Eq. (5.5) we have separated 
the resonance term in the current of the surface elec
trons and have neglected the displacement current in 
the Maxwell equations. This means that the dispersion 
Eq. (5.5) is valid in the region 
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ro n • ..Ic<k,<ro ••• /v. 

In this range 

- , 
k)G< 2!1o'mY3ro" n iO-'cm-' <A=iO'cm-'. 

h'v 

(5.7) 

Hence we get from (5.6) two branches of surface oscil
lations 

_ A ( Gk,') 
Y6=-I1(k,) 1+ I1 (k,)BoD+A' 

(5.8) 

y-;S: = BoD (1-k,'G I1(kJ~oD+A)' (5.9) 

The expression for II(k~) contains the quantities O'.,.(k~) 
and f3.'.(k~), in which we put k~ = 0 because of (5.7), and 
which we evaluate by the stationary phase method, using 
the explicit form of the surface state wavefunctions 
(3.18) and the notation k~,. = (P.' ±P.)/n: 

n n k -: ] 

For a frequency w = 1011 Hz and B = 10 Oe we get R = CPF/ 
eB = 1 cm, A = 10-4 cm, 0 = 10-5 cm, k~,. = (n'l /3 ± n1 /3) 
• 105 cm-!, n', n:S 10, 0'.,.(0)'" (1+0' 10-6 cm'" (1+0 
• 0.10, 

3Y3 hWu'Jt 
2 Re ~'''n (0) =10-'. 

8e PF 

Then, the following condition is satisfied: 
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Hence, waves with the spectrum (5.8) cannot propagate 
in an electron liquid with a spherical Fermi surface, 
which corresponds to the result of[2]. The second 
branch (5.9) caused by the interactio'n between the elec
trons describes weakly damped oscillations with a spec
trum 

{ 3n' [ 2" 'mY3k 2 (3Y3hw 'n W = w. 1 +8' . 1 _ ,.0 , L. 
n n . 0 16(1+80 )' h'(1+80 )' 8C'PF 

(5.10) 

The wave spectrum (5.10) differs from the spin wave 
spectrum (4.6) by the small second terms in the braces, 
which are proportional to k;. 

It is shown in[2] that an equation such as (5.8) has a 
solution for the case of cylindrical Fermi surfaces. 
However, for the spectrum of the waves which are then 
obtained it is characteristic that their frequency is 
smaller than the transition frequency w.'.' This dis
tinguishes such waves qualitatively from those studied 
in the present paper. 
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