
blasted. The instability was again observed only for one 
polarity of the magnetic field but, in contrast to our case it 
was associated with a falling region in the current-voltag~ 
characteristic. 
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A theory of the Iiquid-to-crystal transition in He3 is proposed on the basis of the assumption that this 
transition is nearly of second order. In the theory are derived the well-known unusual properties of solid 
He3: the formation of a non-c1osepacked structure and the increase in the compressibility as compared to 
the compressibility of the liquid. The theory yields a number of dependences that can be experimentally 
verified. 

PACS numbers: 64.70.-p, 61.30.+w 

1. FORMULATION OF THE PROBLEM 

The theory of the liquid-to-crystal phase transition in 
helium is based on a variational approach: trial wave 
functions of the liquid and the crystal are given and the 
variational parameters are determined by a computer 
calculation.[ll The accuracy of such a method does not 
turn out to be high enough for preference to be given to 
any of the structures: face-centered cubic (fcc), hex
agonal close-packed, or body-centered cubic (bcc). 
Therefore, one of the unusual properties of Re3 that dis
tinguishes this substance from the other inert elements
the formation of a non-close-packed (bcc) structure-is 
not explained. 

In the present paper we propound for the liquid-to
crystal phase transition in He3 a phenomenological the
ory based on the assumption that this is a nearly second
order phase transition. Then we can, in the spirit of 
the well-known Landau idea, use the expansion of the 
thermodynamic potential in powers of a small parame
ter, which, in the present case, is the deviation of the 
density from a constant. 

Let us give the reason for such a description. Liquid 
Re3 is extremely sensitive to pressure changes. Let us 
consider the functionf(k, (1; k', (1'), which was intro
duced by Landau in the theory of the Fermi liquid,[2] or, 
more preCisely, the dimensionless quantity 2vf=F 
+ «(J". (J"')Z, where v = m*kF /21T 2 is the density of states 
per spin at the Fermi surface. It turns out (see the re
view article[3]) that the mean-with respect to the an
gles-quantity (F) undergoes the most rapid variation: 
There is almost a threefold change in its value (from 
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31.7 to 94.1) in the interval of pressures from 9 to 
34.36 bar (the melting curve), whereas the density in
creases by only 20% in the same pressure range. This 
can be ascribed to that part of the interaction between 
the He3 atoms that approximates the interaction between 
hard spheres.[4] On the other hand, the presence of the 
hard cores of the atoms is the prinCipal cause of the 
solidification of Re3 (in the opposite case the Fermi liq
uid would approach the ideal Fermi gas as the pressure 
increased, and solidification would not occur). Thus, 
the large values and the rapid variation of the quantity 
(F) apparently indicate that liquid Re3 has, as it were, 
a "premonition" of crystallization. In other words, the 
curve of absolute instability of the liquid with respect to 
crystallization (the spinodal) is located near the melting 
curve (the binodal). 

Since the above-given reason is connected with the 
properties of the Fermi liquid, the proposed description 
can be valid at sufficiently low temperatures. 

Let us note at once that we obtain, as a result, an ex
planation for the following unusual properties of solid 
Re3: the formation of a non-close-packed (bcc) struc
ture and the increase in the compressibility as com
pared to the compressibility of the liquid, which is an 
additional argument in favor of the theory. 

In the present paper it is convenient to take as the in
dependent thermodynamiC variables the pressure and 
temperature, i. e., to carry out an expansion of the 
chemical potential /.L. The small parameter is the de
viation of the density from a constant. The expansion 
of /.L has the form: 
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+ .E (1) 

where /J.o is the chemical potential of the liquid, Xt is 
the Fourier component of the density fluctuations: 

p (r) -p '"' it, 
1-=~xke 

fl k 

(j) is the mean crystal density), Xt = X_t*. Let us ex
plicitly separate out the pressure dependence of the ex
pansion parameters. (As to the temperature, we shall 
assume that T = 0, since the generalization to the case 
of finite temperatures requires a special treatment. ) 
The quantity A =A' (p - po) vanishes on the spinodal (at 
the point po), and is positive for P < Po, i. e., A' < o. 
It is also necessary to take into account the dependence 
of the momentum ko on P, which determines the lattice 
constant. We shall assume the coefficients B and C to 
be pressure independent. 

Such type of expansion was first considered by Lan
dau.[5] 

2. TYPE OF LATTICE 

The model (1) without the i! term gives a second
order phase transition at the point A = O. In order for 
this term to "operate," it is necessary that there be 
among the nonzero Fourier components Xt some for 
which kt + kz + kz = O. In this case there occurs a first
order transition (when A > 0). It can be seen at once 
that only the Xt with Ik I "'ko are different from zero. 
Let us make the following assumptions: the xt with the 
same Ikl are nonzero and these Xt are equal and real 
(phases of the type kx an arbitrary vector, which cor
respond to the displacement of the lattice as a whole, 
are of no interest to us; the reality of Xt implies that 
the lattice possesses a center of inversion). The nec
essary equilateral momentum triangles in the two-di
mensional case can be obtained by taking a triangular 
lattice. Let "1 and Xz be reciprocal-lattice vectors. 
Then the nonzero xk are those with momenta k = ± xt , 
±"a, ± (Xl - )tz). In the three-dimensional case there is 
yet a third lattice vector x 3 , which has the same length 
and does not lie in this plane. 

It is necessary to compare the following structures: 
1) two-dimensional (triangular); 2) three-dimensional 
with momentum "3, such that I Xli = l)tz I = 1>Oa I = I Xl - "z I 
= I X3 - Xa I"" I Xl - X31; 3) three-dimensional with such 
x3 that all the six momenta are equal in magnitude. For
mally, we can obtain a minimum of the expreSSion (1) 
apparently for any of these structures. PhYSically, 
however, it is necessary to give preference to that 
structure that leads to the most symmetric arrangement 
of the lattice sites in coordinate space. This will be in 
the case (3) when the vectors )tl, )(a, and x3 form a regu
lar tetrahedron (fcc), which corresponds to a bcc lat
tice in coordinate space. Precisely such a structure 
obtains for He3• In the case (2) the lattice vectors in 
coordinate space differ in magnitude, i. e., the dis-

301 SOy. Phys.-JETP, Vol. 43, No.2, February 1976 

tances between the "nearest" neighbors are not the 
same, which would be strange for such a symmetric 
atom as helium. The case (1) bears no relation at all 
to the transition under consideration. 

For a tetrahedral arrangement of the vectors )(1, Xa, 
and x3 , the nonzero Xt are those with the momenta, be
sides those given above, k=± "3, ± ()tl - x3), ±()ta - )(3) 
(in the second case there are no components with the 
momenta ± (Xz - x3». Thus, there are in all 12 non
zero Fourier components. 

Let us emphasize that among the various C there are 
indeed some that lead to a minimum of (1) for a bcc lat
tice. This can easily be verified in the simplest cases, 
when, for example, the function C does not depend on 
the angles between the vectors, i. e., when C = const. 

A few words about the quantity K= IXI I, which deter
mines the lattice constant. The quantity K""ko for the 
following reason. It is necessary to take the dependence 
of the coefficients Band C on K into account. Then the 
condition for a minimum of (1) with respect to K gives 

x-kn=B' x+C' x', (2) 

where B' and C' are clearly related with the derivatives 
with respect to the momentum modulus of the quantities 
Band C at the point ko (Xt;: x). After this, we can, in 
general, eliminate the explicit momentum dependence 
from (1), redefining the coefficient attached to the 
fourth power, and replace (1) by the expansion: 

/-I-/-IO=I/2ax2+1/3~X3+1/'1x', (3) 

where we have taken into account the fact that all the xt 
are real and equal, Xt = x; a = a'(P - po), a' < O. We 
shall henceforth use preCisely this expanSion, (3), and 
the relation between the coefficients a, {3, and 'Y with 
A, B, and C will not be needed. As to the assumptions 
made at the beginning of the section, for the symmetric 
structure (the fcc lattice in reciprocal space) of interest 
to us they are natural, and we need not concern our
selves with their justification (concerning the phases of 
xt, see the following section). 

3. THE PROPERTIES OF SOLID He2 

The extrema of the expression (3) are attained at the 
following values: 

x=D, 

x = - :1 --V (11 )' - ~ 

.(4a) 

(4b) 

(4c) 

We shall assume that {3 > O. The state (4a) is the liquid 
state (a> 0) and the state (4b) is the solid state (a < (3z / 
4'Y). The branch (4c) is unstable when a> O. For a < 0, 
it is also unstable for complex Xt. This instability for 
a < 0 is connected with the cubiC term (the quadratic 
term does not depend on the phases, while the fourth-
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FIG. 1. 

order term can be neglected for a - 0), which has the 
form 

B ~ x.,x •• x •• =Blxl' ~ cos (<P.,+<pk,+<pk,) , 
k.+k2+t3=O k.+t1+kl-=O 

where CPt; is the phase of the quantity Xtj; all the moduli 
I Xt;' are assumed, as before, to be equal (although in 
the present case this is not important), B> O. It can be 
seen at once from this that arbitrarily small phases 
lead to a decrease in J.l, which indicates the instability 
of the branch (4c). This pertains only to the structure 
under consideration; apparently, for a < 0, instead of 
(4c) a stable structure of another symmetry can appear. 
This question was not investigated. 

Asto the branch (4b), it is stable in, for example, 
the case when the fourth-order terms do not depend on 
the phases, i. e., have the form 

~CIXkl'lx.'I" 
k,t' 

Then again everything is determined by the cubic term, 
and it is a minimum for phases CPtj = ± 11', i. e., for neg
ative x, which occurs precisely on the branch (4b). In 
the general case it is necessary to take the fourth-or
der terms into account too. It turns out that the branch 
(4b) is stable in some pressure interval (the lower lim
it of this interval is the point of absolute instability of 
the crystal), which includes the transition point if the 
condition for the realization of the bcc lattice under 
consideration is fulfilled. 

The liquid-to-crystal phase transition (J.l - J.lo = 0) oc
curs under the condition that 

2 ~ 
X=---. 

3 "( 

To metastable states correspond the values 

2 ~' O<a<--
9 ~ 

("supercooled" liquid) and 

(5) 

(6) 

2 ~' ~' --<a<- (7) 
9 "( 4"( 

("superheated" crystal). From the formulas (5) and 
(7) we can obtain the relation: 

(Po-P,)I (Po-P,) ='1" 
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(8) 

where P 1 is the phase-transition point and P2 is the. 
point of absolute instability of the crystal (see Fig. 1). 

The change in the specific volume at the transition 
point is equal to 

v-vo='I.a' (~/"() 2 

(quantities with the index zero pertain to the liquid), 
a' '" da/dP< O. 

(9) 

Let us consider the expression for the compressibili
ty. At the transition point we have 

1 dv _ 1 dvo (1 1) dvo 2 (a')' 
-------- --- -+---

v dP Vo dP v Vo dP v "( . 
(10) 

It can be seen from this that the compressibility of the 
solid is greater than the compressibility of the liquid. 
This unusual property is characteristic of Hes at suffi
ciently low temperatures. [6] 

The volume of the crystal as a function of pressure 
is 

(11) 

where the P dependence of x is given by the formula 
(4b). The isotherm is shown in Fig. 1. The continuous 
curves correspond to stable states (a and b; see (4», 
while the dashed curve (c) corresponds to the unstable 
state. A horizontal straight line corresponds to a re
gion of coexistence of the phases. Let us draw atten
tion to the fact that in the metastable states the liquid 
and the crystal may have equal volumes (it is precisely 
this case that is shown in the figure), which is realized 
under the condition 

(a')' < I dvo I. 
2"( dP 

(12) 

The condition is most probably fulfilled for He3 , since 
otherwise the compressibility of the crystal would be 
more than five times greater than the compressibility 
of the liquid (see (10», which can hardly happen (there 
are no data on the compressibility for T - 0). 

As to the lattice constant, this quantity somehow var
ies with the pressure (see (2». The volume, generally 
speaking, varies according to another law, (11). For 
the number of particles to be equal to the number of lat
tice sites, it is necessary that 

vx3 =const, (13) 

where the constant is determined by the type of lattice, 
in the present case a bcc lattice. This condition can be 
depicted by expanding va and ko about Po and separating 
out different types of terms: not depending on pres
sure, proportional to (p - po), and proportional to 
[(,B/2y)2 - a/y]1/2. As a result, we obtain, in particular, 
that 

(voko'h_p,=const (14) 
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(the same constant). Such a limitation arises for the 
liquid on the spinodal from the requirement that the 
number of lattice sites be equal to the number of par
ticles. Apparently, this condition is not fulfilled, since 
the liquid is not connected in a continuous fashion with 
the bcc structure (the branch 4c is not stable). There
fore, the number of particles is most likely not equal 
to the number of lattice sites. 

4. DISCUSSION 

The condition of applicability of the theory, based on 
an expansion of the type (3), is x« 1, i. e., fJ/y« 1. 
We do not see how this small parameter can be related 
to some parameter of the Fermi liquid. 

The Fermi system under consideration is a two
component system (because of spin). Into the expansion 
(1) enters only the total density, which implies the ne
glect at T= 0 of the exchange energy in the solid state. 
Such is the accuracy of this expansion. 

Let us explain why the proposed description is more 
suitable for He3 than for He4• First, the decrease in 
mass leads to a decrease in the localization of the par
ticles in the crystal. Second, the type of statistics 
plays an important role. As has been shown by Nosanow 
et al. ,[7) a system of Bose particles with the mass of 
He3 and with the same interaction will undergo the tran
sition at a pressure higher by a factor of two than the 
pressure at which a Fermi system undergoes the tran
sition; this is understandable if we take into account the 
fact that the crystals in the two cases will be identical 
(because of the weakness of the exchange), i, e., the 
curve b in Fig. 1 is the same for Fermi and Bose sys
tems, while the horizontal straight line, corresponding 
to the equilibrium of the phases, for Bose particles 
will lie higher with respect to pressure than for a Fer
mi system. Thus, the transition in a Fermi system 
occurs nearer to the point of absolute instability ot 
the crystal, i. e., such a description is more prob
able. 

It is well known that the exchange energy in Hes is 
very small. In this connection, there arises the ques
tion: Is a weak exchange compatible with a large over
lap of the distributions of the neighboring atoms (x« i)? 
Usually, weak exchange effects are associated with 
small overlaps; thus, the variational approach[l) yields 
quite a good localization of the particles at the lattice 
sites, by which the weakness of the exchange effects in 
He3 is explained. However, there is not always a con
nection between overlap and exchange. Let us cite an 
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example in which the exchange interaction is exactly 
equal to zero, but there is overlap. 

Let us consider two one-dimensional hard "spheres" 
located in a potential well. In Fig. 2 we schematically 
show the distributions of the particles 1 and 2; d is the 
"diameter" of the hard sphere. These distributions 
overlap, but the exchange interaction is equal to zero. 
Indeed, let the wave function of some state be </J(1, 2), 
which corresponds to the case when the particle 1 is lo
cated to the left of the particle 2 (we can say this, since, 
by assumption, the particles cannot infiltrate through 
each other-they are "hard"). To the same energy cor
responds the wave function with interchanged particles 
</J(2,1). These functions are linearly independent, since 
they are orthogonal; therefore, we can construct from 
them a symmetric and an antisymmetric combination 
</J(1, 2) ±</J(2, 1), which thus correspond to one and the 
same energy. This means that the exchange interaction 
is equal to zero. 

If the spheres are not absolutely hard, i. e., if there 
is a small penetration probability, then an exchange in
teraction appears; clearly, the splitting of the level 
- niT, where T is the time during which the particles 
will change places. 

It is evident from this example that a strong overlap 
of particle distributions can be compatible with a small 
exchange energy. Therefore, the assumption of a 
strong overlap in solid He3 is not devoid of sense. 

5. THE EXPERIMENT 

The most suitable experiment for the direct verifica
tion of the theory is a scattering experiment. For ex
ample, let us consider the elastic scattering of neutrons 
by the crystal. The matrix element of such a process 
- Mt Xt, where k is the transferred momentum and Mt is 
the matrix element for scattering by an individual atom. 
We assume that T = 0, so that the averaging is per
formed over the ground state of the crystal ( elastic 
scattering). Thus, only 12 reflections can appear in the 
diffraction pattern (conforming to the number of non
zero Xt). In the model the rest formally do not appear 
at all; in reality, of course, they may appear, but their 
intensity will be low. 

Let us now compare this result with the result that 
can be expected from the picture obtained by the varia
tional method. [1) In the latter case the particle distri
bution is far from being a constant, since the particles 
are quite well localized at the lattice sites and the over
lap of the distributions of the neighboring atoms is 
small. Therefore, the structure factor, which is pro
portional to the Fourier transform of the density (Xt), 

will here decrease considerably more slowly with in
creasing k, i. e., besides the 12 principal reflections 
there should be others of roughly the same intensity. 
Thus, a neutron-scattering experiment can answer.e 
the question precisely which picture is obtained in 
He3• 

Usually, x rays are used in the study of He3 (because 
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of the capture of neutrons by nuclei). For x rays, the 
electron density, which has a smoothed-out form in 
comparison with the density of the nuclei, is important. 
Therefore, here the necessary information will not be 
obtained, although in certain cases it may turn out to be 
sufficient. 

The theory gives the same pressure dependence for 
some quantities, and this can also be the object of an 
experimental verification. To wit, the intensity of the 
neutron reflections and the difference between the crys
tal and liquid volumes (v - va), (11), are proportional to 
the quantity x2, the pressure dependence of which is 
given by the formula (4b). 

It would be interesting to verify whether the relation 
(8) is fulfilled, for which purpose it is necessary to 
know the pressures up to which the liquid (po) and the 
crystal (p2 ) exist in the metastable states (PI is known). 
Furthermore, knowledge of one of these pressures will 
allow the determination of the parameters of the theory 
(1, {3, and y (for example, with the aid of (5), (9), and 
(10», and elucidate the question whether the ratio {3/y 

is indeed small. 

Let us emphasize that the experimentally verifiable 
theoretical results discussed in this section are con
sequences of a model in which there is a small param
eter x« 1. On the other hand, the results that are of a 
qualitative nature (the formation of a bcc lattice, the 
increase of the compressibility in the transition to the 
crystal state, as well as the absence of a correspon
dence between the numbers of sites and particles) are, 
generally speaking, valid right up to x- 1. 

Notice that the proximity of the spinodal and the 
binodal can also affect the superfluid properties of liq
uid He3; to wit, besides the Anderson-Brinkman mech
anism [8] there may be another mechanism connected 
with the short-wave fluctuations in the density. Then in 
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the supercooled liquid the transition to the superfluid 
state at pressures higher than some value will be a 
first-order transition, since the magnitude of a correc
tion of the Anderson-Brinkman type for short-wave den
sity fluctuations increases without restriction as the 
spinodal is approached. 

In conclUSion, I thank V. L. Pokrovskii for a discus
sion of the main ideas and the preliminary results and 
for a number of valuable comments, the S. K. Savins 
for interest in the work and encouragement, as well as 
L. P. Mezhov-Deglin, A. V. Chaplik, and M. V. Entin 
for a discussion. 

Note added i11 proof (January 9, 1976). In an experi
ment by D. S. Greywall (Phys. Rev. Bll, 1070 (1975» 
x rays were used for the orientation of He3 crystals. 
Two types of reflections were observed: in the (110) 
direction and in the (200) direction, and the intensity of 
the reflections of the first type was considerably higher 
than that of the reflections of the second type. This lat
ter circumstance supports the supposition that the pa
rameter x is small. 
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