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Stationary deformation of the plasma resonance region by ponderomotive forces due to a longitudinal high­
frequency field is calculated. It is shown that, as the field amplitude increases, there is a reduction in the 
energy transformed into the runaway longitudinal wave. 
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1. Many phySical processes in an inhomogeneous 
plasma interacting with an alternating electromagnetic 
field, for example, linear transformation and absorption 
of waves, parametric instability, and so on, depend on 
the structure of the plasma resonance region (wp ~ w) 
and, therefore, are very sensitive to the nonlinear de­
formation of this region. The importance of this defor­
mation and the associated nonlinear effects are en­
hanced by the presence in the resonance region of a 
sharp maximum of the component of the electric field 
E exp(iwt) parallel to the plasma density gradient.F ] 
Studies of these effects have recently assumed increased 
importance in connection with the transfer of laser or 
microwave energy to thermonuclear plasma. 

When the amplitudes are not too large, the deforma­
tion occurs in a very narrow region (see below), which 
means that it can be described in a universal fashion by 
a Single one-dimensional model with a potentiallongi­
tudinal field, and fields outside the resonance region 
can be ignored. The amplitude of the induction D in the 
neighborhood of the resonance can, in this model, be 
regarded as a given constant which, in each speCific 
case, is determined by the parameters of the external 
field and the structure of the plasma as a whole. So 
long as the deformations of the denSity profile are 
localized in a narrow resonance region, the quantity D 
(or, at least, its approximate value) can be obtained 
from the solution of the problem in the linear approxi­
mation and without taking into account density perturba­
tions. A solution of this kind is available, for example, 
for the important case of oblique incidence of a plane 
wave on an inhomogeneous plasma, with the electric 
vector E confined to the plane of incidenceY] 

2. Consider the stationaryl) strictional deformation 
of collisionless plasma in which the unperturbed density 
profile No(x) is linear. Suppose that this plasma is 
placed in a field with given electric induction vector 
D = xoDexp (iwt). ASSUming that spatial dispersion is 
weak and the relative density perturbations (but not the 
density gradient perturbations) are small, we obtain the 
following equations for the self-consistent stationary 
state in the region I E I « 1: 

e=1-N/N,=e,+c£iEi', 

6'd'E/dx'+(-x/l+c£!EI2)E=D. 

(1 ) 

(2) 

In these expressions, E(X) is the permittivity, E(x) is 
the amplitude of the electric field, Eo = 1 - No/Nc 
= -x/l, Nc = mw 2/41Te 2 is the critical concentration, 62 
= 3T~/mw2 is the spatial dispersion parameter, 
a = e [4mw 2 ( Te + TiW1 is the strictional nonlinearity 
parameter, Te, Ti are the electron and ion tempera-
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tures, respectively, and it is assumed that 15 « 1, 
ad 2 « 1. Equation (2) is the quasi hydrodynamic approx­
imation to the material equation for a plasma with sta­
tionary denSity perturbations due to the average pon­
deromotive force. This equation was previously given 
in[6] for the case Eo = const. 

Since we are interested in states in which the density 
perturbations are localized mainly in a bounded region, 
it is natural to take for the boundary conditions for (2) 
the same radiation (x - - "") and boundedness 
(x - +"") conditions for the WKB asymptotic behavior 
of the plasma wave Ep = E - D/ Eo as in the linear case 
(a = 0):[71 

( d --) ( 1 ) 6-.--iYe, Ep=O -:; , 
dx x-

X-:--'-').:), (3 ) 

(6!!.- -1 V~I) Ep=O (~), 
r],r x-

(4) 

Condition (3) means that, in transparent plasma, the 
field at Large distances from the resonance point is the 
superposition of the "cold" solution D/ Eo and the 
plasma wave Ep traveling in the direction of decreas­
ing density N. The wave traveling in the opposite direc­
tion is absent because there should be strong Landau 
damping on the plasma periphery (E 0 ~ 1), where the 
plasma wavelength .\p ~ 6/ {E;; is of the order of the 
Debye length. Condition (4) demands that, in the non­
tram:parent region, the plasma wave field should de­
crease exponentially. 

In the absence of spatial dispersion (6 = 0), the two 
functions E(x) a.nd E(x) are shown in l8] to be nonsingie­
valued and discontinuous for Eo(X) < EC '" _3(G\!D2/4)1/3 
(see broken curve in Fig. 2). When 6;c 0, the solution 
is continuous and, instead of the coordinate of the point 
of discontinuity, we can use the coordinate x which 
characterizes the qualitative change in structure: when 
x·< x, the real and imaginary parts of the complex am­
plitude E(x) are oscillatory, and when x> x, they de­
crease monotonically. The problem of the number of 
solutions is very difficult. All that can be said with 
certainty is that the set of solutions is discrete. This 
follows from the uniqueness of the solution of the linear 
problem (a = 0) and the analyticity of the solution of the 
Cauchy problem for (2) as a function of the initial con­
ditions and the parameter G\!. We shall define the 
"ground state" as the solution E(x), E(X) which uni­
formly and continuously transforms to the linear solu­
tion in all space as G\! - O. It appears that, in addition 
to this ground state, there are also higher states char­
acterized by large values of x, i.e., deeper deforma­
tions of the post-critical region. 
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In terms of the dimensionless variables C 
= (E/O) (r/l)2/3, z =X(I)Zl)-1/3, Eq. (2) assumes the 
form 

(5 ) 

from which it is clear that the character of the solution 
is determined by the single nonlinearity parameter TJ. 
When 11 « 1, the ground-state solution is always close 
to the linear solution and can be found by perturbation 
methods. When 11 » 1, the characteristic scale of 
oscillations in the field and density for x ~ x is 
A = 0 I EC 1-1/ z ~ 0(aD)-1/6, Le., it is lower by a factor of 
f) 1/6 as compared with the corresponding scale in the 
linear problem, Ao = (01)1/3. 

3. The structure of the ground state was calculated 
on a computer and the results are shown in Figs. 1-4. 
Figure 1 shows the permitti vity dz) for different 
values of 11. Noticeable deformations of E(Z) appear 
only for 11 ~ 1. As 11 increases, the passage of dx) 
through zero becomes increasingly steeper, the ~oSition 
of the zero approaches the point Xc = 3l (aOZ/4)1 3 

(Eo(Xc) = Ecl, and the solution becomes multivalued when 
6 = O. This can be illustrated by comparing the solu­
tions for I) = 0 (broken curve) and I)'" 0, 'I) = 20 (solid 
curve) in Fig. 2. The sharp reduction in the E profile 
in the region of transparency is due to interference be­
tween the "cold" solution 0/ Eo and the traveling plasma 
wave. As an illustration, Fig. 3 shows the distributions 
of the real and imaginary parts of the complex field 
amplitude for 'I) = 20 and 'I) = O. By analyzing these dis­
tributions, one can readily establish the dependence of 
the amplitude of the runaway plasma wave and the en­
ergy flux S carried by it on the parameter 'I). In the 
linear approximation ('I) « 1),[7J 

8=80 ='/8(})ID'. 

When 11 > 2, numerical calculations (see Fig. 4) show 
that, to a good approximation, 

8/80=0.63/1'1]. 

(6) 

(7) 

and hence S = 0.79wI)0/.fa, i.e., the effiCiency of trans­
formation of energy into the plasma wave decreases 
with increasing 'I) and ceases to depend on l. 

We note that the result S ~ 1/ fi7 can be obtained 
directly from simple model representations by consid­
ering the generation of a plasma wave across the dis­
continuity of the "cold" (I) = 0) distribution E(X) at the 
point x = Xc = I EC Il. This distribution (dashed curve in 
Fig. 2) gives a qualitative approximation to the actual 
distribution E(X) averaged over the scale of fine oscil­
lations. The reduction in the amplitude of the plasma 
wave excited across the discontinuity, which occurs as 
11 increases, is then simply a consequence of the in­
crease in I E I on either side of the discontinuity and the 
associated reduction in the gradient of the average 
"cold" field 0/ Eo In point of fact, if we write the ex­
pressions for the field in the neighborhood of the dis­
continuity in the form 

E=Dh+ +A exp[ie:' (x-x,) /1], x<x, 

E=D/e_+Bexp [-le_I'h(x_x,)/I], x>x, 

where E+ = I EC 1/3, E_ = %Ec on either side of the dis­
continuity,[sJ and match up the values of E and dE/dx 

(8) 

at x = xc, we obtain the following expressions for the 
amplitude A of the runaway plasma wave and the energy 
flux S = WOE:'z I A 12/ 81T carried by it: 
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FIG. I FIG. 2 

FIG. I. Stationary proflles of plasma permittivity e(x) = I - N(x)/Nc 
for different values of the nonlinearity parameter 1/ (ground state 
solution). 

FIG. 2. Comparison of the ground state solution in the case of strong 
nonlinearity (1/ = 20) with the solution obtained without taking into ac­
count the excitation of the plasma wave (0 = 0, broken curve). 
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FIG. 3 FIG. 4 

FIG. 3. Distribution of the real and imaginary parts of the field 
amplitude C: a-in the absence of nonlinearity (1/ = 0), b-when 1/ = 20. 

FIG. 4. Power transferred to the runaway plasma wave as a function 
of the nonlinearity parameter 1/. 

S=(})/le;"IA 1'/8n: 

A = ~ (1-i (,::,)",) =3,~, (1-;".), (9 ) 

8= (})/lD'(1+~)=~~ 
8Ite'~' '8,_' It 1]'''' 

(10) 

4. The function S('I)) found above can be used to de­
termine the relative reduction in the transformation 
coefficient R in the case of oblique incidence of a 
transverse wave with electric vector ~arallel to the 
plane of inCidence: R/Ro::::J S/So ~ f)-1 z. The induction 
o on which 11 depends can be expressed in terms of the 
amplitude Eo of the incident wave in vacuum and, in 
particular, for kl » 1 (k = w/ c) and the optimum of 
incidence 8::::J (kl )1/3 (when Ro::::J 0.5), we have 
O::::J Eo/ (21Tkl /IZ pI Thus, linear transformation (exci­
tation of runaway plasma wave) is a low-efficiency 
processZ) from the point of view of the transfer of the 
energy of external radiation to plasma at high energy 
densities. It is probably inferior to other loss mecha-
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nisms which we have not considered here and which are 
due to electron collisions or collisionless damping 
directly in the region of strong nonlinearity (where 
€ ~ I €c I). 

In conclusion, we summarize the arguments which 
suggest that the above stationary state is stable (at 
least within the framework of the one-dimensional 
model) and that the initial unperturbed structure should 
eventually approach this state. Thus, firstly, stability 
is favored by the possibility of free transport of the 
energy associated with the perturbations out of the 
resonance region and, secondly, small-scale modulation 
of the density profile N(x) can be regarded as a stabiliz­
ing factor, since it is precisely this modulation that is 
capable of limiting the development of parametric insta­
bility in the initially homogeneous or weakly inhomo­
geneous plasma.[lO] Finally, out of all the possible sta­
tionary states, the ground state should exhibit "maxi­
mum stability", since it requires the smallest expendi­
ture of energy for its establishment, and is character­
ized by the minimum values of stored and dissipated 
energy. 

The authors are indebted to A. A. Andronov and - -A. G. Litvak for useful discussions, and to R. E. Erm 
for carrying out numerical calculations. 

l)Since all the possible stationary states of the system must be investi­
gated first, we shall ignore such important questions as the establish­
ment of these states and their stability. The initial stages of the estab­
lishment process have recently been investigated experimentally [2,3] 
and numerically on a computer. [4] The regular stationary model 
which we shall consider can be looked upon as an alternative to 
models based on the idea of stationary turbulence. [5] 
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2)These results are very different from &ome of the qualitative predic­
tions in [9] which suggest that the coordinate of the transition through 
plasma resonance is continuously displaced into the interior of the 
plasma (well beyond the point xc), and the transformation coefficient 
R increases continuously (up to values R - 1). In our opinion, the 
initial assumptions concerning the dynamics of the transition region, 
which are adopted in [9], cannot be regarded as justified. 
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