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The next, nonlinear correction after the Heisenberg-Euler correction to the Lagrangian of a constant 
electromagnetic field is found and takes into account the change of the radiative interaction of the vacuum 
electrons by the external field. In perturbation theory with respect to the radiation field the Lagrangian of 
the field is described by a considerably smaller number of diagrams than is the photon polarization 
function, but contains, in the strong-field limit, the same information as the latter function contains in the 
limit of large values of the momentum squared. This makes the Lagrangian an object of interest not only in 
the electrodynamics of an intense field but also in electrodynamics at short distances. Not only is the 
charge of a real electron determined by the behavior of the Lagrangian of the field, but so too is the mass. 
The invariance under the renormalization group makes it possible to find an improved perturbation-theory 
series (and its applicability parameter) for the strong-field asymptotic form of the Lagrangian. This series 
diverges for an exponentially strong field, in which the lowest approximation to the Langrangian vanishes. 

PACS numbers: 11.10.Ef 

1. INTRODUCTION 

In 1936 Heisenberg and Euler[l] found a quantum cor­
rection to the Lagrangian of a constant electromagnetic 
field; the correction takes into account the polarization 
of the vacuum, Le., the change induced by the external 
field in the motion of the vacuum electrons. With this cor­
rection included, the Lagrangian is equal to 

9? =_8'_-_11_' + _1_ J Ii~ e- jm " ( e'11 8 ...!.. + _e...;2 (...:.112_-_8...;,.2») 
2 8n 2 0 s tg ells til e8S s' 3 . 

(1) 

Here E and TJ are the intensities of the electric and mag­
netic fields in the reference frame in which they are 
parallel. Other derivations of the polarization correc­
tion to ~have been proposed by Weisskopf[2] and Schwin­
ger[3]. The Lagrangian (1) has served as the basis for 
nonlinear quantum electrodynamics, in which the effects 
are sensitive to the intensity of the electromagnetic field 
and are optimal for fields F of the order of Fo =m2c3/en 
(in the proper frame of electrons interacting with a field). 

Polarization of the vacuum is induced not only by the 
external electromagnetic field but also by the individual 
quanta of this field-the photons. The photon polarization 
function 1TR, which describes this phenomenon has been 
found (in different representations) by Serber[4; Uehling[5], 
Schwinger [6, 3] and Feynman[7]. It constitutes a basis for 
investigations of quantum electrodynamics at short dis­
tancesra-14]. The radiative corrections of fourth order[l5-17] 
and (partially) sixth order[18] have been found for the func­
tion II'R' 

It is interesting to compare the vacuum polarization 
by an intense field with the vacuum polarization by 
quanta of large momenta, thereby linking the electro­
dynamics of an intense field with the electrodynamics of 
short dis tances. For this it is natural to find the next 
radiative corrections to the Lagrangian of an intense 
field and, above all, the correction associated with the 
change induced by the external field in the radiative in­
teraction of the vacuum electrons. This correction is 
found in the present paper; cf. formula (50). Its simpli­
city is explained by the compactness of the Green func­
tion Go that takes the interaction with the external field 
into account exactly. This also leads to the result that, 
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unlike the corrections to 1TR, the radiative corrections 
to the Lagrangian are described by the minimum possible 
number of topologically different diagrams (there are 1, 
1, 3, . .. diagrams for the corrections of order 0', 0'2, 

0'3, ••• , in contrast to the 1,2, 10, ... diagrams for 1TR)' 

Comparison of two successive radiative corrections 
gives the applicability parameter for perturbation theory 
in the radiation field in electrodynamics. For electrons 
and photons interacting with an intense field, in the re­
gion of high particle energies or large fi.elds this para­
meter has been found to be the quantity ax1I3lnx (cfY9,20]), 
where the invariant X = .j(eF J.lVpzYm-3 is proportional to 
the field and to t he particle momentum and in the proper 
reference frame is equal to the field intensity in units of 
Fo. The fact that this parameter differs Jrom the well­
known parameter aln s of the electrodynamics of short 
distances has been one of the motivations for carrying 
out the present work. It is elucidated tha.t in the electro­
dynamics of an intense field with no real particles the 
parameter of perturbation theory in the radiation field 
is x = (a/1T)ln(eTJ/m2) or (a/1T)ln(eE/m2 ), while the para­
meter of the improved perturbation theory is 

s=max[:, : (1-x)-'ln(1-x)-']' 

The structure of the article and the principle results 
are as follows. In the next Section we give the derivation 
of the correction ~(2) to the Lagrangian that is due to the 
change of the radiative interaction of the vacuum electrons 
by a constant external field. In this calculation essential 
Ul3e is made of the Green function of an electron in a con­
stant field, and of the diagonalization of functions of the 
field matrix F !lv, Section 3 is devoted to the renormali­
zation of the external field and of the charge and mass of 
the electron. Like the charge renormalization, the mass 
renormalization is carried out directly in the framework 
of the calculation of the Lagrangian of the electromag­
netic field (without a separate treatment of the mass op­
erator or of the position of the pole of the electron Green 
function), using the general physical renormalization 
principle that requires that the radiative corrections to 
the observed charge and mass vanish when the field is 
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switched off. Speaking more generally, from the Lagran­
gian of a boson field the mass spectrum of the fermions 
interacting with the bosons is established. For the re­
normalization of the charge (and of the field), the beha­
vior in a weak field of the real part of the Lagrangian 
is important, while tor the renormalization of the mass 
the behavior of its imaginary part is important (it is the 
latter which effects the coupling of the field with a chan­
nel of real particles). This is carried out explicitly in 
Sec. 4, where the imaginary part of the Lagrangian is 
calculated for weak and strong fields. Also in Sec. 4, 
it is observed that the asymptotic behavior of the La­
grangian for large fields COincides, with logarithmic ac­
curacy, with the asymptotic behavior of the polarization 
f\Ulction at large momenta. A deeper analogy between 
these quantities is traced in Sec. 5 by means of the re­
normalization group. This group makes it possible to 
find for the Lagrangian an improved perturbation-theory 
series in the radiation field, the region of applicability 
of which is determined by the smallness of the parameter 
~ indicated above. It is instructive that the terms of this 
series become infinite at the point x = 1, at which, ac­
cording to the zeroth approximation, the Lagrangian 
ought to vanish. 

2. CALCULATION OF THE LAGRANGIAN 

As is well known (cf.[21 1), the motion of an electron in 
an external field, with radiative corrections taken into ac­
CO\Ult, is described by the exact Green f\Ulction G(x,x'), 
obeying the equation 

(i111+m)G(x,x')+ S d,x"M(x,x")G(x",x)=-il)(x-x'). (2) 

The Green function G(x,x') and mass function M(x,x'), 
which describes the self-energy effects, are conveniently 
considered as matrix elements of operators G and M in 
the coordinate representation: G(x,x') = (xIGlx'), 
M(x,x') = (xIM!x,. Then Eq. (2) is a matrix element of the 
operator equation 

(i1 11+ m+M)G=-i, (3) 

in which the kinetic-momentum operator ITa =p -eA 
. h a a 
1S c aracterized by the properties 

[x.,I1,]=i6." [II., n,]=ieF." (4) 

where F af3 = fJaA(3 - fJ~a is the electromagnetic-field 
stress tensor. 

It is also known that, on variation of the potential of 
the external field by an amount oA fl (x), the action 
changes by an amO\Ult 

I)W = S d'xM,(x) <i,(x) >, (5) 

where (j J.1 (x) > is the average value of the current opera­
tor, connected with the Green function by the relation 

<j,(x) >=-ie tr 1.(X I G Ix). (6) 

Here the symbol tr denotes a diagonal sum over the spi­
nor indices. The expression for 5W acquires the compact 
form 

6W=-ie Tr 1MG, (7) 

if we use the matrix form of the f\Ulction G, denote by 
oAfl the operator with matrix elements 

(xIM.lx')=I)(x-x')M.(x) (8) 

and introduce the symbol Tr for a complete diagonal 
summation both over the spinor indices and over the 
space-time coordinates; cfy, 211. 
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For the following it is convenient to introduce the 
Green function Go that does not take the radiative cor­
rections into account, i.e., the Green function obeying 
Eq. (2) in which the mass function M is equal to zero. 
Since -iey5A = 1)(iyII + m) and iyIT + m =-iG~\ we have 

I)W=-i Tr I)G,-tG. (9) 

This expression for oW is convenient for representing it 
in the form of a series in the radiative corrections. Thus, 
if we write Eq. (3) in the form 

G=G,-iG,MG (10) 

and confine ourselves to the second-order corrections: 

G",G,-iG,M"'G" (11) 

then, 
I)W""-i Tr 6G,-tG,-Tr I)G,-tG,M'·)Go• (12) 

Taking into account the identity 5Gii1Go + G~11)Go = 0, we 
can write the first term in (12) in the form!) 

I)W't)=i Tr Go -'6Go=io Tr 1n Go, (13) 

and the second term in the form 

oW(Z)=Tr oGoM(2)=,/,O Tr GoM"). (14) 

Here we have used the fact that operators can by cy­
clically permuted under the trace Tr, and also the fact 
that M (2) depends linearly on Go: 

M(2)=ie'S 1(s)Go1(S')Do(s-s')d'sd'S' 

+ie'S Tr[ 1 (s) Goh(s')Do (s-s')d' s d's'. 
(15) 

Here Do is the photon Green function without allowance 
for the radiative corrections and y(~) is the operator 
with matrix elements 

(xh.(s) Ix')=1.0(S-x)o(x-x'), 

so that -ieTr [Ya(OGo] = (ja (0). 

(16) 

Thus, to within an additive constant, the first-order 
nonlinear corrections to the Lagrangian of the Maxwell 
field is equal to 

,2"')(x}=itr (xpn Golx) (17) 

and corresponds to the diagram 1 in the figure, while the 
second-order nonlinear correction is equal to 

P,2'(x)='/,tr (xIM'Z)Golx) (18) 

and is characterized by the diagrams 2a and 2b in the 
figure. The double line in this figure represents a vir­
tual electron interacting with the external field, and the 
wavy line represents a virtual photon. In the case of a 
constant and uniform field F flV ' which is considered 
below, the diagram 2b makes no contribution to y(2) 

since the average current (j fl (x) = -ietry fl(x I G I x) in­
duced in the vacuum by such a field is equal to zero. 
Thus, in this case the polarization correction y(2) takes 
into account the interaction of the electron and positron 
of one virtual pair. 

To calculate 

,2'(2) = fie'S d'x' tr[ 1.Go(X, x'h.Go(x', x} ]Do(x-x') (19) 

we shall make use of the Green function of an electron 
in a constant field, found by Schwinger(31 (cf. also the 
paper by Fock(221): 

G ( ') _ -iexp[ill(X,X')] SOO ds [ i ( ] 
o x,x - (4n)' --;;- m-21 ~+eF)z 

o 

[ , iz~z ieaFs ] 
xexp -im s-LCs) +-4-+-?- . 

(20) 

Here, 
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~=eF cth eFs, 
1 

L(s)=Ttrln[(eFs)-' sheFs] 

are a matrix function and scalar function of the matrix 
F, z = x -X', and TJ is the off-diagonal phase of the Green 
function, equal to the line integral of the potential eAj1. (y) 
along the straight line joining the points x' and x. Sub­
stituting into the expression (19) the functions (20) and the 
photon Green function in the proper-time representation: 

-i JM dt ( iz' ) Do(z) =-- -exp -
(4,,)' 0 t' 4t 

we obtain 

,C(2) -e' JJMJ dsds'dt ."' , 
.;z:. =--- ---exp(-,m"(s+s )-L-L) 

(21) 

ing the characteristic equation det(F - A) = 0, we find 
that the eigenvalues of the field matrix are, to within 
phase factors, just the magnetic and electric fields in 
this frame: 

(28) 

By means of the unitary transformation 

(
1 i 0 0 

U =~ i 1 0 0) 
Jf2 0 0 1 1 

o 0 t 1 

(29) 

the field matrix F J1.11 can be brought to the diagonal form 
Fd = U+FU with the eigenvalues (28) on the diagonal. In 
the diagonal representation, matrix functions of the ma-2(4,,)' 0 (ss't)' 

xJ d'zex p[ +z(~+V++)z]trr, 
(22) trix F become diagonal matrices with the corresponding 

functions of the eigenvalues (28) on the diagonal. 

where 

r=1,f m - +y(~+eF)z ] exp(ieaFs/2) 

Xy,[ m++ 1W+eF)z ]exP(ieaFs'I2). 

Here and below, primed quantities are obtained from the 
unprimed ones by the replacement s _ s I • 

If we represent 

e'.oF·(,=S+ 1/2ieaFT -iy5P+ 1/2eY5aFT", (23) 

where S and T are scalar, and P and T* pseudoscalar 
functions of the field F and of the proper time s, and 
denote the analogous functions in the expansion of 
exp(l/2ieaF(s' -s)] by 8, T, Ii and T* (these are ob­
tained from S, T, P, and T* by the replacement 
s _ s' -s), then tr r is easily calculated and acquires 
the form 

tr r=2 {8m' (SS' +PP') - [E' (S+eFT+eF"f') B j ,.z.z,} , (24) 

where the matrix B = {3 + eF, the matrix B' - eF, and 
FUll = 1/2i€ IIAaF Aa is the dual of the tensor F jJ.'Jo To 
calculate the integral over z in (22) we shall consider 
the quadruple Gaussian integral 

J ( izAz ) 1(4,,)' 
1= d'zexp -ipz+-- =-=exp(-ipA-'p), 

4 l'detA 
(25) 

in which A is a symmetric 4 x 4 matrix and p is a 
4-vector. By differentiating with respect to p we obtain 

J ( IZAZ) d'z z.z, exp -ipz + -4- =I[ (2A -'p). (2A-'p),+2iA.,-' j. (26) 

Now, putting P = 0, we obtain in our case 

Jd'z tr re',A,(' = 1(4,,)'4 {4m' (SS'+PP') - i tr[E' (s+eFT+eF'j")BA-']}, 
l'detA 

where the ·matrix A = {3 + {3' + t- 1 , and tr, as before, 
denotes diagonal summation. 

(27) 

Concrete expressions for all the functions appearing 
in formula (27) are conveniently obtained by means of 
the diagonal representation of the matrix F /1.11' As is 
well-known (cf., e.g.,[231), for an arbitrary constant 
field there exists a coordinate frame in which the mag­
netic and electric fields are parallel; their magnitudes 
TJ and € in this frame are relativistic invariants of the 
field. Using the field matrix F 11Y in this frame and solv-

0> e 00 
2. 2b 
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As a result, we obtain 

l'det A=[e7J (ctg e7Js+ctg e7Js') +t-'] [ee (cth ees+cth ees') +t-'], (30) 

e-L=[det( sheFs )]-,/, =~~_ (31) 
eFs sin e7Js sh ees ' 

where in the latter relation we have used the fact that 
the trace of the logarithm of a matrix is equal to the 
logarithm of its determinant-a property which is ob­
vious in the diagonal representation. 

To determine the invariant functions S, T, etc., ap­
pearing in the expansion (23) and formula (27), we note 
that in the aforementioned coordinate frame 1/2aF 
= (TJ + ie')ls~3 and, since the matrices ')Is and ~3 have 
eigenvalues ±1, the eigenvalues of the matrix 1/2aF 
will be ±(TJ + iE'm ±(TJ - uE). Then, 

S=cos e7Js ch ees, P=sin e7Js sh "es, 

T = 71 sin e7Js ch ees + e cos e7Js sh ees 
e (7J'+e') 

T" = e sin e7Js ch ees - 71 cos e7Js sh ees , 
e(7J'+e') 

(32) 

Using these functions and the eigenvalues of the corres­
ponding matrices, we find2) 

where 

tr[B'(S+eFT+eF"T")BA-'] =-p-+-q- (33) 
a+t-' b+t-' 

a=e7J (ctg e7Js+ctg e7Js') , 

2{e11)' ch ee (s' -s) 
p = sin e7Js sin e7Js' , 

b=ee (cth ees+cth ees') , 

2 (ee)' cos e11 (s' -s) 
q = sh ees sh ees' 

(34) 

Substituting the expressions (30)- (33) into formulas (27) 
and (22) and performing the integration over the photon 
proper time t, we obtain for 2'(2)the follOWing expression: 

2(2) = -ia JMJ dsds' exp[ -im' (s+s') 1 (e'7J e)'[ 4 '{SS'+PP')I _ 'I] 
32,,' sin e1]s sin e1]s' sh ees sh ees' mol, 

o (35) 
in which 10 and 1 are functions arising as a result of the 
integration over t: 

Io=_1_ln~, I=~ln~- qb-'-pa-' (36) 
b-a a (b-a)' a b-a 

The integration contours pass below the Singularities 
on the real axes s, s' (which is equivalent to a small 
damping[l] or to the rule m 2 _ m2 - i5) and can be de­
formed with allowance for the singularities of the inte­
grand. 

3, RENORMALIZATION 

The expression (35) obtained for 2'(2) does not vanish 
when the field is switched off. This is connected with the 
fact that the initial expression (18) was defined to within 
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an additive constant. We denote the integrand in (35) by 
f(s, s') and expand it in the field 

f(8, s') =/0(8, s')+/,(s, 8')+ .... 

In this expansion, the first term 

M8, s') 
exp[ -im'(s+s') 1 

ss' (S+8') (4m'-~) 
S+8' 

(37) 

(38) 

does not depend on the field, while the next term, quad­
ratic in the field, 

/' (s, 8') 
e'(1']'-g') exp[ -im' (s+s') 1 [2m' (1-~-~) _~] 

3 s+s' 8' s 8+8' 

(39) 

is proportional to the Lagrangian of the Maxwell field: 

.2'(0)= (g'-1']')/2. (40) 

The subsequent terms of the expansion are proportional 
to the fourth, sixth, etc., powers of the field. Therefore, 
2'(2) can be represented in the following form: 

a' ( 1 5 5 ) .2""=-.2""_ In----+-ln2 
4n' ilm'so 3 3 (41) 
ia ~ 

- 32n' ~S dsds' (t-t,-j,) , 

if we omit the infinite constant-the integral of fo (which 
it is necessary to do if L (2) is to vanish in the absence 
of the field) and if we calculate the logarithmically di­
vergent coefficient in the term proportional to L (0), i. e" 
the integral of f2' by introducing an invariant cutoff with 
respect to the proper times sand s' by means of equal 
lower limits so. In the expression (41), In y = 0.577 ... 
is the Euler constant. 

The first term in (41) must be added to the Lagrangian 
of the Maxwell field. As a result, this function is multi­
plied by a logarithmically divergent factor, which should 
be included in the change of magnitude of all the fields 
and in the corresponding change of magnitude of the 
charge, i.e., in the renormalization of the field and 
charge. We shall discuss this somewhat later, and con­
centrate our attention now on the principal, integral 
term in (41), denoting its integrand by 

K (s, s') =1(s, s') -/0 (s, s') -/,(s, s'). (42) 

It is not difficult to see that this integral still diverges 
logarithmically as s - 0, s' f 0 (s' - 0, s f 0). Using 
the symmetry of the function K(s, s') under the inter­
change s :;::: s' , we transform this integral as follows: 

-ia S- S· ,-ia S~ S· ,[ K,(s) ] -- ds ds'K(s,s} =-- ds ds K(s,s') ---
i6n' i6n' s' o 0 0 0 

-~s-dsS' ds' K,(s) • 
i6n' s' 

o " 

In the right-hand side we have subtracted from, and 
added to, the function K its limiting expression as 
Sf -0: 

lim K(s, s') =Ko(s)/s', s'-+O; 

( a) (e'1']e 1 e'(1']'3-g') ). Ko(s)=e-'m" 4m'+i- --+--'---
as tg e1']s th ees s' 

(43) 

(44) 

In formula (43) the aforementioned logarithmic diver­
gence has been separated out into the last term, which 
has been regularized by the introduction of the lower 
limit So for the proper time s'. Thus, after integration 
over Sf this term acquires the form 

ia 1S~ iaS- , ---In'-- dsKo(s)--- dsKo(s)lni'Yms. 
i6n' ilm'so 0 16n' 0 

(45) 
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By means of integration by parts the integral of the 
function Ko can be transformed to the expression 

-ia 1 - 3am' 1 0.2' aU) (m') 
-In--SdsKo(s) =-~ln--' .' (46) 
16n' iym'so, 2n iym's, am 

which is proportional to the derivative of the Heisen­
berg-Euler Lagrangian function 

'l) 1 ~ dse-'m" ( e'1']g 
.2' ----

a - 8n'S s tg e1']s th ees , 
1 e' (,11'-g') ) + . 
s' _ 3 

(47) 

with respect to the mass squared. This proportionality 
is not accidental: it is necessary for the renormaliza­
tion of the mass in the expression for Lit) . The propor­
tionality coefficient (3am2/21T)ln(iym2sorl in formula (46) 
is, to within a constant added to the logarithm, the radi­

,ative correction to the square of the "bare" mass of 
the electron. This additive constant can be taken from 
the work of Schwinger [3], in which the electromagnetic 
part of the electron mass was found in the proper-time 
representation used in the present work; it turns out to 
be equal to 5/6: 

6m'=-- In--+- . 3am' ( i 5 ) 
2n ilm's, 6 

(48) 

It is nof"necessary to take the additive constant 5/6 
from Schwinger's work or, in general, from any inde­
pendent treatment of the mass operator and of the pOSi­
tion of the pole of the electron Green function; the con­
stant can be derived in the framework of the present 
calculation of the Lagrangian of the electromagnetic 
field. Below we shall show that the prinCiple of the re­
normalization of the electron mass, which makes it pos­
sible to find the exact expression (48) for the radiative 
correction to the electron mass and, consequently, the 
relation m2 = m~ + 5m2 between the real and bare elec­
tron masses, is intrinsic to the calculation of the La­
grangian of the electromagnetic field. 

When we add the constant 5/6 to the logarithm in the 
first term of (45), we must subtract it from the logarithm 
in the second term of (45). 

Thus,2'(2) is represented in the following form: 

a' ( i 5, 5 ) iJ.2' ~I' ", .2""=-9?'O)_ In----+-ln2 +6m'--+9?a , 
4n' ilm'so 3 3 am' 

(49) 

where 
.2':," = -ia S- dSS' ds' [K(S s')- Ko(s) ] 

1631 3 's' 
o 0 

- ~S- dsK,(s) (In ilm's -~), 
i6n' 6 

(50) 

, 

and 5m2 is determined by formula (48) and is the electro­
magnetic part of the square of the electron mass, so that 
m2 = m~ + 5m2 is the square of the real-electron mass. 
At the same time, the first-order radiative correction 
to the Lagrangian has the form 

.2'(I'=9?"'~ln-1-+.2"" (m ') (51) 
3n i"(mo2so R 0, 

where 2'it) is determined by formula (47) and the unre­
normalized fine-structure constant and electron mass 
are indicated by the subscript zero. 

Thus, to within radiative corrections of second order 
in a, the nonlinear Lagrangian of a constant field is 
equal to 

.2'=.2""+.2',I'+9?,2'=9?a +.2'~I' (m')+.2'~"(m'), (52) 
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in which the latter expression contains only the renor­
malized values of the field and of the electron charge 
and mass. In fact, the unrenormalized Lagrangian 
2'(0) = 1/2(E~ - 77~) of the Maxwell field and the terms 
proportional to it in the expressions (51) and (49) are 
collected into the renormalized Lagrangian 2'~) 
= 1/2(E2 - if): 

Z. =1+-1n---- In----+-ln2 _, ct, 1 a,z ( 1 5 5 ) 
3n ilm,'s, 4n' ilm. 's. 3 3 • 

thereby leading to renormalization of the field and 
charge: 

(53) 

(54) 

(we have indicated the unrenormalized values of the 
field and charge by the subscript zero), and the term 
l)m2 a2'it'/8m2 in (49) effects the renormalization of the 
electron mass: 

Il'~') (m'); (55) 

the functions 2'(1) (m2) and 2'(2' (m2) are determined by R R 
formulas (47) and (50). The argument e0770 = e1}, 
eoEo = eE of these functions are invariant under the re­
normalization (54). The factor Z;l can be expressed by 
means of (48) in terms of the renormalized electron 

In this way the correct asymptotic expression for the 
imaginary part of 2'li' is obtained. (With regard to the 
transformation 1} = -iE and the imaginary part of the 
Lagrangian, see below.) It is useful to compare formu­
las (57) and (58) with the corresponding formulas for 
,,,(1) _ 

""R' 
2a' eTJ ee 

\

45m' [(TJ'-82)'+7(TJ8)'l. m" m,<1. 

Il'!"= 

aTJ2(ln~+';'~'(2»). eTJ >l ~~1 
~ ~~ n ~. ~ 

(60) 

Here 61T-2t' (2) = -0.5699610. . ; t (x) is the Riemann 
zeta-function. As can be seen from the asymptotic for­
mulas obtained, the function 2'~) ~ a2'~), irrespective 
of the magnitude of the field. In Sec. 5 It will be shown 
that this is an exception, and the ratio of the subsequent 
radiative corrections will be of order (a/1T)ln(eF/m2) 
for large fields. 

A remarkable property of the functions 2'(1) and 2'n' 
is the fact that for large magnetic (electric) ~elds the 
ratios 

Il'~t) a (1 eTJ 2, ) 
-~- --In----~ (2) • 
Il'~) n 3 lnm' n' 

Il'~') "" (C~_)' (-..!....In~+ a,,). 
Il'~) n 4 lnm' 

(61) 

mass: 

Z. =1+-1n--+- In--+---ln2 . _I ct, 1 cto' ( 1 10 5 ) 
3n ilm's. 4n' ilm's, 3 3 

behave, with logarithmic accuracy, in the! same way as 
the polarization functions of second and fourth order in 

(56) e at large values of the squares of the space-like (time­
like) momentaS) 

The coefficients of the logarithms in this expression 
coincide with those known in the literature; cf., e.g.,[14] 

4. ASYMPTOTIC PROPERTIES AND THE 
RENORMALIZATION PRINCIPLE 

We shall find the limiting expressions for the La­
grangian function 2'~' for weak and strong fields, and 
consider its imaginary part in detail. 

Expanding the functions K(s, s') and Ko(s) in the field 
(the lowest terms of these expansions, proportional to 
the fourth power of the field, are given in Appendix A) 
and integrating these expansions over the proper times 
s and s', we obtain, according to formula (50), 

Il'("=~[~( '_8')'+ 263( 8)'] +.... ~ ~< 1. (57) 
R nm' 81 TJ 162 TJ • m" m' 

In the expression (57) the imaginary part of 2'~) , which 
is exponentially small compared with the real part (c!. 
below) and cannot be represented by a series in ~wers 
of the field, is absent. In general, the function 2'R' has 
an essential singularity at the point eF = 0, so that the 
series (57) for the real part of2'{:i' is asymptotic. 

In the case of a strong magnetic field (e77/m2» 1, 
eE/m2"S 1) the calculations are conveniently carried out 
by first rotating the contours of integration over the 
proper times: s, s' - - is, - is I. We then obtain, with 
logarithmic accuracy, 

~~1 , . 
m 

(58) 

The uncalculated constant a2, additive to the logarithm, 
is real. The case of a strong electric field (eE/m2» 1, 
e77/m2 ;S 1) can be obtained from (58) by the transfor­
mation 77 - - iE : 

(2) a 2e2 
( ee irr; ) Il'R ~ -- In----+a, 

8n' lnm' 2 • 
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ee 
m,>1. eTJ ~ 1 , . 

m 
'(59) 

f') a( 1 k' 5) ITR ""- --In-+- . 
IT 3 m' 9 

n~') "" (..::.)·(-..!....In!!...+~-~(3)). 
IT 4 m' 24 

(62) 

By the nature of the problem, the Lagrangian and the 
polarization function describe the same phenomenon and 
are determined by the effective value of the operator 
112 (na = Pa -eA(]!) responsible for the interaction of 
the vacuum electrons with the quanta or with the field. 
At large momenta of the quanta, or high fields, the aver­
age value of 112 becomes of the order of k2» m2 for the 
quanta and of the order of (eFx)2 IV eF» m2 for the field, 
since in this case the Lagrangian is formed over dis­
tances x IV (eFfl/2 that are short compared with the 
Compton wavelength. 

Therefore, the Lagrangian of the constant field also 
correctly describes the polarization corrections for 
varying fields, if the fields are sufficiently intense. For 
example, the well-known Uehling-Serber correction to 
the Coulomb field at short distances: 

8 = 4!A 1+ ~ (In (l~r)' - ~ )]. r4:.m- l
, (63) 

calculated with the aid of the polarization function 1TR, 
can also be found, with logarithmic accuracy, with the 
aid of the Lagrangian 2' = E2/2 - (aE2/61T)ln(eE/yn-m2) of 
a constant electric field, if we solve for E the expres­
sion for the induction 

(64) 

which is equal to q/41Tr2 since its divergence is equal to 
zero. 

We consider now the imaginary part of the Lagrangian 
function 2'(2'. We recall, in this connection, that 
ei 2'VT is the amplitude andlei 2'VTl2 = exp(-2Im2'VT) 
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the probability that the field in volume V remains the 
field for a time T. Therefore, 21m.2" is the probability 
of real creation of pairs and photons by the field, per 
unit time and unit volume. Here 2 Im.2"if is the proba­
bility of creation of a pair, and 2Im2'k) is the sum of 
the probability of formation of a pair and a photon and 
the radiative correction to the probability of formation 
of a pair. 

The imaginary part of the Lagrangian of a constant 
field is nonzero only if E I' O-only the electric field can 
do work and lead to real production of particles. There­
fore, for simplicity, we shall confine ourselves to the 
case when 1] = 0 and E I' o. It is convenient to rotate the 
proper-time integration contours to lie along the negative 
imaginary half-axis: s --is, s' --is'. Then the ex­
pression (50) for .2"ft) becomes 

(') ia SOO S· ,[ , " iKo(-is) ] 
9:. ~ 1{),," ds ds K(-<s, -lS )---s,-

o 0 

_~SOO dsKo(-is) (In1m2s- ~), 
10,," b 

o 

Here, 
, exp[-m'(s+s') 1 (eel' 

K(-is,-is)~ " , , ,[4m'coseescosees'[o-iI] 
ss SIn eES SIn ees 

+ i exp[ --;m' (s+s') 1 [4m2 (s+s') +2 
ss (s+s') 2 

(ee) , '( , '( 2s 2s' ) ) ] +~ss 2m (s+s) 1- 7 --:;- +5 , 

" _m •• ( 2 iJ)( -ee 1 (ee)') Ko(-ls)~e 4m -- --+--:;---, 
Os "tgees s- :J 

where 10 and I are the functions (36) in which, now, 

s+s' 
a=i-;;-, 

'J 

iee sin ee (s+s') 
b~----~ 

sin ees sin ees' , 

Jl~ -~cos e"(s'-s), 
ss 

-2(ee)2 

q = sin eES sin tES' • 

(65) 

(66) 

(67) 

(68) 

It can be seen from (65) that Im.2"~) arises on account of 
taking an upper path around the poles of the integrand 
(the contribution from the poles) and on account of the 
imaginary part of the logarithms In(b/a) in the regions 
of their branch-cuts where b/a:s 0 (the contribution of 
the branch-cuts). 

In the case of a weak electric field (eE/m2 == (3« 1) 
we can confine ourselves to the contribution of the pole 
and branch-cut nearest to the origin, since these con­
tributions are proportional to exp (- 71'/ (3) while the con­
tributions of the singularities further from the origin 
are proportional to exp(-k7r/{3), k = 2, 3, .... Then the 
imaginary part of the second term in (55) is equal to 

Im[ -~S- dsKo(-is) (In'm's-~)] 
16,," I 6 

o 

_ a(ee)'e-nl' [3" ( 1" 5) ] -- - In--- +1 +, 
16,," ~ P 6 

(69) 

where, in the right-hand Side, only the half-residue at 
the nearest pole eES = 71' is given, and the small (for 
(3« 1) contribution of the other poles is denoted by the 
dots. To calculate the imaginary part of the first term 
in (65) it is convenient to change from s, s' to the di­
mensionless variables x, ~ in accordance with the for­
mulas 

..., " 'I. "" 

ees~(I-s)x, ees'=1',x, S ds S ds'=(ee)-2 S d~S dxx, (70) 

Then, 
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{ ia SOO S· ,[ ,iKo(-is) ]} 1m - ds ds K(-is -is )----
16n' ' s' 

o 0 

(71) 

where 
'/(1-1) 2 3 

g(s,~)= S dxl(;,x)e-(X-")/'-~----
" Sill'S" ;(1-;) 

(72) 

4" ctg;x ctg (l-;)x 
1(;, x) = h/a-I 

+~s(1-;)xcosec ;xcoscc(1-;)x-x-1 cos(1-2;)x. (73) 
(b/a-1)' sin ;xsin(l-;)x 

The first, integral term of the function g(~) is the con­
tribution from the nearest branch cut 71' :sx :s 7T(I- ~rl 
of the logarithm, where Im[ln(b/ai] = -71'. The second 
term of the function g(~) is the contribution of the near­
est pole, at the point x = 7f, which is possessed by the 
term qb- 1 = 2ieE/sinx appearing in I (cf. (36) and (68)). 
Finally, the last term of the function g(~) is the contribu­
tion of the nearest pole eES = 7f of the function -iKo(-is)/s' 
The dots in (71) denote the contribution of the singular­
ities further from the origin; for (3« 1 this contribution 
is exponentially small compared with the one cited. The 
calculation of the integral of the function g(O over ~ is 
carried out in Appendix B and leads to the follOWing re­
sult for (71): 

a(ee)' r,'I,[3n (In 1" -~)+1+2n2+ ... ] (74) 
Hin' ~ po' 

in which. .. denotes terms of order f3. 

Thus, the sum of the expressions (74) and (69), which 
constitutes the imaginary part of.2" it>. is equal to 

(75) 

It is also useful to give the sum Im.2"R = 1m (.2"it>+.2"n») , 
in which the above expression (75) plays the role of the 
radiative correction: 

(76) 

We call attention to an important circumstance: the 
leading terms (37r/{3)[ln(Y7r/{3) - 5/6] of the expressions 
(74) and (69) have cancelled each other in the sum (75). 
This cancellation arises from the correct choice of the 
constant 5/6 added to the logarithm in the expression 
(48) for 5m2 , i.e., it arises from the correct definition 
of the electromagnetic mass of the electron. If another 
constant b had been taken in place of 5/6 in formula (48), 
it would have appeared in the form of the constant-b 
added to the logarithm in the second term of the expres­
sions (50) and (65) for .2"ir and in formula (69) for the 
imaginary part of this term (as we have seen, the origin 
of this second term is intimately connected with the re­
normalization of the electron mass). At the same time, 
the first, principal term of the expressions (50) and (65) 
for .2"n) and its imaginary part (74) would not have 
changed. Thus, for Im.2"ti) we would then have obtained 

_a(ee)' e-"I,[3n(b_~)+2n'+"'] (77) 
10,,' ~ 6 ' 

and Im.2"R would have had the form 

(ee)' [ 3am' ( 5) ] -8-'- e-"I" 1 + ~- b - - +"a+." 
n ~ee 0 

= (eg;' exp{-~[m'- 3am' (b-~) -aee]}. 
8" eB 2" 6 

(78) 
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In the latter form the radiative correction has been 
transferred into the exponent. It can be seen from this 
expression that if b j. 5/6, then, even in the limit of an 
arbitrarily weak field, a finite radiative correction 
- (3am2/27T)(b - 5/6) is added to the parameter m2• 
Therefore, m cannot be the observable mass of a free 
electron, Since, according to the physical prinCiple of 
renormalization, all radiative corrections are already 
included in the observed free-electron mass. Thus, m 
has the meaning of the electron mass only if b = 5/6. 

Nevertheless, in a formal renormalization we can choose 
b j. 6, but in this case 5m2 = (3am~27T)[ln(ii'm2sorl + b] is 
not the electromagnetic part of the square of the electron 
mass, and m2 = m~ + 5m2 is not the square of the electron 
mass. In this case, the square of the electron mass will 
be the quantity (cf. (78)) 

3am' ( .5 ) 3amo' ( 1 .5 ) m'--- b-- =mo'+-- In--+-
2" 6 2n iymo'so 6 ' 

(79) 

which, of course, coincides with m2 when b = 5/6. The 
arbitrariness in the quantity b, which leads to arbitrari­
ness in the magnitude and meaning of the parameter m, 
lies at the basis of the renormalization group. 

Thus, knowing the imaginary part of the Lagrangian 
of a weak electromagnetic field and using the physical 
principle of renormalization, we can find the electromag­
netic mass of the electron and relate its observed mass 
to the bare mass. This is explained by the fact that the 
imaginary part of the Lagrangian connects the field chan­
nel with the real-particle channel. Analogously, the real 
part of the Lagrangian of a weak field and the renormali­
zation principle (the weak field should be a Maxwell field, 
i.e., the radiative corrections to the field and to its La­
grangian should vanish with the field) enable us to estab­
lish the relation of the real field and charge to the bare 
field and charge (cf. (54)). 

We shall consider certain analytical properties of 
the Lagrangian. Under the transformation 1) ;::! - iE the 
integrands in (47) and (50) are transformed into them­
selves, and their singularities do not intersect the in­
tegration contours. Therefore, 

(80) 

If the magnetic field is large and the electric field is 
small or comparable with m2/e, the asymptotic form of 
the Lagrangian is logarithmic in e1)/m2 and does not 
depend on eE/m2 (cf. (58), (60)): 

(81) 

The weak, logarithmic singularity of!f' in e1)/m2 at in­
finity allows us to state that the asymptotic form of the 
analytically-continued function !f'(-i1), iE) will be the 
analytic continuation!f'ac(-i7), 0) of the asymptotic form 
!f'ac(1),O): 

.2'(-i1},i8)"".2",,(-i1'],0), e:> 1, ~,,; 1. (82) 
m- m'2i 

But it then follows from the symmetry (80) and formula 
(82) that for a strong electric and a not-so-strong mag­
netic field 

e8 
->1 

nl,2. ' 
(83) 

This formula was used in obtaining the asymptotic form 
(59). 
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5. LAGRANGIAN OF AN INTENSE FIELD FROM 
THE VIEWPOINT OF THE RENORMALIZATION 
GROUP 

The relation (52) for the Lagrangian expresses its 
invariance with respect to renormalization of the field, 
charge and mass: 

.2"(coFo, 0.0, mo', imo'so)=.2"R(eF, a, m'). (84) 

If in the left-hand side of (84) we carry out the mass 
renormalization and use the invariance of the product 
eoFo = eF, this relation takes the form 

.2"(eF, 0.0, m', im'so)=.2"n(eF, a, m'), (85) 

with 0' = 0'0Z3(im2so, 0'0); cf. (54) and (56). By dividing 
both sides of the equality (85) by the renormalization­
invariant function 0'!f'R,) == - (eF)2/167T and denoting the 
ratios !f' /!f'(0) and !f'R/ !f'~) by l and ZR, Wl3 obtain in place 
of (85) an invariance relation for the dimensionless func­
tions: 

_1 . 2 -I ( eF ) ( eF ) eto l --;;;:;' a~, rm So =0.. lR -;;;; 1 ex . (86) 

The function O'-llR may be called the invariant square of 
the inverse charge. 

We shall assume that for eF/m2 - 00 the function l 
has an asymptotic form that does not depend on m2: 
lim 1 = loo (ieFso, 0'0). More precisely, we assume that 
when one of the field parameters tends to infinity, e.g., 
e1)/m2 _ 00, the asymptotic form of l depends neither on 
m2 nor on the second parameter eE. This assumption 
is fulfilled for the function Z = 1 + 1 (1) + l (2) in the approxi­
mation found (cf. (49) and (51)). Then, substituting into 
Zoo the quantity iso = m- 2 cp(a, (Yo) found from the relation 
(Y = (YoZ3(im2so, (Yo), we obtain, according' to (86-), 

(87) 

Inasmuch as the right-hand side does not: depend on O!o, 
the left-hand side should also not depend on ao. Conse­
quently, the left-hand side has the form iP[ eEm-2cp(a)], 
Le., is a function of one variable. This means that the 
function 

a-'IRoo ( ~;, a) =q) [ ~; ~ (a) ] 

satisfies the Callan-Symanzik equation[24, 25] 

( m2~+ p(a)a~) ~lllOO (e1~, a) =0, !lea) = ~~a(» = mZ'dd~3, • 
am- do. a m a~ a 3 m 

(88) 
The derivative dZ3dm2 is calculated at fixed So and (Yo. 
According to perturbation theory, the fun,etion lRoo can 
be expanded in the following series in powers of (Y: 

ell 
z=ln--. 

ynm' 
(89) 

Its coefficients auk are, in accordance with (88), related 
to each other and to the coefficients of the power series 
for {3(0!)4) 

(90) 

by the relations 
n-l 

aoo=1, a.,=.E (i-l)aiO~n-i' 
(91) 

n-l 

ka",= ~ (i-l)aih-l~n-i' k-;;.2, 
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It follows from these relations that in terms of order 
(In(n 2: 2) the exponent of the highest power of the loga­
rithm will be n - 1. The coefficients of the highest powers 
of the logarithms in (89) are determined entirely by the 
coefficients f31 and /32: 

(92) 

while the coefficients ~ n-r (2 ~ r ~ n -1) of the other 
logarithms are determin'ed by the coefficients f31' f32, 
... , i3r+1 and the constants a20, a30, ... , ~O' The latter 
constants, together with alO, reflect the structure of the 
function ~ and its arbitrariness-the arbitrariness of the 
renormalization group: the function lRoo is character­
ized by fully determined values of its constants anO if 
e '" ~ and m are the charge and mass of a real elec­
tron; other values of anO will correspond to a different 
meaning of the parameters e and m. On the other hand, 
only by the constants ano can the asymptotic form lRoo 
of the Lagrangian function at large fields be distinguished 
from the asymptotic form 1TRoo of the polarization function 
at large momenta. 

Using (92) and formulas not written out here for the 
coefficients an n-r of the logarithms of lower rank r 
(2 ~ r~ n - 2),'we can find the contribution to the sum 
(89) from the logarithms of the first, second, etc., ranks 
(r '" 1,2, ... ) in all orders in a: 

_( ~')'ln(1-x)+x ( ~3) x £,- - + azo-- -, 
~,l-x ~, I-x 

(93) 

( ~' )" In'(I-x)-x' ~'~3 In (1-x)+x(1-x) ~,a" In{1-x) 
£3=- - + ---,..,--:-::-- - ----

~, 2(1-x)' ~,' (I-x)' ~,(I-x)' 

( p .. ) x(2-x) + a ----
JO 2~, (i-x)"'" 

and so the improved series for lRoo is of the form 

a e'l 
x=-p,ln--". (94) 

n 1n1w 

In this series, Ll and alO ",-21T- 2 t'(2) are completely de­
termined, and to determine L2 we need only know the 
constant a20, since f33 is known from the study of the po­
larization function 1TR 5); cf. (90). 

We call attention to the singularities of the functions 
Ln (x) at the point x '" 1, which prevent us from using the 
series (94) near this point, at which the zeroth approxi­
mation for lRoo vanishes. Unlike the initial perturbation­
theory series, which is applicable for x « 1, the im­
proved series (94) is applicable in a wider range of x, 
including values of x that are ~ 1 but not too close to 
unity, viz., for 

aln, (aln) (1-x)-' In (l-x)-'~1. (95) 

The larger of the quantities on the left is the applicability 
parameter of the improved perturbation theory with re­
spect to the radiation field in the electrodynamics of an 
intense field with no particles. 

In conclUSion, the author finds it pleasant to thank 
, D. A. Kirzhnits, A. I. Nikishov and A. E. Shabad for dis­

cussions and comments. 
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APPENDIX A 

We give here the lowest (proportional to the fourth 
power of the field) terms of the expansions of the func­
tions K(s, s') and Ko(s), which are necessary for the cal­
culation of the asymptotic form of the Lagrangian of a 
weak field: 

K(s, s) = _ exp[ -,im2(s~~')] {2e'(I1'+e1[m'(s+s') (6(s+s')' 
ss (s+s ) - 135 

-12ss' (s+s') '-49 (ss') ') +i (3 (s+s') '-4ss' (s+s') '+32 (ss')') ] 

2e'(l1 e)' 
+---[2m'(s+s') (3(s+s')'-15ss' (s+s')'-8(SS')2) 

27 

-1;(3(s+s')'-19ss'(s+s')'+11(ss')')] }+ ... , (A.1) 

Ko(s) ~ -- ~[e; ('1'+e') +5e'(I1e)']se-;m"(2m's+i) +.... (A.2) 
"h) 

APPENDIX B 

We shall calculate the integral 
'f, 

J(p)=) d~g(~,~), 
ee 

~=-~1. 
m' 

(B.1) 

The function g(~, f3) is given in the main text; cf. (72), 
(73). We represent J in the following form: 

ij.!j::. 1/2~ 3 
J(p)= S- dzG(z)+ 'Sdz[pg(~Z,p)-G(z)+-P-

• 0 l--pz 
(B.2) 

--2np'(-. 1 ___ 1 __ 2 )]-3In2-2p (n-.3...) , 
slll'~n (~n)2 n 

where ~ '" f3z, and choose as the function G(z) the limit 

(B.3) 

Then, to within terms of order f3, the first integral in 
(B.2) is equal to 

1", In 5 4~ 
S dzG(z)=-3In2~ +'2---;+.... (B.4) 
o 

To within terms ~ f3 in the region z S 1 and terms 
~f32 in the region z "-'(2f3f\ the integrand in the second 
integral of (B.2) is equal to 

M(~z, ~)-G(z)+~-2n~2 (_.1_, ___ ( 1), -2)=pG,(nz)+ ... , 
l-pz Sill sn sn 

(B.5) 
where 

Substituting the function {3Gl (7TZ) for the integrand in 
the second integral and replacing the upper limit by in­
finity, we obtain for the integral the value - f3/7T. 

Thus, 
'f. 
SdSg(s,~)=-3(ln In_~) -(1+2n')l..-+ .... 
o ~ 6 Jt 

(B.6) 

I)By tradition, the superscript on the action function and on the 
Lagrangian denote the order of the correction in 01, while the super­
script on M denotes the order of the correction in the charge e. 

2)If the tensor F has eigenvalues ±i7), ±E, its dual tensor F* has eigen­
values ±iE and +7), respectively. 

3)The polarization function 1TR is defined by the relation D = Do(l + 1TRr', 
where D and Do are the photon propagators in the vacuum with and 
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without allowance for the radiative corrections. The structure of the 
exact polarization function at large momenta is described in e.g., [14]. 

4)At present the values of the first three coefficients 13k, given in (90), 
are known (cf. [14]). The values of two of them, 131 and 132, also follow 
from the results of the present work, in accordance with formulas 
(88), (56) or (61), (92). We note that our function 13 is smaller than 
the analogous function in [13,14] by a factor of two. 

S)In the analogous series for I + lTRoo, in which x = (0l/lT)J31 In(k2/m2), 
the coefficients L1 and L2 are completely determined, since here 
alO= 5/9, a20= (5/24) - ~(3) (cf. [14]), and to determine L3 we need 
only 134 and a30. 
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