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1. INTRODUCTION 

In preceding papers by Dzyaloshinskil, Levchenkov, 
and the present author[l,2J we conSidered the spectrum 
of spinless boson excitations in a Fermi-type quantum 
crystal, assuming that the ground state was non-mag
netic. 

Recently experimental data have been published[3J 
indicating that at a temperature of ~ 1 mK solid 3 He 
changes into a magnetic phase. In this connection a 
theoretical study of the properties of magnetically 
ordered quantum crystals has become timely. The 
present paper is devoted to a consideration of the spin 
wave spectrum of a magnetic quantum crystal. We 
shall be interested in the long-wavelength and low-fre
quency parts of the spectrum. Since we shall show be
low that in that case its structure can be expressed in 
terms of the general characteristics of the system, we 
shall not make any definite assumptions about the con
crete form of the magnetic ordering. We shall merely 
assume that it is the result of an exchange interaction. 

When there are no interactions leading to the non
conservation of the total spin, the existence of low
frequency spin wave branches follows from Goldstone's 
theorem[4J on systems with broken symmetry. This 
conclusion remains valid also in the case when there 
are acting in the crystal also forces on a magnetic 
nature, provided they are weak compared to the ex
change forces. The inclusion of magnetic interactions 
leads to the formation of gaps in the spin wave Gold
stone mode spectrum. 

As in[ 1,2], we shall assume that in the crystal con
sidered there exist gapless Fermi excitations. In that 
situation there can, apart from the Goldstone modes, 
exist in the crystal also zero-sound-type spin waves. 
Of course, interactions lead to a mixing up of the two 
kinds of spin waves. We shall assume that an external 
magnetic field acts upon the system, which is such that 
the energy of the interaction with it EH is appreciably 
smaller than the characteristic magnitude of the ex
change energy Eo (EH « Eo). At the same time, while 
assuming that the condition that the characteristic mag
netic anisotropy energy Ea be small (Ea« Eo) is satis
fied, we shall not introduce any restrictions on the 
ratio of the quantities EH and Ea. 

In the next section we shall briefly consider the 
properties of the one-particle Green function of a mag
netic crystal. In the third section we find a set of dis
persion equations for the spin wave spectrum. The spec
trum determined by it consists of a group of Goldstone 
modes and connected with their interaction a family of 
zero-sound type spin waves. The maximum number of 
Goldstone modes equals three in an antiferromagnetic 
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and two in a ferromagnetic. For frequencies large com
pared to the characteristic frequencies of the magnetic 
interactions (w» EH, Ea) all three branches in an anti
ferromagnetic have a linear spectrum, while in a ferro
magnetic the longitudinal mode has a linear and the 
transverse mode a quadratic spectrum. In the fourth 
section we calculate the dynamic susceptibility of a 
magnetically ordered crystal. 

In the Appendix we prove a relation, used in the text, 
for the variation of the thermodynamic potential of the 
crystal with respect of its angular orientation in the 
spin subspace. 

The results will be obtained by quantum field theo
retical methods for the zero-temperature case. To fix 
the ideas we shall assume that the crystal consists of 
spin-Y2 particles. 

2. GREEN FUNCTION 

One of the basic quantities characterizing the proper
ties of the crystal is the single-particle Green func
tion[5J 

(2.1 ) 

'Pcr(x) and ~~(x') are Heisenberg particle annihilation 
and creation operators, T is the time-ordering opera
tor, ( ... > indicates averaging over the ground state at 
T = 0, and x = {r, t} is the space-time coordinate. 

Similarly to the case of a nonmagnetic crystal [2J the 
function Ga {3 (x, x') can be expanded in terms of a com
plete orthQnormal set of functions <Pnp(x, a) 
= cpgp(r) e1PX : 

Ga,(x,x')= f (:~~, Gpm(p)1j)n,,(x,a)1j)mp(X',~). (2.2) 

Here and henceforth we use the convention of summa
tion over repeated indices, p = {p, d is the quasimo
mentum four-vector, Px = p·r - Et, d'p = dpdE, the 
integration over E is to infinite limits and that over the 
quasimomentum is restricted to the first Brillouin zone. 
The functions cp!fip(r) are periodic relative to the crystal 
lattice. We shall assume that they are chosen such that 
the matrix Gnm(p) is diagonal at E = O. 

When there are gapless Fermi excitations present, 
as we assume, in the limit as E - 0 and for values of 
the quasimomentumAP lying in the vicinity of the Fermi 
surface the matrix G(p) has a form with a pole: 

G(p) =a(p) [e-e(p) H,\ sign e]-'+G(p), (2.3) 

1i - +0. Here €(p) is the energy of the Fermi qua~i
parbcles, reckoned from the chemical potential, G(p) 
is a function which is finite as E - O. The renormaliza
tion constant a(p) as a matrix in the <Pnp(x, a) function 
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space is nonvanishing only for those values of the index 
n which correspond to bands with a Fermi surface. 

We shall assume in what follows for the sake of 
simplicity that there are only two such bands, which 
change into one another under time reversal. When 
there is no magnetic ordering and there are no magnetic 
forces, such a pair of bands corresponds to two possi
ble quasiparticle spin projections on a chosen direction 
and is degenerate. In a magnetic crystal the degeneracy 
is in general lifted. In the case when the corresponding 
energy splitting is small compared with the width of the 
whole band it is expedient to consider them together. 
The values of the matrix elements a(P) for the two 
bands will theil be assumed to be the same within the 
limits o( accuracy of Eq. (2.3). 

3. SPIN WAVE SPECTRUM 

The spin wave spectrum, like the other branches of 
Bose excitations of Fermi systems, i~ determined by the 
poles of the two-particle vertex part r (P" P2; k) with 
respect to Athe quasimomentum transfer k = {k, w}. The 
function (r(p" P2; k»nmlq is the result of expanding 
the vertex part r a{3yo(Xl, X2; X3, X4), defined in the 
usual way[5], in terms of the set of functions iJlnp(x, a). 
The variables p, + k, P2; P" P2 + k of the function 
r(p" P2; k) correspond to the variables x" X2; xs, X4 of 
the function r a{3Yo(Xl, X2; xs, X4), respectively. In the 
case k - 0 in which we are interested there are no 
Umklapp processes and the law of conservation of 
quasi momentum has the same form as for momentum 
in free space. For the sake of simplicity we shall omit 
in what follows the band indices and the signs of sum
mation over them. 

The existence of low-frequency poles of l' caused by 
magnetic ordering follows from the following simple 
consideration: We perform an infinitesimal rotation of 
the system of reference through an angle oqJ in the spin 
subspace. The particle annihilation and creation opera
tors then transform according to the formulae 

,pa' (x) =~" (x) +illcps.,,p, (x) , 

~,I+ (x) =,p,+ (x) -i¢, + (x)s.,llcp, 
(3.1 ) 

Say is a spin matrix. This transformation entails a 
change in the Green function Ga j3 (x, x') and in the ir
redu£ible self-energy part ~a{3(x, x'). Since the func
tion ~ can be obtained by using block diagrams, we can 
regard it as a functional of the exact Green function and 
the bare interaction in t~e systemP] Therefore, any 
infinitesimal change in ~ can be written in the form 

Il~".(x, x') = J dx, dx.' Il~.,(x, x') IlGT,(x" x.') +(Il~".(x, x') )0. (3.2) 
IlGT,(x" x.') 

The second term indicates here the variation of t when 
the quantity G is fixed. 

Since the functional derivative of i; with respect to 
G is determined by the irreducible vertex part 1'(1)[5], 

it follows that Eq. (3.2) becomes, after changing to the 
representation with the iJlnp(x, a) as base 

, J d'p' , , , 
Il~(p, k)=-i -(- f(l)(p,p'; k)6G(p', k)+(6"L,(p, k) lo. (3.3) 

2,,)' 

Tpe variables p + k and p of the functions oG(p, k) and 
Ii~ (p, k) correspond to the arguments x and x' of the 
function oGa {3(x, x') and 06a{3(X, x'). The function r(l) 
is connected with the total vertex part through the rela
tion[5] 
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r(p, p'; k)=r(1) (p,p'; k)-i J (~~'. r(l)(p,p,; k)G(p,+k)G(p,) f(p" p'; k). 

(3.4) 
We assume now that there is no external magnetic 

field acting on the crystal and that in the crystal itself 
there are no magnetic interactions. In that case its 
Hamiltonian is invariant under uniform rotations in the 
spin subspace and the quantity (oi;(p, O)/ocPi)G vanishes. 
Using this fact and also using the connection between 
lit and oG which follows from the Dyson equation[5] 

(3.5) 

and the fact that the Green function of the non-interact
ing system Go remains unchanged under a rotation over 
a constant angle we are, on the basis of Eq. (3.3), led to 
the conclusion that when w, k = 0 the equatipn corre
sponding to (3.4), which is homogeneous in r, has a non
trivial solution proportional to oG-'(p, O)/orpi. This fact 
indicates that as w, k - 0 the function f'(p, p'; k) has 
a pole with residue ~ 5G- ' (P, 0 )/6rpi' Indeed, ~n view of 
the vector nature of the residue the function r (p, p'; k) 
has, in general, three poles. 

We note that the singularities we have found are not 
of the zero-sound type, since the latter are absent in 
the limiting cases w = 0, k - 0 and k = 0, w - O. When 
there is po magnetic ordering Ga {3(x, x') a; oa{3 and 
hence oG-'(p, 0)/ Orpi = 0 and the above conclusion about 
the poles of r loses its validity. The singularities we 
found for r are thus the result of magnetic ordering 
when the interaction is of an exchange nature. 

It is perfectly obvious that the SWitching on of a mag
netic field and of magnetic interactions does not change 
the conclusion about the low-frequency poles of 1', pro
vided that EH, Ea « Eo. We write the function l' in the 
following form: 

['(p, p'; k) =r (p, p'; k) +g,(p, k)D'j(k)i;'+) (p, k). (3.6) 

The functio~ Dij(k) contains explicitly the Singularity of 
the vertex X caused by the magnetic ordering. The 

quantities r, gi, and ~+) do not have such a singularity. 
The quantity Dij(k) can be called the spin wave Green 
function and the functions gi(P, k) and gt(p/, k) corre
spond to the amplitudes for the emission and absorption 
of spin waves by the Fermi quaSi-particles. 

Turning to the definition of the functions Dij(k), gi(P,k), 
gt (p', k) we perform an infinitesimal rotation of the 
system of reference in the spin subspace through an 
angle that depends on the coordinates and the time as 
OqJ eikx (kx = kr - wt). The corresponding changes in 
the functions G and t are connected by Eqs. (3.3) and 
(3.5). Eliminating from them the quantity oi; (p, k), we 
get for oG-'(p, k)/Orpi the equation 

6G-'(p,k) =~( l)-'J~l-;")( "k)G'( '+k)6G-~(pl k)G'( ') 
• (!), p,' , (2)' p, p ,p • p . 
ucp, " u'fl' (3.7) 

The function 6\(P, k) is defined by the equation 

8,(p,k)= 6G,-'(p,k) _ (1l£(P,k») . (3.8) 
Ilcp, !\(Pi 0 

We eliminate the function 1'(1) from (3.7) by using Eq. 
(3 A) and for the function r we substitute its expression 
(3.6): 
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The trace symbol here and henceforth indicates a trace 
over the band indexes which number the basis functions 
I/Jnp(x, Q!). 

In the sense of Eq. (3.6), the function gi, i:t, and 
Dij are determined, accurate to the transformation 

i{p,k)-i,(p,k)/,,(k), j,(+I(p',k)-/,m(-k)g;.+1 (p' k), 

D,;(k) -/,,-' (k)D'm(k)/m;-' (-k), 

in which fij(k) is arbitrary. We fix its choice by the 
condition 

-iD1m(k)8PS d'p' g~+1 (p', k)G(p'+k)i,(p', k)G(p')={j". (3.10) 
(2n)' 

Substituting this equation into (3.9) we get the following 
expression for gi(P, k): 

A.( k)= (jG-'(p,k) A ( ) 
g. p, {jep,;Sf p,k 

+i S (~':;, r(p,p'; k)G(p'+k)8,(p',k)G(p'). 

By virtue of the obvious symmetry of the function r 
in the coordinate representation 

the functions gi and i:t are connected through the rela
tion 

USing this and Eqs. (3.11) and (3.8) we get from (3.10) 

_, __ . S d'p (jG(p+k,-k) (jG,-'(p,k) 
D" (k)- 18p (2)" • n uep, u<p., (3.13) 

+'8 S d'p I)G(p+k,-k) (l)i(P,k) ) +i8 S ~G(p)i,(p+k -k) 
1 P (2n)' I)ep, I)ep; G p (2n)' ' 

x G(p+k) [;S;(p, k)-i S d'p' r(p,p'; k)G(p'+k)~j(p', k)G(P')]. 
(2n)' 

We now transform the right-hand side of the obtained 
equation. We explain below that in the limit w '" 0, 
k - 0 the function D~~(k) can be expressed in terms of 
the equilibrium char~~teristics of the crystal. As to 
that part of it which vanishes with k, we can establish 
for it the analytical structure and give an expression in 
terms of phenomenological quantities, Using the rela
tions 

liG(p,k) A A- A 1 
---=i[s,(p,k)G(p)-G(p+k)s.(p,k) , 

liep, 
(3.14) 

(3.15 ) 

(vc is the volume of the elementary lattice cell), which 
follow from Eq. (1) and from the expression for the 
Green function Go of the non-interacting system when 
there is no magnetic field (the interaction in it is as
sumed to be completely taken into account by the self
energy part .t), the first term on the right-hand Side of 
(3.13) (we denote it by ~l.)(k» is transformed to the 

1J form 

y~;1 (k) =ie,;,CJls,+o (k'), (3.16 ) 

where eijl is the completely antisymmetric unit tensor. 
Here 

'1' 8 S d'p ",A( O)GA
() S,=-I lm._+o p (2n)' e Sf p, P (3.17) 

is the macroscopically averaged magnitude of the spin 
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moment per unit volume of the crystal. We shall as
sume that if the crystal is ferromagnetic its sample 
takes the form of the ellipsoid so that the macroscopic 
density distribution of the spontaneous spin moment 
over it is uniform. 

When evaluating the second term on the right-hand 
side of Eq. (3.13),we must bear in mind that the ex
change contribution corresponding to it is proportional 
to k2 by virtue of which we can, within the required ac
curacy, put w = O. As far as the contribution from the 
magnetic forces is concerned, owing to the long-range 
nature of the magnetic dipole interaction, it has a non
analytical structure in k. 

The only block diagram for 2; in which the long-range 
magnetic forces are important is shown in the figure. 
The solid line depicts the G-function and the wavy line 
the potential of the magnetic dipole interaction 

)' , a' Ii (t-t,) , 
V.OJ' (x-x,) = (2f!o S.T -- - .~- --1---' s,." 

art dr"1 r-- r J J 

jJ.o is the magnetic moment of an isolated atom of the 
crystal. USing the analytical expression for the above
mentioned diagram we can write the function ~Q!f3 (x, x') 
in the form 

~".(x, x') ~-2f!"H",H(r)li(x-~.r') +~";(x. x'), (3.18) 
as' a I) (t-t,) . 

H,(r)=H(-2f!o-a d'x'~;'----I-_--I (-is ,.'<G"(x,,x,+O»). (3.19) 
ri Vr'j r 11 t 

Here Hi(r) is the strength of the macroscopically aver
aged effective magnetic field, Hf the external field 
strength; (G6y(Xl, Xl + 0» is the macroscopically aver
aged expression for the function G6Y(x lo X2) for coinci
dent values of the arguments, r2 = rl, t2 = tl + O. The 
quantity ~~f3(x, x') is determined by the set of block dia
grams for ~ in which the long-wavelength part of the 
magnetic interaction is unimportant. In particular, to
gether with all other diagrams for ~, ±' includes the 
short-wavelength contribution of the diagram, a contri
bution obtained by replacing the function G6y (Xl, Xl + 0) 
by the quantity G6y (Xl, Xl + 0) - (G6y (Xl, Xl + 0». 

Substituting Eqs. (3.18) and (3.19) into the second 
term on the right-hand side of (3.13) (we denote it by 
y(2,l (k» and using (3.14) and the cyclic property of the 

1J 
trace we get 

,'I Ii [ s d'p (jG(p) ] 
Y" (k)=i 6<p' sp (2n)' ~m(P)~ H 

(3.20 ) 

Here i: m (P) is the contribution to the function .t (p) 
caused by the magnetic forces; 6[ .. . 1H/6<Pf denotes 

the derivative for fixed vector H, determined by Eq. 
(3.19), taking into account only the dependen2e on the 
angle cp which follows through the function G, 

M](p)/liep, ... I)G(p,O)/liepf. 

Substituting in (3.20) Eq. (A.1) which is proved in the 
Appendix 

liQ S d'p - liG(p) 
-= -i8p --~m(P)--
liep. (2n)' liep, 

(3.21 ) 
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(0 is the thermodynamic potential per unit volume of 
the system), we get 

(Z) (Il'Q) 6 ' k,k" + (k') (3 22) Y'l (k)= --- +1 nf1~ellmSme;l(m'Sm'-kz 0 . • 
liq>;' liq>,' H 

In deriving this formula we neglected the effects of the 
retardation of the magnetic interaction. We thereby 
neglected the coupling between the spin and the electro
magnetic waves. 

We note that the effective field H, defined by Eq. 
(3.19) is the same as the magnetic field strength in 
macroscopic electrodynamics.l61 

In contrast to YW (k) and yt) (k), the third term on 
the right-hand side of (3.13) co~tains poles caused by 
the phonon excitations and Fermi-liquid singularities. 
One can take the phonon poles into account using a con
sideration similar to one used earlier yl It is well 
known[71 that the coupling between spin waves and 
elastic waves is determined by the ratio of the magnetic 
dipole interaction energy (~Ea) to the elastic energy 
(Eel). In the case of solid 3He the ratio Ea/ Eel ~ 10-8 

and the magnon-phonon interaction is anomalously 
small, so that we shall neglect it. Because of this we 
replace the quantity r which Qccurs in the right-hand 
side of (3.13) by the function r in which apart from the 
poles contained in the D-function also the phonon poles 
have been eliminated. 

The quantity r(p, p'; k) as function of the quasimo
mentum transfer k contains only the Fermi-liquid 
singularities. It is well known[ 8] that they arise thanks 
to the fact that the poles of the single-particle Green 
functions with arguments p and p + k approach each 
other. We can separate them off by analogy with the 
case of a nonmagnetic crystal by formally splitting the 
product G(p + k)G(p) into singular and regular terms 
which has the form, using Eq. (2.3) 

G(pH)G(p) =2ni~'(p)ll(e) Il(~(p) )& (p, k) +G(pH)G(p). (3.23) 

As k -O~theterm G(p +k)G(P) remains regular. The 
function <p(p, k) has the form 

-. en(p)-em(p)+vnk 
(!IJ(p,k»nmn'm'= ()+ () k linn'limm" 

(o-B n p 8 m P -Vn 

(3.24) 

Here v = a€(p)/ap is the velOCity of the quasiparticles 
on the Fermi surface. Because of the meaning of the 
Fermi-liquid singularities Eq. (3.24) for the off-diagonal 
matrix elements of the function 4> (p, k) is valid only 
when the quasiparticle energy splitting is small· com
pared to the band width. In that case we must assume 
the velocity v(p) to be the same for both bands and 
neglect the energy splitting in the argument of the 6-
function in Eq. (3.23). If, however, the splitting is not 
small we must put the off-diagonal matrix elements 
equal to zero. 

For the further_development it is convenient to intro
duce the function 5': 

(3.25) 

Proceeding in the same way as in the corresponding 
derivation in[2} and using Eqs. (3.4)~and (3.6) and the 
foregoin&: definition of the function r, we get an equa
tion for Y(P" P2; k): 

ff (P" P.; k) = /(P" P2) + ~ dS) (P" p') dl (p', k) 1T (p', p,; k). (3,26) 

We have introduced here the notation 
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SdS= S (~:)' lI(e(p». 

The quantity {(P, p') has the meaning of the Landau 
function which describes the interaction between the 
quasi particles . It follows from Eq. (3.26), if we use 
(3.24) that the f~nction f (p, p') is conne<;.ted with the 
limiting value g"k( p, p') of the function Y( p, p'.; k) for 
w = 0, k - 0 through the equation 

J (p, p') = ffk (p, p') + ~ dS,! (p, p,) ?\p" p'). 

Turning to the evaluation of the third term on the 
right-hand side in Eq. (3.13) (we denote it by YW(k» 
we note that according to the definition (3.8) the dia
grams for Ci(P, k) do not contain intersections such as 
G(p + k)G(p) so that this quantity has no Fermi-liquid 
singularities. Up to terms caused by the magnetic 
anisotropy we can write the function Ci(P, k), using 
(3.8), (3.15), and (3.18) in the form 

g,(p, k)=-ts,(p)F"(OJ)-fb,,(p)k,, 

F,;(OJ) =OJIi,;-ie,,,2f1oH,, S, (p) ==8, (p, 0). 
(3.27) 

We further introduce the following quantities: 

x,(p,k)=-a(p) [S.(P)-i S dip' r(p,p',k)G(p'H)s.(p')G(p') ]·1 
(2n)' 

(3.28) 

ci/(p,k)=a(p) [bi/(P)-i S ~;~;.f(P'P';k)G(P'H)bil(P')G(p') ]I.~o 
(3.29 ) 

S 
dip - ~.-

I.;(k)=iSp (2n)' G(p)s,(p)G(pH) 

x [S~(P)-i S.(:~~: r(p,p'; k)G(p'H)s~(p')G(p') J. (3.30 ) 

USing,{3.23), (3,25), and (3.26) and the substitution 
r - r we then get the following equation for the third 
term on the right-hand side of Eq. (3.13): 

Y~:) (k) =Fll (OJ) J'mF;,,; (OJ) -9',;(k) +o(k'), 

9',;(k)=-Sp S dS(Fi/(OJ)x, (p)-ci/(p)k,) 

xeD (p, k) (x",(p, k)Fm;(OJ) -C;m(P, k)km). 

(3.31) 

(3.32) 

As in Eqs. (3.16) and (3.22) the term 0 (k2) is ana
lytical in nature. The functions Xi(P), Cil(P), and the 
!ensor Iij are connected with the quantities Xi(P, k), 
Cil(P, k), and Iij(k) through the equations 

x,(p,k)=x,(p)+ S dS'f(p,p')ID(p',k)x,(p,k), (3.33) 

c,,(p,k)=Ci/(p)+ S dS'/(p,p')<D(p',k)ci/(p/,k), 

J'l(k) =J,;-Sp S dSx,(p) eD (p, k)x;(p, k). 

(3.34) 

(3.35) 

Indeed, it is convenient to assume that the functions 
Jq(p), Cil(P), and the tensor Iij are given phenomeno
logically. Equations (3.33) to (3.35) will then serve to 
define the quantities Xi(P, k), cil(P, k), and Iij(k). 

SubstitUting now Eqs. (3.16), (3.22), (3.31), and (3.32) 
into Eq. (3.13) we get the final expression for the spin 
wave Green function: 

D,;-'(k) =]5,;-' (k) -9',;(k), 

]5~ -t·(k) =iOJe'j,s,+F" (OJ )J'mF m;( OJ) 

- Pi; (H) + 16n It~'e"mSme;, 'm,sm·k,k,' Ik' -'Y 'miik,km. 

The quantity J3ij (H) is defined by the equation 

P. S. Kondratenko 

( Il'Q 
~,;(H)=~) . 

uq>, uq>j H 

(3.36) 

(3.37) 

(3.38) 
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Since at equilibrium 

1l£2/1l!pj~O, 

the tensor (3ij(H) is symmetric, (3ij = (3ji. 

The last term in Eq. (3.37) is the sum of the ana
lytical contributions o(k2 ) in the expres~~ons for 
YJ.j>(k), YJ.j(k), an~. YW(k). The tensor rUn has the sym-

metry property rt6 = r~l" 
The spin wave spectrum is determined by the condi

tion that the set of homogeneous equations 

D;;-I(k)6!pJ=O 
(3.39 ) 

has a non-trivial solution. As the function 9I'ij(k) in 
(3.36) according to (3.32) to (3.34) has poles of a Fermi
liquid origin, the set (3.39) determines the spectrum of 
a family of two interacting groups of spin excitations. 
On the one hand, this includes the group of Goldstone 
modes defined by the set 

(3.40) 

which would occur in a magnetically ordered crystal 
when there are no Fermi excitations. On the other hand, 
this includes the spin waves which would occur in the 
subsystem of Fermi quasiparticles when there is no 
magnetic ordering. py virtue of the linear connection 
between 9l'ij(k) and r(p, pi; k) which follows from (3.37) 
and (3.18) the poles of 9l'ij(k) and, hence, the spin wave 
spectrum in the subsystem of the Fermi quasiparticles 
are determined by Eq. (3.26). 

The maximum number of Goldstone modes described 
by the set (3.40) is equal to three. These modes corre
spond to the usual spin waves of a solid state kind. The 
properties of their spectrum in the region of frequen
cies large compared to the frequencies determined by 
the energies of the interaction with the magnetic field 
and of the magnetic anisotropy (w » EH, Ea; EH = 2/loH) 
depend on whether the crystal possesses a spontaneous 
spin moment so. In an antiferromagnetic (so = 0) for 
frequencies w» EH, (EaEo)l/2 (Eo is characteristic 
for the magnitude of the exchange energy) all three 
branches have a linear spectrum. If, however, the 
crystal is a strong ferromagnetic (s°.:c; N, N is the 
number of atoms per unit volume) the presence of a 
term in (3.37) which is linear in the frequency and pro
portional to SO leads to a lowering of the number of 
low-frequency branches to two, one of which (transverse 
with respect to the direction of so) has a quadratic 
spectrum for w» EH, lOa, while the second (longitudinal) 
is linear when w» EH, (€aEo)l/2. The lowering of the 
number of branches is connected with the fact that when 
SO '" 0 the frequency of one of them becomes of the order 
of the exchange energy and because of this such a 
branch, if it exists at all, goes beyond the framework of 
our considerations. The necessary condition for the 
existence of a longitudinal branch in a ferromagnetic is 
that the longitudinal component of the tensor Iij, which 
we shall show in the next section to be connected with 
the longitudinal susceptibility, is non-vanishing. As 
k - 0 the modes described by the set (3.40) have a gap 
determined by the anisotropy and the magnetic field. 

In the case of a strong splitting of the bands the off
diagonal elements of the quantity 4>(p, k) given.in (3.24) 
are not present and Eq. (3.26) for the function:r takes 
the form which is standard for the Fermi-liquid theory 
and, hence, describes zero-sound type spin waves. The 
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same situation also arises for w » 6.10 when the band 
splitting 6.10 is s.mall. The presence of off-diagonal 
components of if> when 6.E '" 0 in the case k - 0 leads 
to the formation of a gap in the sound-like mode spec
trum. 

Moreover, when I v II k I < 6.E additional vibrational 
branches may exist with frequencies which decrease 
with increasing Ik I. Their spectrum cannot be extended 
into the region I v I I k I ;> 6.E because of strong Landau 
damping. 

When we include the interaction between the groups 
of Goldstone and Fermi-liquid vibrational modes which 
are present in the set (3.39) their above formulated 
asymptotic properties remain unchanged in the large 
and small frequency ranges. Their nature in the inter
mediate frequency range is to a large extent determined 
by the principle of non-intersection of terms of the 
same symmetry pI 

In concluding this section we note that by virtue of 
the fact that when evaluating the function J i(P, k) we 
neglected the contribution of the magnetic anisotropy 
and in the case of the quantity y,2! we neglected the 
dependence of that contribution ~J the frequency and on 
the magnetic field, the spectrum of the longitudinal 
Goldstone mode in a ferromagnetic and all three modes 
in an antiferromagnetic can be evaluated with a relative 
accuracy a:: (Ea/ Eo )1/2 while the spectrum of the trans
verse mode in a ferromagnetic is calculated with ac
curacy up to quantities a:: Ea/ Eo. 

4. DYNAMICAL SUSCEPTIBILITY 

We evaluate the dynamical magnetic susceptibility 
Xij(k) of a crystal describing the linear response of the 
macroscopically averaged magnetic ~oment density to 
an external field of strength h(x) = he1kx (kx = k . r 
- wt). 

The Hamiltonian of the interaction of the crystal with 
the magnetic field h(x) has the form 

ii,.,=-J drM,(x)h,(x), 

M,(x) =-2!1'~. + (x)s.,'~,(x), 

(4.1) 

(4.2) 

Mi(X) is the magnetic moment density operator. In ac
cordance with the general rules of the diagram tech
nique, using (4.1) and (4.2) the quantity Xij(k) has the 
form 

{ J dip '. • 
x,;(k)=i(2!1')' Sp --G(p)s,(p+k,-k)G(p+k) 

(2:rt) • 

( • dip' ., ']} 
X s;(p,k)-i J (2n)' r(p,p';k)G(p'+k)s;(p',k)G(p') . (4.3) 

In the long-wavelength and low-frequency approxima
tion in which we are interested the quantities Si(P + k, 
-k) and Si(P, k) mu~t be replaced by Si(P) == Si(P, 0), 
and for the function r( p, p'; k) we must substitute its 
expression (3.6). Neglecting as in the derivation of the 
spectrum~the Il}agnon-phonon interaction we replace the 
function r by r and use Eq. (3.30). As a result we ob
tain 

Xdk) = (2!1,)'{I'j(k) -A" (k)D'm(k)A~:) (k)}, (4.4) 

A,;(k)=-iSp J (~~, G(p)s,(p)G(p+k)gj(p,k), 

Ad (k)=A;.(-'-k). (4.5) 

Substituting then (3.11) and (3.27) to (3.30) we will get 
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According to Eqs. (4.4) to (4.6) the static suscepti
bility of an anti -ferromagnet in zero field (s = 0, H = 0) 
is equal to 

X,;''''Xij(W=O, H=O, k-+O) = (2ft.)'!,;', 

U=l.;(w=O, k-+O). 
(4.7) 

The same derivation also refers to the longitudinal 
susceptibility of a ferromagnet. According to (3.35) and 
(3.24) the tensor I~. is given by the equation 

lJ 

lu'=I;;+Sp S dSx,(p)x/(p), 

X/(p) = lim XI(P, k). (4.8) 

It follows from (3.33) and (3.24) that the function x~( p) 
satisfies the equation 

x/(p)=,X,(p)-S dS'j(p,p')x.'(p'). (4.9) 

We note that as the response of the quantity oG- 1(p, 
k) to the ma~netic field is connected linearly with the 
vertex part r(p, pi; k), the most singular part of 
oG- 1(p, k) is by virtue of Eqs. (3.6), (3.11), and (4.5) in 
the limit k - 0 equal to 

6(;-' (p, k) D (k)A (+) (k)h 
oS'I" '1 II I· 

This means that the product Dij(k)Aj'l(k)hl gives the 

response of the angular orientation of the system in the 
spin subspace 0CPi to the magnetic field heikx . Hence 
it also follows that the spin waves whose spectrum is 
determined by the poles of the function Dij(k) corre
spond to oscillations of the crystal orientation in the 
spin subspace. However, the quantity (2/J.o)2Iij(k) is ac
cording to (4.4) the response of the magnetic moment 
density to the external magnetic field for a fixed orien
tation cp: 

I. (k) - (2ft r' (liM! (k) ) 
• , - 0 lihj ,,; (4.10) 

One can show similarly that the quantity xf(p) can 
be expressed in terms of the response of the quasi
particle energy E (p) to the static magnetic field for a 
fixed orientation cp: 

'k 2 )-1 ( lie(p») 
Xi (p) = ( flo 7iH . 

i .. -tp 
(4.11) 

In conclusion we note that as there are at the pres
ent moment no data on the properties of solid 3 He in 
its magnetic phase it is premature to talk about a com
parison of the results with experimental data. 

The author expresses his deep gratitude to I. E. 
Dzyaloshinskil for his constant interest in this work 
and for discussing the results 

APPENDIX 

We prove here the relation (3.21) which we used in 
the text: 

oSQ . S d'p ~ oSe(p) 
-=-tSp --, ~m(P)--. 
6'1', (2,,)' 1\'1" 

(A.1) 

To do this we use the formula 

M2m/oSG' (p) =-&m (p). (A.2) 

Here Om is the contribution to the thermodynamic 
potential per unit volume of the system caused by the 
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magnetic interactions, ~m(P) is the contribution of the 
magnetic forces to the reducible self-energy part, and 
G' (p) is the Green function calculated neglec~ing the 
magnetic forces. The quantities !m(P) and G'(p) are 
connected with i:m(p) and G(p) thro~gh the following 
equations which follow from their definition: 

t, (p) =2m (p)+im (p)G(p)im (p), 

G(p) =G'(p)+G'(p)im(p)G(p). 

(A.3) 

(A.4) 
Equation (A.2) is a consequence of the diagram ex

panSion of the thermodynamic potentialPl Indeed, if we 
take as the unperturbed system the crystal considered 
without the magnetic forces, the magnetic contribution 
Om to the thermodynamic potential of the crystal is de
termined- by all connected diagrams containing magnetic 
interactions. Each diagram will then correspond to a 
factor l/n which in an essential way depends on its 
order (n is the order of the diagram with respect to the 
magnetic interaction Hamiltonian). The situation is here 
analogous to the one met with in the paper by Dzyalosh
inskil and Pitaevskil l 10J (see alsol 5J) when they calcu
lated the contribution from the long-wavelength fluctua
tions of the electromagnetic field to the free energy of 
a dielectric. As for each n-th order connected diagram 
there are n topologically equivalent ways to split off 
the G' line when varying the quantity am with respect 
to the function G'(p) the factor l/n cancels. The 
sequence of diagrams which then occurs corresponds to 
all possible diagrams with one entrance and one exit 
for the G' -lines without any restrictions as to their 
reducibility with respect to the internal line~ But such 
a sequence just corresponds to the function ~m(P). The 
general factor -i is established by considering the low
est approximation diagrams. 

It follows from Eq. (A.2) that the change in the ther
modynamic potential under an infiniteSimal uniform 
rotation of the spins of the system is given by the 
formula 

oQ . S d'p ~ 6G'-(p) 
-= -tSp --~",(p)-- . 
o'f" (2,,)' 6'1'. 

(A.5) 

We used here the fact that thanks to the invariance of 
the exchange forces under uniform rotations in the spin 
subspace 

oSQ oSQ., 

6'1', 1\'1', 

Substituting now Lm(P) from (A.3) into (A.5) and 
also the expression for oG'(P)/Ocpi which follows from 
(3.14) we can use the cyclic properties of the trace, Eq. 
(A.4), and once again Eq. (3.14). As a result we are led 
to Eq. (A.l) which we had to prove. 
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