
Particle with low binding energy in a circularly polarized 
field 

N. L. Manakov and L. P. Rapoport 

Voronezh State University 
(Submitted March 21, 1975) 
Zh. Eksp. Teor. Fiz. 69, 842-852 (September 1975) 

We calculate the parameters of the quasistationary state of a particle with low binding energy Eo in the 
field of a monochromatic circularly polarized electromagnetic wave of frequency ClI. By changing to a 
coordinate frame rotating with the field frequency we obtain a transcendental equation for the complex 
energy E, the real and imaginary parts of which give the position and the width of the level. In the 
approximation ClI<ClIo and F< Fo (F is the field amplitude and ClIo and Fo are the corresponding atomic 
values), the level shift is quadratic in F and the width coincides with the result of the adiabatic 
approximation. For arbitrary ClI, we obtain an expansion of v' E in powers of the field intensity. We show 
that the condition for the applicability of perturbation theory to the level width r is of the form 
12 < 1! Ki/, where "y = e F / w(2 m Eo)"2 and Ko = Eo/hCll. We calculate the corrections to the first 
non vanishing perturbation-theory order of the level shift and width. Results of numerical calculations are 
given for the values of the parameter "y::::; 1. The question of the applicability of the results to negative ions 
is discussed. 

PACS numbers: 32.1O.-f, 03.S0.-z 

1. INTRODUCTION 

Interest in the behavior of a quantum system in the 
field of an intense electromagnetic wave has increased 
in recent years. For a sufficiently strong field, the 
problem is greatly complicated by the fact that the use 
of the first nonvanishing order of perturbation theory to 
take into account the interaction of the system with the 
field is insufficient in the calculation of concrete proc­
esses. Principal attention is paid therefore to the de­
velopment of methods that make it possible to solve 
problems outside the framework of perturbation theory. 
Considerable progress in this direction was reached in 
the solution of the problem of the ionization of a bound 
level in a short-range potential by the field of a strong 
wave. [1-4] These studies, however, yielded only the 
width of the quasi-stationary state produced under the 
influence of the field, while the shift that determines the 
level position was not calculated. 

In this paper we determine the shift and width of a 
bound level of a particle in a small-radius force field 
produced by a circular depolarized wave. The case of 
circular polarization is singled out because the wave 
intenSity remains constant in time. As noted by Bunkin 
and Prokhorov[s], for systems having spherical symme­
try this makes it possible to reduce the problem to a 
stationary one by changing over to a coordinate system 
that rotates at the frequency of the field. Confining our­
selves for simpliCity to the dipole approximation, we 
choose the operator of the interaction of the electrons 
with the field F(t) in the form 

Vet) =eF (x cos rot+1I sin rot) =eFr sin 8 cos (rot-ep) . 

The SchrOdinger equation 

ili~=(Ho+V(t»"'(t) (1) ot 

for the function CfJ~, t) = exp{iwt~/Ii}I/!(r, t) takes the 
form 

ill oep(r, t) = (H.-roL.+eFx)q>(r, t)=O(r)ep(r, t). 
at 

The operator Q is the quasi-energy operator for Eq. 
(I), [6J since the solutions of the equations 

(Q(r)-E.) epE.(r)=0 (2) 
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correspond to tne functions 

WE.(r, t) =exp {-iE"tili}fllE.(r, t), fllE.(t+2:t/ro)=fllE.(t), 

which are solutions of (1) with a definite quasi-energy 
E [7] 

n' 
As follows from the form of the operator Q, for the 

Hamiltonians 

H.=p'/2m+U(r) c U(r) --0 

the quaSi-energy spectrum is continuous and occupies 
the entire real axis. Therefore in a rigorous formula­
tion the problem of calculating the parameters of the 
quasi -stationary state corresponding to the unperturbed 
level Eo of the Hamiltonian Ho reduces to a calculation 
of the coefficients CE of the expansion of the unperturbed 
state in terms of the complete system of functions 
CfJE (r). [S] 

In the model a zero-radius potential, however, the 
problem becomes much simpler. In this case the bound­
ary condition that determines the behavior of CfJE (r) as 
r - 0 (in the region where the potential acts) is 

(3) 

where ao is the scattering length and is connected with 
the level energy in the absence of the field: 

E,=-h'/2mao'. 

A solution of equation (2) satisfying the radiation condi­
tion as r - 00 coincides .. with the Green's function ~ of 
the operator p2/2m - wL + eFx, and the condition 
(3) makes it possible toletermine the real and the 
imaginary parts of the complex energy E, which give 
the position and the width of the quasi -stationary state 
in the field F(t). This approach is analogous to the solu­
tion obtained by Demkov and Drukarov[8,9] for the prob­
lem of a particle with a small binding energy in a sta­
tionary electric and stationary magnetic field. 

In Sec. 2 below we obtain the wave function and the 
equation for the determination of the energy. It is im­
portant to note that both the shift and the width of the 
level are determined in this approach in a unified man­
ner, as the real and imaginary parts of the root of a 
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transcendental equation. For frequencies that are large 
in comparison with the ionization potential, the level 
shift is equal to the average vibrational energy of the 
electron in the field of the wave. In Sec. 3 we consider 
the case of low frequencies w « Wo, when the ionization 
process has a quasi -classical character. For the shift 
we obtain an expansion in an asymptotic series (as 
F - 0); the width coincides with the result of the adia­
batic approximation [4J. In Sec. 4 we consider the gen­
eral case of arbitrary frequencies. For F « Fowe 
obtain perturbation-theory series in F2 for the shift and 
the width. The first two terms of the series are inves­
tigated in detail. Since an electron in a well has an orbi­
tal angular momentum 1 = 0, the results of the second­
order perturbation theory are valid for a field of arbi­
trary elliptic polarization. It is shown that the condition 
for the applicability of the first nonvanishing order of 
perturbation theory for the level shift and width is 
smallness of the quantities F2 and (yKO)2. Thus, pertur­
bation theory cannot be used for the level width at y2 
~ l/K~. and in this case the summation of the perturba­
tion-theory series leads to expression (19) for r, which 
agrees at F « Fowith the result obtained by Perelomov, 
Popov. and Terent'ev. [3J 

To ascertain the accuracy of the different approxima­
tions. the equation for the energy was solved numerically 
in a wide interval of frequencies and field intensities all 
the way to F ~ Fo. We conclude with a discussion of the 
applicability of the results to negative ions. 

2. WAVE FUNCTION AND EQUATION FOR THE 
ENERGY OF A QUASI-STATIONARY STATE IN A 
o POTENTIAL 

Inasmuch as the boundary condition that determines 
the behavior of the wave function as r - 0 take s the 
form (3) for an interaction having a zero radius, Eq. (2) 
assumes in this case the form: 

A ( p' A ) n' (Q-E)cp",(r)= z;n-wL.+eFx-E cp.(r) = 2m 6(r). (4) 

Thus. in a rotating coordinate system, the wave function 
coincides with the Green's function of a free particle in 
a constant electric field. 

If we know the retarded Green's function of the equa­
tion 

{in {}~ -Q}G(r,t;r',t')=ili6(r-r')6(t-t'), 

then 
00 

in i 
CPE(r) = 2,; f dtexp{ T (E+ilj)t }G(r, t; 0), lj-·+O. 

The Hamiltonian Q in (4) depends quadratically on the 
coordinates and momenta, and therefore G can be ob­
tained by the method of Feynman path integrals. It is 
simpler, however, to calculate G(r, t; 0) directly from 
the spectral expansion 

G(r,t;0)=8(t) S dp cp.(r, t)cp;(O), 

where CfJ (r, t) is the wave function of a free electron in 
a circuJ'r wave in a rotating coordinate system. 

The integral with respect to p is Gaussian and can be 
easily calculated. As a result we obtain 

1 ( m ) 'I. S- dt i { m'" eFy (Sin wt } cp.(r)=- -.- -.-exp- Et+-+- ---1 (5) 
4n 2mn t" n 2t w wt 

o 

---sin ---- t--4sin'- . 2eFx ,wt elF' (1 wt)} 
w't 2 2mw' w't 2 
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In analogy with the solution of the problem in crossed 
field, [9J the equation for the complex energy E of the 
quasi -stationary state that results from Eo when the 
field is turned on can be obtained by separating that part 
of CfJE (r) which diverges as r - 0, and then substituting 
this function in (3). The equation for the wave number 
01 = .J-2mE!ti takes the form 

( In )"'Wdt (i ){ a=a,-. 2nin J Fexp Tt(E+ilj)t 1 , 
( e'F' ~ 4 wt])} -exp -i-- /l--sin'- . 

2mnw' w't' 2 

It will be convenient later on to change in the equation to 
the "Rydberg" system of units (the energies are meas­
ured in units of I = ti201V2m and the field intensities in 
units of Fo = ti201~hne). Putting {3 = 01/010, we have 

, JW dx { ( [ sin' 6x ])} ~=1-(4ni)-I' 7-exp(-i~'X) l-exp -i1'x 1- 6'X' . (6) 
o 

Thus, the characteristic parameters of the problem are 
y2 and 6: y = eF/w.J2mI = 2F/w is the adiabaticity param­
eter first introduced by Keldysh, [1] and 26 = tiw/I is a 
quantity connected with the number of photons Ko needed 
to ionize a bound level in accordance with the energy 
conservation law, Ko = (I/tiw + 1). We note that the 
quantity y2 in (6) has also the meaning of the ratio of the 
average vibrational energy in the field EF = e2F2/2mw2 
to the ionization potential: y2 = EFiI. 

We consider first the cases of high and low frequen­
cies. At w »wo, the sine term in (6) can be left out, so 
that we get E = Eo + EF' The level Width, which is gov­
erned by the photoionization probability, does not appear 
in this case, since it is of higher order of smallness 
in w-1 : 

3. LEVEL SHIFT AND WIDTH IN THE ADIABATIC 
APPROXIMATION (w« Wo = lib) 

------------- -

Let us investigate the level position in a well when 
the field frequency satisfies the inequality w «wo. For 
fields that are sufficiently small in comparison with Fo, 
the ionization level is determined by the "leaking" of 
the particle through the barrier and has a quasiclassical 
character. [4J The integral (6) for (3 can then be calcula­
ted by the saddle-point methods. 

The equation for the saddle pOints in (6) is of the form 

sin t+ (cost-l)lt='I,t(1+1-') , t=26x. (7) 

If we introduce the variable To = it, then (7) coincides 
with the equation considered by Popov, Kuznetsov, and 
Perelomov[4J for the quantity TO that. determines the 
total time to = To/W of the particle motion below the bar­
rier. They also give the numerical values of TO for 
4 ~ y ~ 0.01. 

For y »1, Eq. (7) can be solved analytically and we 
have for the root lying in the lower half of the t plane 

i 1 
t, = -"1 ( 1 - g.yz) . 

Changing over in (6) to integration along a contour 
lying in the lower half-plane and passing through the 
pOint t 1 • we use the saddle-point method. The condition 
for the applicability of the method is T6 »1, i.e., 
F « Fo- The calculation of the integral (6) is analogous 
in this case to the calculations carried out by Drukarev 
and Monozon. [9J 
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As a result we obtain for the energy of the quasi­
stationary state resulting from Eo, in a low-frequency 
field, 

1 ( F )' 7 E=E.-- - {1+-ro'}-ir 
4 F. 24 ' 

r=~exp{_2F'(1 __ 1 )} 
2F. 3F 151" 

(8) 

where r is the level width and is connected with the 
tunneling probability. The expression obtained for r 
cOincides with the results of[a,3J and with the adiabatic­
approximation formula [4J. As follows from (8), an alter­
nating field increases the level width in comparison with 
a constant field having the same amplitude. The depend­
ence of the pre-exponential factor on the frequency ap­
pears only when terms ~y -4 are taken into account. At 
w = 0, formula (8) goes over into the expression for the 
energy of a particle in a constant electric field, first ob­
tained by Demkov and Drukarev. [8J 

The level shift in (8) gives a quadratic Stark effect 
and can be calculated by perturbation theory. In the ap­
proximation w « Wo it is easy to calculate also the 
higher-order field-dependent corrections to the level 
shift. For this purpose it is necessary to expand the sine 
term in (6) and retain the first two terms. Expanding 
then the exponential in a series and the integrating term 
by term, we obtain an equation for j3, and by iterating 
this equation we obtain j3 in the desired order F2n with 
allowance for terms ~ w2Fan. 

The level width does not appear in this calculation, 
since it is a non-analytic function of F and cannot be 
obtained by perturbation theory. When the first three 
terms are taken into account the level shift ~E = E - Eo 
is given by 

AE= -~F'(1 +2 w') -~F' (1 +~w,)_147 F' (1 +7031 ro')-
4 24 2 36 32 ;;6 ... 

(9) 

As is well known, the perturbation-theory series for the 
level shift in a constant field is asymptotic and at w = 0 
the coefficients of Fan increased rapidly with increas­
ing n. 

At w ~ 0 the situation becomes somewhat more com­
plicated. As will be shown in the next section, at n > N 
"" l/w the coefficients of Fan in (9) are oscillating func­
tions of wand cannot be expanded in powers of w2 • At 
w > 0 the expression (9) therefore determines the 
asymptotic expansion of the shift ~E as F - 0, accurate 
to the N -th term. 

As noted by Demkov and Drukarev [8J, the shift ~E 
for atoms can be much larger than in the 6 -potential 
model. Thus, for the hydrogen atom in the ground state 
the expansion analogous to (9) takes the form [10J 

tJ.E=- : F'(1+1.4768ro')- 3!~5F;(1+38.653W')- .. 

4. CASE OF ARBiTRARY FREQUENCIES w 

When the condition w « Wo is not satisfied, the reas­
oning of the preceding section does not hold. We consider 
below the general case of arbitrary values of the param­
eter w, assuming that the condition F < Fo is satisfied. 
It is convenient in this case to write down the equation 
for the energy in the form 
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l'e= 1- (4ni) -',. S- !:!... e- i" {1 - ~xp (i L sin' 6t)} 
t" (j't' 

(10) 
o 

where 

e=(EF-E)/I. 

Expression (10) can be obtained from (6) by adding 
and subtracting the term exp(-iy\) in the curly brackets. 
Expanding the exponential with the sine in (10) in a 
power series and integrating term by term, we obtain 
for -IE the expansion 

)';=1- t ( ~ ) '"R., ._1 
1 " (-1)"'(e+2m(j)"+'" 

R.= 2n+1~. (n-m)!(n+m)! . (11) 

Since the parameter y is proportional to F, it follows 
that (11) is in fact the Brillouin-Wigner perturbation­
theory series for the energy E in terms of the field in­
tensity. The coefficient of F 2n contains, as it should, 
terms of the type E ± 2n6, which correspond to interac­
tion with n photons. By successive iteration it is pOSSi­
ble to obtain from (11) an expression for the real and 
imaginary parts of E in the form of a series in powers 
of F2. For a given frequency w, the width corresponding 
to multiphoton ionization appears when account is taken 
of terms with n 2: Ko, where the minimum number of the 
quanta Ko needed for the ionization is Ko = (I + EF)/tiw. 
The addition of E F to I is explained by the fact that the 
electron, after absorbing n photons, can be regarded as 
free if its energy exceeds the average vibrational energy 
in the wave field. The series for the level shift begins 
with terms of order F2, corresponding to the quadratic 
Stark effect. 

We confine ourselves first to terms ~ F2. For the 
level energy we have in this approximation 

tJ.E=E-Eo=-a.,(ro)F', 

a,(w)= _~_E,.+~ {(1+w)"+(1-w)"·). 
w- 3w- 3ro' 

(12) 

where 0' is the dynamiC polarizability and determines 
the quadratic Stark effect of the Eo level. At w < 1, the 
polarizability 0'2 is expanded in a converging power 
series: 

( ) _ 8 ~- r(2K+'/,) 'K 
cx:! (i) -----= m . 

"l'n r(2K+5) 
K=O 

Inclusion of the first two terms of the series yields 
for ~E an expression that agrees with the energy shift 
(8) in the tunnel case. At w > 1, the one-photon ioniza­
tion channel is opened and 0'2 has an imaginary part 
which gives the level width r 1 connected with the photo­
ionization probability 

FI (ro) =16F'(w-1)'''/3ro'. (13) 

As follows from (13), the width has a root singularity 
at the threshold, reaches a maximum at w ~ 1.6, and de­
creases rapidly with increasing frequency. Re 0'2(W) in­
creases with increasing w, reaches a maximum near 
the ionization threshold, goes through zero at w ~ 2.3, 
and tends to the asymptotic value 0'2(W) = -4/w 2• This 
corresponds to the fact that ~E = EF at high frequen­
cies. 

As already noted in the Introduction, the polarizability 
0'2 takes the form (12), and for a field with arbitrary 
elliptic polarization we have 

F(t)={xcosrot, 8y sin wt, O}, 0";;8..;;1. 
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In this case the term with F Z in expression (12) for ~E 
has an additional factor (1 + £z)/2 corresponding to the 
fact that in an elliptically polarized field the average 
vibrational energy of the electron is (1/2)(1 + £2)E F. 
The dynamic polarizability O!z(w) determines in the 
dipole approximation the total cross section of the 
Rayleigh scattering of the radiation from a particle with 
small binding energy: 

0(w)='I,,,;la2(w) I'w'. 
In this connection. an expression of the type (12) was ob­
tained for O!z by another method by Bethe and Peierls [l1J 

in an investigation of the elastic scattering of y quanta 
by a deuteron. According to the optical theorem, 
1m O!z(w) determines at w > 1 the cross section for the 
photodisintegration of the deuteron. 

Allowance for terms of higher order in F Z in the 
iterations of (11) yields the corrections of next order in 
the field to the level shift and width. In this sense, the 
coefficients 0!2n in the expansion 

tJ.E = - 2: a,. (w)F" .-1 
are the dynamic hyperpolarizabilities of the correspond­
ing orders. Thus, for n = 2 we have 

128 
a,(w)= 15w' {/(w)+f(-w)}, (14) 

5 -- 3w'-14w-32--
/(w)=32+15w' +3" (7-w')l'1-w' + 12 1'1-w-(1+2w)'{'. 

At w « 1 the expression in the curly brackets is 
~W8 and 0!4(W) coincides with the result of the adiabatic 
approximation (9). The expansion of 0!4(W) in a power 
series converges at w < 1/2. At 1/2:'S w:'S 1 the imag­
inary part of 0!4F4 yields the level width 

128F' , 
f,(w)= 15w' (2w-1) /', 

which corresponds to the two-photon ionization probabil­
ity. At w > 1 the quantity 1m 0! 4F4 gives the corrections 
~F2 to the one-photon width r1(W). 

When the condition nw < 1 is satisfied, the energy 
change ~E is real in all orders in the field up to order n 
inclusive. The first n iterations of series (11) then yield 
n terms of the asymptotic expansion of the level shifts 
in powers of F2. The coefficients 0!2n(w) can be expanded 
in the frequency region w ~ 1m in a converging series in 
powers of w2 , and at w > l/n the quantity Re 0!2n oscil­
lates, n oscillations being produced in the n-th order. 
A comparison of the first two terms of the series shows 
that the corrections of higher order in the field to the 
Stark shift of the level can be neglected up to fields 
F ~ 0.05 Fo. 

At l/(n - 1) > w > l/n, the n-photon ionization chan­
nel is opened. The corresponding n-photon width follows 
from (11): 

_ ___ _ nOl-B n+'/1 1 (4F)" 
f.(w)- (2n+1)! w' ( ). (15) 

In the zeroth approximation, £ in this formula is equal 
to 1 + y2. 

The presence of root Singularities of the type (15) at 
the threshold for ionization b~ circular light was noted 
also by Nikishov and Ritus. [2 The quantity En = nw - £ 
determines the energy of the photoelectron. Since the 
s-electron acquires an orbital angular momentum I = n 
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after absorbing n circularly polarized photons, it follows 
from the solution of the classical equation of motion of 
an electron in a circular field that the probability of 
small values of En is greatly suppressed with increaSing 
n, in contrast to the case of linear polarization, where 
the threshold behavior is proportional to E~/2 or E~h for 
even or odd n. respectively. 

It should be noted that as long as the n -photon ioniza­
tion channel is closed (w < l/n), the function ~n(w) 
= -i(-l)nr n(w) is real and yields a correction ~ Fl!Il to 
the level shift, its contribution decreasin\ to zero as w 
approaches l/n. As w - 0, the terms ~w (k:s 4n -1), 
which arise when ~n(w) is expanded in powers of wZ, are 
cancelled by the corresponding terms that appear in the 
n-th iteration of (11). As a result, as w - 0, the contri­
bution of the width of the closed n-photon ionization chan­
nel to the level shift is determined by the quantity 

(4n'F)" 
(_1)" ___ {C'+'{' +( )2C'+'{'} 

(2n+1)! ,. nw '"+, . 

For experiments performed to date on multiphoton 
ionization of atoms, the most interesting case is y ::; 1, 
and the question of the limits of applicability of the first 
nonvanishing order of perturbation theory to the descrip­
tion of the ionization is quite vital. The level width rril, 
with allowance for the correction F2, takes in our prob­
lem the form (we assume £ = 1 for y « 1) 

(2) _ {+_1_(!!!...)' [ nW-.1 {(n+1)w-1} .+'1, 
f. (w)-f.(w) 1 4n+6 w2 n+1 nw-l 

+ (n+'I,)w'-(nw-l)'l}. (16) 
2(nw-l) 

The corrections to the first nonvanishing order in weak 
fields consist of terms of two types. First, the correc­
tion connected with the direct (n + l)-photon ionization 
(the first term in the square bracket). It is essential 
near the threshold, where r n(w) "" 0, and changes the 
energy distribution of the photoelectrons. Second, cor­
rections to r n come from processes with reradiation of 
photons (second term in the square bracket), which do 
not change the energy spectrum of the photoelectrons. 

An analysis of (16) shows that processes with photon 
reradiation make a small contribution in the entire fre­
quency range, and the corrections to the first nonvanish­
ing order are determined by processes with absorption 
of a large number of photons. The applicability of per­
turbation theory is determined mainly by the smallness 
of the parameter (4F/W 2)2. It is more convenient to write 
this condition in the form 

(17) 

We note that a similar condition of applicability of 
perturbation theory was obtained for the problem of 
multiphoton excitation in a two-level system by Zaretskil 
and Kralnov [lZJ. It should be borne in mind that the es­
timate (17) is quite crude, since the first term in the 
square brackets of (16) has a strong frequency depend­
ence. In particular, it is equal to 3n+1n- 2 for the fre­
quency w corresponding to the center of the interval 
(l/n, l/(n - 1)). 

Thus, the conditions for the applicability of perturba­
tion theory for the level shift and width in an alternating 
field are greatly different. Therefore formula (15) for 
the level width is not valid if w « Wo, when many pho­
tons are required for the ionization. To calculate the 
width in this case we use the easily verified relation 
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~ (.1..) ,o_f_.· ~ (-0'"(8-2m6)·+'I. 
"-" 6 2nH"-" (n-m)! (n+m)! 
n_t _>.1[, 

- (I-Jal)II. 2 
= 1::, (-1)" J dzl ... ( 61 z). 

.. >.... 0 

Recognizing that at m > Ko the upper limit in the integ­
ral with respect to x is pure imaginary, and making the 
change of variable 

x=-im6y/y, 

we rewrite expression (11) in the form 

- - In i 
Ye-l=- \"1(.1..) R K'+_r 

"-"6' 2' (18) 
0_1 

where R~o differs from Rn in that at n > Ko the summa­
tion over m begins with m = -Ko. The sum in (18) is 
real and determines the level shift. The width is given 
by the second term 

26 - (1/,,0)(1,,0-&)'/. 

r(w)=-E J I. (2ny)dy. 
"( n>Ko 0 

(19) 

If we disregard the level shift (E = 1 + y2), then expres­
sion (19) accurate to a factor that takes into account the 
difference between the asymptotic form of the wave func­
tion of the particle in a well of finite radius and the func­
tion of the particle in a 6-potential, coincides with 
formula (67) of the paper of Perelomov, Popov, and 
Terent'ev[3J for the ionization potential of an S level in 
the short-range potential of a circularly polarized wave. 
Since the integral in (19) at W « Wo was investigated by 
us in detail [3 I , we shall not present here the final 
formulas. We note only that at y » 1 the result coin­
cides with (8). 

To assess the accuracy of the various approximations, 
we have solved Eq. (10) for .fE numerically by an itera­
tion method. As the zeroth iteration we assumed E = 1 
in the right-hand side of (10). The results for the level 
shift in weak fields coincides with the quadratic shift 
given by formula (12), and as F increases the deviation 
from the quadratic dependence becomes appreciable. 

Figure 1 shows the dependence of ~E on F for two 
values of the frequency w. At low frequencies, the inclu­
sion of fourth-order terms is justified so long as the 
correction due to them is smaller than the quadratic 
term. For the. width, the deviation from the power-law 
dependence F2Ko sets in at much smaller field intensi­
ties Fcr' with Fcr decreaSing with decreaSing w in ac­
cordance with (1 ). The dependence of the level width on 
the parameter w at fixed frequency is given for anum­
ber of values of w in Fig. 2. As follows from the figure, 
with increasing F (F = yw/2), a transition from the 
multiphoton to the tunnel mechanism of the ionization 
process takes place. Figure 3 shows plots of r(w) 
against the frequency w for a number of fixed values of 
y. (The field intenSity F for each curve decreases in 
proportion to y with decreasing w.) A characteristic 
feature is the tendency of the frequency dependence to 
become smoother with decreasing w. Thus, at w « Wo 
and y :s; 1 the level width is determined only by the 
parameter y. 

It is important to note that at y :$ 1 it is necessary, 
when solving (10), to take into account several iterations 
in E in order to obtain the correct value of r. The exact 
value of r is smaller here than that calculated in the 
zero~h approximation. Thus, for example, for w = 0.2 
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FIG. I. Dependence of the level shift ,c,E on the field intensity F. 
The dashed lines correspond to the quadratic Stark effect. 

FIG. 2. Dependence of the level width on the parameter 'Y. 
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FIG. 3. Frequency dependence of the level 
width at fixed values of 'Y : reading down- 10"' 

wards, 'Y = I, 0.75, 0.5, and 0.25. 

and y = 0.8 the results differ by a factor of 1.5, which 
means that for strong fields the level width cannot be 
calculated separately from the shifts. The reason can 
be clearly understood from a classical consideration, if 
it is recognized that the shift ~E leads to a lowering of 
the level Eo, increaSing by the same token the width of 
the barrier and decreaSing the tunneling probability. We 
recall in this connection that the formulas obtained 
in [1-4J for the ionization probability give the zeroth 
approximation in the sense indicated above, and there­
fore then can give results that are too high in the case 
of sufficiently strong fields. 

In conclusion, we consider the application of the re­
sults to negative ions. It must be recognized in this case 
that the zero-radius potential approximation gives the 
minimum value of ~E for the class of short-range poten­
tials with one bound state. (8J The asymptotic behavior 
of the wave function of an S electron in a negative ion 

differs by a factor B from the wave function of the par­
ticle in a 0 -potential. The interaction with the field at 
F « Fo is determined by the matrix elements of the 
operator F' r, for which distances r far from the nucleus 
are Significant. and therefore, taking into account the 
same considerations as in the use of the quantum-defect 
method for the calculation of multiphoton processes in 
atoms [13J, it is necessary to introduce the factor B2 in 
the formulas for 0!2n(w) and rn(w). Thus, for example, 
for the H- ion we have B2 = 2.8. When this factor is 
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taken into account we obtain for static polarization iY2(0) 
= 226 at. un. The most accurate calculations, using a 
variational wave function with 96 parameters, yield iY2(0) 
= 206. [14J The cross section for the photodecay of H-, 
calculated from formula (13) with B2 taken into account, 
also agrees well with experiment and with the exact cal­
culations (the corresponding comparison is given at [l4J). 

The authors are grateful to Ya. B. zel'dovich and 
L. Y. Keldysh for a useful discussion of the results and 
to M. A. Preobrazhenskil for the numerical calculations. 
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