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We find an explicit solution of the kinetic equation for the electron distribution function in an inclined 
magnetic field for an arbitrary coefficient for the reflection of electrons from the me~al ~urf~ce. We evalu~te 
the asymptotic value of the current density in the range of small angles of mchnatlon. We obtam 
asymptotically exact solutions of the problem of the anomalous skin effect and evaluate the surface 
impedance in various limiting cases. 
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1. INTRODUCTION 

Reuter and Sondheimer l1 ] were the first, in 1948, to 
solve the problem of the penetration of an electromag
netic field into a metal under anomalous skin effect 
conditions. They obtained exact formulae for the field 
distribution and the surface impedance in two limiting 
cases-specular and diffuse reflection of the electrons 
from the metal surface. An asymptotic integral equation 
was obtained in {2] for the Fourier transform of the 
electromagnetic field in the metal for arbitrary coeffi
cients for the reflection of electrons from the boundary. 
Subsequently Hartmann and Luttinger[31 used a Mellin 
transform to solve this equation. Fal'kovskfi[4] found 
small corrections to the surface impedance of the metal, 
necessitated by the scattering of electrons by a rough 
boundary with smooth inhomogeneities. For the normal 
skin effect these corrections turn out to be small be
cause the mean free path l is appreciably shorter than 
the skin-layer thickness o. However, in the case of an 
anomalous skin effect (lia « l) the main role is played 
by glancing electrons for which the scattering by the 
surface is practically specular. 

Hartmann and Luttinger[3] found also an exact solu
tion of the problem of the anomalous skin effect in a 
magnetic field parallel to the metal surface for diffuse 
scattering of the electrons. The corresponding asymp-

• . [5] I [6-9] th . totic integral equation was obtamed 10 • n e m-
fluence was studied of the nature of the scattering of 
the electrons by the surface of the sample on the 
anomalous skin effect and the cyclotron resonance in a 
parallel magnetic field. This study showed that in the 
region of strong fields and close to cyclotron resonances 
the nature of the scattering of the electrons by the sur
face does not play an important role provided the re
flection coefficient p is not close to unity. The case of 
specular reflection p = 1 is a singular one as then there 
is in the metal a group of so- called surface electrons 
which are grazing along the surface of the sample due to 
multiple collisions with the boundary. We must also note 
the work of Azbel' and Kaganov[lO] who found the surface 
impedance of a metal in a normal magnetic field for ~ 
= 0 and p = 1. We emphasize that all these problems m
volved essentially an exact solution of the kinetic equa
tion for the electron distribution function for arbitrary 
p. 

In the case of an inclined magnetic field, apart from 
the difficulties of solv~ng the electrodynamic problem, 
even finding the distribution function and calculating 
the current density is an extraordinarily complex prob
lem. These difficulties are caused by the fact that 
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every collision of an electron with the surface changes 
the form of the electron trajectory. This change con
tinues until the electron moves sufficiently far into the 
metal where it does not collide at all with the surface. 
We consider the motion of an electron in an inclined 
magnetic field. Figure 1 illustrates the motion of an 
electron in velocity space, taking into account its scat
tering by the boundary. Let the first collision with the 
boundary occur at the point Ai on the Fermi sphere. Af
ter the colliSion the electron goes to the point A2 which 
is the mirror image of the point Ai with respect to the 
equatorial plane v11 = 0 (the 11 axis is in the direction of 
the normal to the boundary). In the new cross section 
it rotates until it reaches the point A3 in which it collides 
again with the metal surface. After this the elect~on 
goes into the state A4 , the mirror image of the .p01O~ A3. 
In the new orbit the electron collides for the thIrd bme 
with the boundary at the point As and goes into the state 
A6 • In that orbit the electron does no longer collide at 
all with the boundary. If the number of collisions is 
large the nature of such a migration of the electron 
over the Fermi sphere turns out to be rather quaint and 
its analytical description is difficult. 

From a mathematical point of view the difficulties 
of taking multiple collisions with the surface into ac
count are caused by the non-conservation of the com
ponent of the electron momentum PH al~ng ~he ~agnetic 
field on reflection. In other words, the mchnahon of 
the magnetic field reduces the symmetry of the problem 
and as a consequence one of the integrals of motion 
(PH) disappears. We note that for diffus.e r:fle~tion it is 
sufficient for the determination of the dIstributIOn func
tion to know only the moment of the last collision with 
the surface. For non-diffuse scattering the electron 
"remembers" all collisions, and the distribution func
tion must be determined from a very complicated func
tional relation which takes this fact into account. 

Azbel' and Rakhmanov[ll] discussed the problem of 
the effect of the nature of the reflection of the electrons 

FIG. I. Motion of an electron on 
the Fermi sphere, taking into ac
count multiple collisions with the 
surface of the metal. The points A" 
A3, and As correspond to those 
values of the electron momentum at 
which it collides with the boundary. 
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by the boundary on the skin effect in a metal in an in
clined magnetic field. However, the authors of [11] 

studied only the region of strong magnetic fields when 
1> » R (1) is the skin layer thickness and R the cyclotron 
radius). Shekter and we[12] considered the anomalous 
skin effect for 1> « l in an inclined magnetic field for 
the case of a diffuse boundary. As far as we know the 
effect of the reflection of the electrons on the anomalous 
skin effect in an inclined magnetic field has not yet 
been studied. It is probable that this is due to the diffi
culties, mentioned above, of solving the kinetic problem. 

In the present paper we find an exact solution of the 
kinetic equation for the distribution function of the elec
trons in a metal placed in a magnetic field oriented at 
an arbitrary angle <11 to the boundary. The scattering 
of the electrons by the boundary is characterized by a 
specularity coefficient p, with arbitrary magnitude and 
independent of the electron momentum p. Moreover, 
we obtain an asymptotically exact solution of the prob
lem of the anomalous skin effect for small angles <11. We 
study the contribution to the surface impedance from 
electrons from the vicinity of the central cross section 
of the Fermi surface which drift along the boundary. 

2. STATEMENT OF THE PROBLEM AND 
SOLUTION OF THE KINETIC EQUATION 

We consider a metal with a spherical Fermi sur
face. The magnetic field H is oriented at an angle <11 
to the boundary. The ~1)!'; coordinate system is fixed 
to the metal surface 1) = 0; the 1) axis is parallel to the 
outward normal to the surface and the!'; axis is directed 
along the projection of the vector H on the 1) = 0 plane. 

We write down the Maxwell equations in the metal 
for the spatial Fourier components of the electrical 
field 

k'<!f.(k) +2E,' (0) =4niooc-'i.(k) (J.I=~,~), (2.1) 
j,(k) =0. (2.2) 

We continue the field strength E(1) and the current den
sity j(1) into the region 1) < 0 outside the metal in even 
fashion and introduce the following notation: 

~ ~ 

IC.(k) =2 S dT] cos kT]E,.(T]) , E.(Il)=n-' SdkcoskT]IC.(k), (2.3) 
o • 

w is the wave frequency, k the wavenumber, and the 
prime on EJ..I. indicates the derivative aI81). 

The fact that it is possible to continue the current 

i<T])=- (2!~)' J d'pv/(T],v) 

as an even function is caused by the fact that j(1) is in 
fact defined only antisymmetrically with respect to the 
velocity part of the distribution function 

If (T], v)=f(Ih v) -I(T], -v). 

It has been shown earlier[S] that the kinetic equation 
for the function \If(1), v) is a second order differential 
equation which is symmetric under the transformation 
1/ - -1). Changing in that equation to the Fourier trans
forms with respect to the 1/ coordinate we find easily 
(see [5,6]) 

1/l(k, e, T) =2 j dT' exp 1 (T' -T)cos[kRCL(T', T) l {g(k, e, T') 

- R1:~:~ T') I [(Hp') If (0, e, T')-2plf (0, e, T') l}, (2.4) 

e aj, 'V-ioo 
g(k,e,T)=-gIC.(k)v.(e, T) -a7' "( =-g-' 
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Here R = vln is the cyclotron radius, n = eHlmc the 
cyclotron frequency, m the mass, e the absolute magni
tude of the conduction electron charge, v the Fermi 
velocity, n = v/v the unit velocity vector, fo(e) the 
equilibrium Fermi distribution function, and II the fre
quency of the collisions between electrons and 
scatterers. 

, 
The variables (J and T are the polar and azimuthal 

angles in momentum space with polar axis PH: 
n,=sin e cos 't, n,=cos e sin ~+sin e cos ~ sin T, (2.5). 

n,=cos e cos ~-sin e sin ~ sin T. 

The "phase" a(T', 7) is given by the formula 

" 
CL(T', T)= J dT"n.(e, T"). (2.6) 

The value of the function \If(0, v) on the surface 1/ = 0 is 
related to the Fourier-transform I/I(k) through Eq. (2.3): 

~ 

If(O)=n-'J dkljl(k). (2.7) 

The tilde on the function ~(O, v) indicates a change in 
sign of the velocity component v1/: 

'if (0, v" v" v,) 

is If (0, v" -v" v,), 
(2.8) 

Hence, to find <P(k) we must determine ~(O), using (2.7). 
If we integrate Eq. (2.4) over k, 1i[Ra(T', T)] appears in 
the integral over T'. The argument of that o-function 
vanishes when T' = T, A1, A2, ... , where the An are the 
roots of the equation 

Ion 

CL(An , T) '" J dT' n.(e, T') =0. (2.9) 

The roots An are numbered in order of decreasing value. 
If Eq. (2.9) does not have solutions for some (J and T the 
corresponding root must be put equal to -00. 

As an illustration we analyze the behavior of the 
first root A1( ~ 7). In Fig. 2 we give the functions n1/( T) 
and A1( T) for n1/ > 0 when the electron drifts in the di
rection towards the metal surface. The pOints T10 T2 , 

T1 - 21T, and so on, are the zeroes of n1/(T). In the hatched 
regions J..I.1 - 21m < T < T1 - 21Tn the root Al( T) = -CO; the 
point J..I.l follows from the condition that the integral 

FIG. 2. The normal component n1'/ and the fIrst root AI as func
tions of r;"1'/ = cos 0 sin .p > O. In the hatched regions AI = _00. 
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" S dT' n.( 't') =0: .. 
vanishes. In the other intervals Al (7) takes on finite 
values, undergoing first-order discontinuities. This root 
AI(7) behaves similarly also when n1) < O. By virtue of 
the definition (2.9) the roots have the following obvious 
properties: 

A,. (e, A,) =1.., (e, A.) =1...+1 (e, T), 

A.(e, 'f+2n) =A.(e,T)+2n. 
(2.10) 

The integral over 7' is evaluated using 5[a(7', 7)]. 
After this we obtain a functional equation to determine 
W(O, 7); on the right-hand side of this there occurs a 
sum of terms containing w(O, An) with all roots An. We 
note that the term corresponding to the zeroth root 
7' = ~ = 7 is taken with a factor 1/2, since this root 
coincides with the limit of the integral (2.4). We can 
get rid of all roots in the sum if we replace 7 by Al in 
the functional equation which we obtained. Subtracting 
the two equations from one another we are led to the 
following relation for the function W(O): 

['1' (0, 'f) -p W (0, 't) ]e"-p[ W (0, A,) -p'l' (0, i.o) le"'= (1-p') u. ('t). 

(2.11) 

We have introduced here the notation .. 
u.('f)= ~ at: S d't' E[Ra(,;',T) lv(e,T')e"'. (2.12) .... 

An important feature of Eq. (2.11), which enables us 
to find its exact solution, is the following fact: if we re
place 7 by Al in the argument of the expreSSions which 
occur in the first square brackets of (2.11) and then 
perform the "tilde" operation, we get the expression 
which occurs in the second square bracket. 

We can solve Eq. (2.11) relatively easily if we write 
it down for the values 7 = AI, ~, .•• , AN, where AN is 
the last root of Eq. (2.9). The last two equations of this 
set for 7 = AN -1 and 7 = AN take the following form: 

the combination of functions w-p~. USing Eq. (2.14) 
we write the second term inside the braces in (2.4) in 
the form 

1 - ve af, 1 S~ , 
i-p' [(Hp') 'l' (0, e, ,;) -2p'l' (0, e, 'f) ] = Q"a;-;- dk''I..(k', e,-r)iff.(k') , 

, (2.16) 

Here 

x(k',e,T)=(1-pA,) t p.exp{lt (A.[(X.)(·)]-U",)(·)} }w[(X,)(.)]' 
,_0 n_O 

(2.17) , 
WeT) = S d,;' e'("-') cos[k' Ra(,;', 't) jn(e, 't'). 

By eXI)(n) = AAl~I)(n-l) we have denoted the following 
quantity 

(X,) (o)=,t,A" ... A,.A.=X, (X,(1., ... (X,» ... ). 

Equation (2.16) gives an explicit solution for the Fourier 
transform (2.4) of the distribution function for arbitrary 
angles of inclination ei' and values of the specularity 
parameter p. 

We can thus finally write the current density in the 
form . 

in (k) =O'.,(k) iff,(1.-) -:rei Sdk' Q.,(k, k' )iff,(k') , (2.18) 

where . 
O',,(k) =O'H J de sin epdT n.(e. T) . . 

X J d't' eT("-,) n.(e, T)cos[kRa(,;', 't) 1, (2.19) 

. . 
Q •• (k, k') =O'HR S de sin~p d,; n.(e, T) S dT' e""-') In.(e. T') I . 

Xcos[kRa(·t',T)j'l.,{k',e,T'), O'u=:,. :;'. (2.20) 

['l' (0, A,N-') -P'Y (0, AN-') je"N_'_p['Y (0, AN) _plY (0, ~'N) je"N=(1-p') UN_I> The tensor 0'jJ.1I is the Fourier transform of the conduc-
['1'(0,AN)-pW(O,AN)]e"N=(1-p')uN' (2.13) tivity of a metal without boundaries, and the kernel QjJ.1I 

From the second Eq. (2.13) we find easily the expression is caused by the presence of the dividing boundary. 
occurring in the second square bracket of the preceding 
equation. After that we find in the same way the combina- 3. ASYMPTOTIC BEHAVIOR OF THE 
tion W(O, AN-I) - p~(O, AN-I) which is substituted in the CURRENT DENSITY 
equation before that, and so on. As a result we get 

N 

['l' (0, T) -p1f(O.T) je" = (1-p') ~ p·/B"S" ... S .... u •• (2.14) . -. 
where B~ = i is the unit operator, 

(2.15) 

while the operator Ax indicates the reflection (tilde) 
operation for the pOinP(9, An) of the Fermi surface with 
respect to the equatorial plane v1) = O. 

The physical meaning of the solution obtained con
sists in that the looked-for combination w-p~ is ex
pressed in terms of partial contributions from separate 
sections of the electron trajectory between points of two 
consecutive colliSions with the boundary. Each suc
cessive term of the sum differs from the preceding one 
by a factor p and an operator B which takes into account 
the change in PH when the electron is scattered by the 
metal surface. 

It is rather obvious that the "surface" part of the 
function ljJ(k, 9,7) in (2.4) can be expressed in terms of 
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We study the anomalous skin effect region 

kR>1 . (3.1) 

The mean free path 1 = vi II is assumed to be sufficiently 
large so that 

11J -1,,-iCJlI/Q<e1. (3.2) 

Finally, we restrict ourselves to the region of com
paratively small angles of inclination ei' of the vector H 
with respect to the metal surface 

(kl)-'<Ill«kR)-', ill (kR)-'I" (3.3) 

We elucidate the physical meaning of these inequali
ties. The left-hand inequality in (3.3) means that after a 
mean flight time an electron moving on average along 
the magnetic field leaves the skin layer. The condition 
kRei' « 1 corresponds to the fact that after a cyclotron 
period the drift displacement Rei' of an electron along 
the normal to the surface is small compared to the skin
layer thickness k-l . The inequality 

W= ill/Ill (1.-R)'''>i (3.4) 
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expresses the requirement that the spread in orbit 
diameters ® ~ R(kl<I> r2 for electrons which stay in the 
skin layer during a mean free flight time is much larger 
than k-1 . [13 ] 

All these conditions enable us to simplify the ex
pressions for CTiJ.1I and QiJ.II' Thanks to the inequality 
(3.1) the main contribution to the current comes from 
the neighborhoods of those pOints on the electron tra
jectories where the electron velocity is parallel to the 
surface vT/ :: O. Close to the limiting points (0 < 9 < iJ?, 
1f - <I> < 9 < 1f) the prOjection of the velocity vT/ fo O. 
Therefore, we restrict ourselves in the integration over 
9 to the section <I> :S 9:S 1f - <I>. 

The evaluation of the asymptotic behavior of CTiJ.1I is 
not difficult and has been done before:[l2,13] 

ale (k) =2na,,1 (kR)'ClJ. (3.5) 

We study only the ~ polarization as the remaining com
ponents of the current are appreciably less. 

The most laborious and complicated part of the cal
culation of the asymptotic behavior of the current is the 
evaluation of the kernel Q(k, k'). The asymptotic be
havior of Q is determined by contributions from differ
ent groups of electrons. First of all, we must take into 
account electrons which either do not collide at all 
with the surface and leave for the interior of the metal 
or collide a small number of times with the surface. 
The most important contribution to the current from 
these electrons comes from the electrons which are 
close to the central cross section PH '" 0 as they spend 
appreciably longer time in the skin layer than electrons 
with an appreciable drift velocity vH' The contribution 
to the current from slowly drifting electrons is different 
by the peculiar fact that in some regions of 9 and T the 
root Xl becomes -00, as a result of which resonant de
nominators of the type (y ± ik'R cos 9 siniJ?t1 occur in 
the conductivity. For the sake of simplicity we shall call 
such contributions anomalous, since there is no elec
tron drift into the interior of the metal when <I> = O. 
Apart from this group there are electrons which collide 
several times with the boundary before they leave for 
the interior of the metal. Such electrons also spend a 
prolonged time in the skin layer and play an important 
role in producing the screening current in the skin 
layer. We shall call the contribution from such elec
trons the normal one. 

It is convenient to write the kernel Q = Q~~ in the 
form 

Q(k, k')=au"T desin e-5; {M(k, k')+M(-k, k')+M(k, -k') 

• (3.6) 
+M(-k,-k')}. 

We replaced the cosines containing kRa and k'Ra in 
(2.17) and (2.20) by half the sum of the appropriate ex
ponentials 

M (k, k', e) = ~dorln"(e, or) Ix(l (k', e, or) exp[ -ikJ.R cos or] 

~ 

x S dxexp[ -r(k)x+ikJ.R cos ('t+x) ]n,('t+x), 
(3.7) 

o 

where x~e) differs from (2.17) in that we have exp(ik'Ra) 
in w~ instead of cos (k'Ra), 

k1-=k sine, f{k) =1+ikRCi.=1+ikRcD cos e. 

Moreover, we have changed the order of integration 
over T and T' '" T - x. 
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To evaluate the anomalous contribution to the inte
gral (3.7) we split off the section iJ.1 < T < T1, where 
X1( T) :: -00 (Ii.ry > 0, see Fig. 2). After this the integrals 
over the infinite interval can be folded, using the perio
dicity (with period 21f) of the integrands. As a result of 
the folding there appears in the denominator the differ
ence 1 - e- 21fr which we replaced by 21fr by virtue of 
the inequalities (3.2) and (3.3). We note that when ' 
evaluating the anomalous contributions we can in (2.17) 
replace the operator AT by the unit operator up to terms 
of order iJ?2. Moreover, we integrate the remaining in
tegral over T 

1- '1:, 

Manom(k,k',e)= 4n'r(k)~(k') S du,{e,'t)exp[-i{k.ckJ..')Rcos't] 
.0 

~ ~ 

x S dx exp[ -I'(k)x + ikJ.R cos ('t+x) ]ni(or+x) S dy exp.[ -r{k)y 
o 0 

-ikJ.' R cos ('t-Y) ]n,{'t-y), (3.7a) 

by parts using the identity a( T1, iJ.1) '" 21tnW After that, 
wherever possible we put the angle <I> and the quantity 
y equal to zero. We then get for Manom(k, k', 9) 

, n . . , I, (kJ.R) I, (k:,R) 
M3J1om{k,k ,8)=2 (i-p)lllsm elcos81 f{k)f{k') 

(3.8) 
)( exp[-i{kJ.-kJ.')Rsigncose]. 

If we now symmetrize Manom(k, k', 9) according to (3.6) 
and use the well-known asymptotic properties of the 
Bessel functions for large arguments we get for 
QanOm(k, k') the'following formula: 

Qanom(k k~)= (i-p)an S" de i 'e( isigncose 1) 
, 2 (kk') 'loR 0 S n k-k' k+k' 

x [ 1+ik;ClJ cos e 1+ik'RiClJ cos e] 

(i-p)an (k In(klk') -lnkL-1t~) 
(kk')¥'R'ClJ k-k' k+k' , 

L=2RClJ1- t exp (-i-n/2). 

(3.9) 

We now turn to the calculation of the normal contri
butions. To do this we estimate first of aU the maxi
mum number of roots of Eq. (2.9). For small <I> it has 
the form 

ClJ ctg e ('t-A) =cos 't-cos A. (3.10) 

As we shall see in what foUows, the main contribution 
to the asymptotic behavior comes from the region of 
9-values close to 9 R: 1f/2, where kl<I> I cos 91 ~ 1, i.e., 
<I> 1 cot 91 ~ (klr1 « 1. The maximum number N of roots 
Xn of Eq. (3.10) turns then out to be of the order 
(<I> 1 cot 91 t 1 ~ kl, i.e., much larger than unity. For nor
mal contributions the lower limit of integration in the 
expression for W1;(T) in (2.17) is a finite quantity (the 
anomalous contributions have been taken into account!). 
We can therefore in W~(T) put <I> = 0, because kR<I> « 1. 
It is rather obvious that, independently of n, the differ
ence (x1)(n) - X1[(x1)(n)] does not exceed 41f, i.e., the sum 
over n in the argument of the exponential with y does 
not increase faster than s. This means that the normal 
contributions can essentially be calculated by the same 
method as for the case of a paraUel field (<I> :: 0). In 
other words, we must for the normal contributions re
place the roots Xn by their values for <I> :: 0: 

A,=-or (O<'t<n), A,=2n-'t (n<'t<2n). 
In the case of a parallel field the action of the reflec
tion operator AT on a periodic function with period 21f 
is given by the formula 

A,/('t) =/(1.,) =/(-'t). 

What we said above enables us to obtain the following 
formula: 
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2 sin3 e In II sin, 't 

M Dorm (k, k', e1=--Jdxe-rtklrJdT T JdlLch[r(k'llLlcos IL 
"r(k) . eT'-pe-T' 

o 0 0 (3.11) 
x {cos (T+X) cos [k.LR (cos (T+X) -cos T) -k.L' R(cos IL-COS T1 1 

-p cos(T-x)cos[k.LR(eos(T-x)-eos T)-k.L'R(cos IL-eos T) n. 
This formula differs from the similar expression for 
the case(7] ~ = 0 only in that in the integral over x there 
occurs in the index of the exponential instead of the 
quantity 1', T(k) = I' + ikRn7j which takes into account the 
drift motion of the electrons into the interior of the 
metal. 

We find the asymptotic behavior of Mnorm in the 
limiting case 

(3.12) 

If inequality (3.12) is replaced by the opposite one we 
come to a situation which is completely analogous to 
the parallel magnetic field case. When 1 - P « 
I yJ (kRr1/2 we can neglect the anomalous contributions 
and the main term in the asymptotic expression of (3.11) 
is independent of ~ and is the same as the formulae 
given in (7]. 

The asymptotic behavior of (3.11) is determined by 
the contribution from the neighborhoods of the stationary
phase pOints x = 0, 11", 211"; T, JJ. = 0, '11". Essentially sim
ple, but cumbersome calculations lead to the following 
formula: 

i (k/k')'" 
QDorm(k k')=. "On {---[m5(k-k.')+---] 

, 1+b (kR)'fll k+k' (3.13) 
+ 2 t+p (2+b) In (k/k') } b=n 1 +p . 

1-p(k'-k'»R ' 1 i-p 

The first two terms are eaused by the contribution from 
electrons drifting into the interior of the metal; this is 
shown by the factor (kR~ r 1 in front of the square brack
ets. The last term is caused by electrons with small 
values of the velocity component v7j which graze along 
the surface due to multiple collisions with it. This 
fact manifests itself in that that term contains a factor 
(1 - pr1. The total kernel (2.20) of the Fourier trans
form of the current density is the sum of the anomalous 
and the normal contributions, Q = Qanom + Qnorm. As 
the complete asymptotic formula for the current turns 
out to be rather complicated we consider the following 
limiting cases in the framework of (3.1) to (3.3) and 
(3.12). 

1. Let the reflection of the electrons from the bound
ary be sufficiently far from specular so that we can 
neglect the last terms in (3.13) from the grazing elec
trons, 

kRIll<l-p. (3.14) 

The formula for the current density then has the follow
ing form: 

j(k)=~{~(k)-~S· dk' (l!..) 'i'[('k In(k/k') -lnkL') 1-p 
(kR)'1ll "0 k k' k-k' n 

(3.15) 
k' 

+p k+k,]~(k') l-
2. If the coefficient of reflection of the electrons 

from the surface is close to unity and satisfies the con
ditions 

(3.16) 

the grazing electrons play the main role in the current 
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'(k)=-2~ 1+p OH foodk' Ink/k' 8(k') 
J i+b i-p R 0 k'-k" . (3.17) 

The relation between 1 1'1 and 1 - p can then be arbi
trary. 

4. SOLUTION OF THE MAXWELL EQUATIONS. 
SURFACE IMPEDANCE 

1. We turn to the solution of the Maxwell equation 
(2.1) for the ~ polarization in the limiting case (3.14). 
We introduce dimensionless variables 

q=kL, q'=k'L, 8(k)=-2E'(O)L'g"(q). (4.1) 

The integral Eq. (2.1) together with (3.15) can in these 
variables be written in the form 

( q'-~)g"(q)+.!LS-dg' (~) "'[ (qln(q/q:> -In g) i-p 
g' nq' 0 g q q-q " 

+p q~q' ]g"(q')= i, (4.2) 

~=L'/b,'. b,= (<1JR'c'/4n'6Hll1) "- (1l,,'RlD) "'. 

The quantity ~h is the effective penetration depth of the 
electromagnetic wave into the metal in the case con
sidered: oa = (4C2V/3'11"ww~)lf3, Wo is the plasma frequency. 
We note that part of the kernel-the second term within 
the square brackets in (4.2)-is a degenerate kernel. 

One can solve Eq. (4.2) exactly using a two-sided La
place transformation. The method of solution is similar 
to the one proposed by Hartmann and Luttinger(3]. We 
substitute in (4.2) the variables 

q=expt, q'=expT, g"(q)=g(t). 

We get then instead of (4.2) 

-(eU-ii»g(t)+i~ J dT A(t-T) geT) =e"+Cte''', (4.3) 

where 
A(x) (1-p)xer +--p--. 

2,,' sll (x/2) 211 ch (x/2) . 

The constant C is determined by the integral of the re
quired function: 

We shall look for the solution of (4.3) in the form 

get) =g,(t)+Cg,(t). 

(4.4) 

(4.5) 

By virtue of the linearity of the original Eq. (4.3) the 
equations for gl and g2 are the same as (4.3) with that 
difference that the right-hand side occur the functions 
e2t and tet/2, respectively, 

(e"-i~)g,(t)+i~ f dr.\(t-T)g,(T)=e". (4.6) 

We introduce the Laplace transform 
00 ' 1 C+1~ 

T(z)=f dte-"g(t), g(t)=-. f dze"T(z). c=Rez. (4.8) 
;>". 

c-ioo 

The constant c is chosen inside the band where the 
function T(z) is regular. 

If we apply the Laplace transformation to the inte
gral equation, there occurs, in general, an inhomogene-

I. E. Aronov and E. A. Kaner 318 



ous difference equation for the function T(z). We can 
obtain instead of such an inhomogeneous equation a 
homogeneous one, if we require that the function have an 
isolated singularity such as a pole of the appropriate 
order, such that the integral over z in (4.8) over a small 
neighborhood around the pole is the same as the right
hand side of the equation. The regularity band of the 
function must be found from the condition that the inte
gral over z in (4.8) must converge as z - ± ioo and the 
presence inside it of the required singularity; the width 
of the band is determined by the behavior of the original 
Eq. (4.3) as t - +00 and t - _00. It is clear for both 
Eqs. (4.6) and (4.7) that the width of the band equals 4. 
The singularity for T1(z) for Eq. (4.6) is a simple pole 
at the point z = - 2 with a residue equal to unity. For 
Eq. (4.7) the function must have near z = -(7/2) a second 
order pole of the kind (z + (7/2))-2. For the Laplace 
transform T1(z) of the function gl(t) we choose the 
regularity band between 1 and - (7/2), viz. 

S.=-'I,+t.<Re z<'I,+t., O<t.<'I,. 

This band satisfies all conditions formulated above. For 
the function T2 (z) the regularity band is displaced to the 
left by 1/2, i.e., 

S,=-4+c\<Re z<~. 

The functions T a(z) satisfy one and the same differ
ence equation which we obtain easily from (4.6) and 
(4.7) (a = 1,2), 

1-p p 
T .. (z-4)=t~8(z)T,,(z), 8(z)=1- COS'llZ -rosru-' (4.9) 

The differences between the functions T 1 and T 2 are 
caused by the differences in the singularities and the 
position of the bands 81 and 82• It is clear that the gen
eral solution of Eq. (4.9) contains an arbitrary periodic 
function of period 4. The regularity conditions and the 
requirement of the existence of the appropriate Singu
larities enable us to determine uniquely this arbitrary 
periodic function. 

We find the function T1(z). We seek it in the form 

T,(z)= nexp{lli(z+2)/S) ~:"('+2)I'IlI(Z). 
" 'in II (z+2) 14 . 

The function 1l1(Z) satisfies the equation 

II. (z-4) =O(z) 111 (z) 

(4.10) 

which is regular in the band 81 and equal to unity in the 
point z = - 2. We put 

11,(z) = exp[D, (z)-D, (-2)]"", exp{ j dz' D.' (z,) ] . 
-2 

(4.11) 

The function D{(z) satisfies the following difference 
equation: 

, '( nz' sinnz ) Dr (z-4)-D, (z)-n 2tg nz+ctg-2 - +1 . 
cosnz -p 

The general solution of this equation has the form 

, '''( . nz SinnZ) D, (z)--- 2tgllZ+ctg-- +V,(z). 
4 2 cosnz+l-p 

(4.12) 

The periodic function (V1(z» of period 4 must be chosen 
such that there are no singularities of D{{z) in the band 
81 , Moreover, the average value of the function V1(z) 
must equal zero. 

In the table we give the position of the poles and the 
magnitude of the residues for the first term in (4.12): 
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Position of the 'I, -'f, -'I, -'I, -2 -2, -%1-2 ':1-2 z, 
singularities of 
D't(z}in the 
band S,. 

i " 2,+2 "1-2 " Residue 'I. _'I. _'I. -'I. 
""4 -4- --4- -T 

The periodic function V l(Z) which cancels all these 
singularities in the band 81 has the form 

" [ "( 1) "( 1) " ( 3) V.(z)=16 -ctgT z-2 +ctgT z+"2 +3ctg"4 z+"2 

" '( 5 )" :It +5ctg- z+- -4ctg-(z+2)-z,ctg-(z+z,) 
4 2 4 4 

(4.12') 

" " "] -(z,+2)ctg4(z+z.+2)+(z,-2)ctg"4(z-z.+2)+z,ctg4(z-z,) . 

Equations (4.10) to (4.12) give the explicit solution for 
T 1(z) • 

We turn to the solution of Eq. (4.9). In accordance 
with the above-formulated conditions on T2(z) we seek 
it in the form 

T ( )_ n'exp[-ni(z+'I,)/Sj ~-(,+'!,)/. () 

, z - Hi "in'n(z+'I,)/4 11. Z • 
(4.13) 

The function 1l2(Z) satisfies the same equation as 1l1(Z), 
but differs from III in the regularity band and the con
dition 1l2(-(7/2» = 1. We introduce 

",(z)= exp [D,(z)-D,'(-'I,) 1- exp ['r dz' D,' (z') ]. (4.14) 
-'/I . 

The function D£(z) satisfies the same equation as D{(z), 
the general solution is the same as (4.12), differing 
only in the periodic function V2(Z). The difference in the 
bands 8 1 and 82 leads to the fact that instead of the point 
z = 1/2 there is in the band S2 the point z = 7/2 with 
residue - (7/4), and instead of z = Zl there occurs z = Zl 
- 4 with residue 1- zJ4 (Zl = 1- (1/'11') arccos{l- p» 
so that we get for D~(z) 

"Z ( . 1IZ SinnZ) D,'(z)--- 2tgnz+ctg------
4 2 cos nz+1-p 

+ 1: [ctg ~ (z+-r )+3ctg ~ (z+ : )+5ctg : (z+ :) 
(4.15) n( 7) n " +7ctg- z+- -4ctg-(z+2)-z,ctg-(z+z,) 

42 4 4 

n ." "] - (z,+2)ctg"4(z+z,+2) +{z,-2)ctg"4(z-z,+2) +(z,-4)ctgT(z-z,) . 

From (4.4), (4.5), and (4.8) we get a linear equation 
to find C, and solving it we get 

c= T,('/.) . 
n'lt(1-p) ~-T,('/.) . 

(4.16) 

As the point z = 1/2 lies outside the regularity band 82 

we must use Eq. (4.9) to obtain the value T2(1!2), ex
pressing T2(1/2) in terms of T2(-(7/2». As the functions 
T2(z - 4) and 9(z) have second order poles as z - 1/2, we 
have T2(1/2) = i'II'2/,8(I- p), i.e., 

c= t~(1-p) T (II) 
2n;2 I 2· 

We have thus obtained an explicit solution of the 
Maxwell equations (2.1) in the limiting case (3.14). The 
surface impedance is expressed by the following formu
lae: 

4im '" 4n ( V'm' ) ',. 
Z=---Sdk<t(k)=-Si!llLc-'T(-1)=- qJ-- u(p), 

c'E' (0) c C'OBQ' 
, (4.17) 

where 
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u(p)= ~+t(1'2+l'P)"'[ e-3• i ,,+ (i-p)'sinn('I,-z,)/4 ]. (4.18) 
1'2n 161'2 sin 3nl8·sin n(Hz.)/4 

The function u{p) c;hanges smoothly from the value1) 
u{O) = 1.146{e- 31rV8 + 0.0259) to u{l) = 1.496e- 31Ti!8. 

2. In the limiting case (3.16) when the reflection of 
the electrons by the surface is nearly specular the 
equation for the Fourier component tC'{k) takes the form 

(4.19) 
, i-p Hb c'R i-p Hb ( 4c'v ) '. 

6,'= 1+p 2+b 4n30HCtl = 1+p 2+b 6,', 6.= 3JlCtlCtlo' . 

This equation is a particular case of the analogous and 
more general equation in the theory of the anomalous 
skin effect.(2,3,14JEquation (4.19) differs in that on its 
left-hand side we do not have the term - i tf{k)/kO~ which 
is small compared to the integral term due to the con
dition (3.16). 

Indeed, (rn./ oa)3 - 1 - p « kR<I> « 1. Denoting the 
quantity oft in that small term by d, we shall take the 
solution of Eq. (4.19) as the limit as d - 0 of the solu
tion of the more general equation. The quantity 02'3 is 
then assumed to be finite. The necessity of such a 
definition of the solution is caused also by the fact that 
a straight application of the method described above 
leads to an impossibility to regularize the Mellin trans
form T{z) at infinity (z - ± ioo ) inside the regularity 
bands. This means that the behavior of T{z) as z - ±ioo 
and d - 0 depends in an essential way on the order of 
taking the limits. 

USing the results of lS,14] we can easily write down 
the final expreSSion for the surface impedance: 

Z= 4n,1'3 ~= 4nCtl6. (31'31-P Hb) "'. (4.20) 
2" c' c' 2 1+p 2+b : 

The surface impedance (4.20) changes smoothly with the 
magnetic field in accord with the dependence of the 
parameter b:::; 21T{V - iw)/n{l - p) on H. The numerical 
coefficient in the first Eq. (4.20) is the same as the one 
found by Me'ierovich.(8] The second Eq. (4.20) differs 
fromMe'ierovich's results by the factor {(b+1)/{b+2)Y/3. 
The imaginary part of Z has an appreciable magnitude 
when compared to Re Z when I bl - 1 and w 2:: V. 

3. For completeness we also give the expression for 
the impedance in the case of specular reflection, when 

1-p-C 1 y 1 (kR) '{,-c 111 -ckR(fJ. ( 4.21) 

The asymptotic behavior of the current then turns out to 
be the same as in the parallel magnetic field case, and 
according to (7] 

Zu=4.1( Ctl3V )'I'exp(_ 31tt) , 0= Ne' • (4.22) 
Qc'cr' 10 m(v-tCtl) 

Here Z decreases with increasing field as H-1/5 • 

4. We discuss briefly the results. First, we consider 
the angular dependence of Z. In the region of very small 
angles, <I> « Ikll-1 (the quantity 0 = k-\ /) is the effec
tive skin-layer depth in a parallel field) Z is independent 
of <1>. The corresponding formulae for the impedance 
when <I> = 0 are known in the case of non-specular re
flection {I - P » I yl )(2,31, for reflection close to 
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specular {1- p « I yl )(8] and for p = 1.(7]. In the range of 
angles I kll -1 < <I> < (I - p) 1 kR 1-1 the impedance increases 
in proportion to <1>1/4 {see (4.17». When the angle <I> in
creases further in the region (3.16), the impedance 
ceases to depend on the angle. Finally, in the range <I> 
~ I kR 1-1 the impedance grows in magnitude, independent 
of the magnetic field, and is equal to the impedance for 
H = 0 as far as order of magnitude is concerned. 

The impedance as function of the reflection coeffici
ent changes smoothly in accordance with (4.17) when p 
changes from zero up to 1 - P - I kR<I> I . In the region 
1 - P < I kR<I> I the impedance falls steeply -(1 - p)1/3 to 
the values given by Eq. (4.22). 

In conclusion we express our gratitude to N. M. 
Makarov for discussions. 

I)We use this occasion to rectify an earlier error [(2) in the solution of 
the integral equation (4.8) for the case p = O. In that paper we did 
not take into account the fact that the kernel of the integral Eq. 
(4.2) contains a degenerate part and that the solution must be 
written as a sum of two functions that are regular in different bands. 
As a result it turned out that the solution for T(z) obtained in (12), 
first of all, contains non-regularized singularities of the kind z In z 
and, secondly, the impedance differs from (4.18) by the absence of 
the second term inside the square brackets and an additional factor 
25/4 = 2.38. 
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