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We investigate the thermal dissipation mechanism connected with the appearance of temperature gradients 
in the vortex structure during the passage of a transport current. The viscosity coefficients and the 
corresponding contribution to the differential resistance PI are calculated. A minimum is observed in PI at a 
certain temperature tm• The depth of the minimum and the dependence of tm on the field strength Hare 
investigated. The results are in sufficiently good agreement with the experimental data. 

PACS numbers: 74.4O.J 

The passage of a transport current in type II super
conductors is accompanied, as is well known, by energy 
dissipation processes. The mechanisms of this dissipa
tion is among the pressing problems of the physics of 
the superconducting state. In the present work, we have 
studied the thermal mechanism of diSSipation, which is 
connected with the appearance of microscopic tempera
ture gradients in type II superconductors. This mechan
ism was proposed in the work of Clem, [l] where motion 
of a single vortex has also been investigated qualitatively 
as well as· the appearance of the thermal mechanism as
sociated with this motion. 

The study of the thermal mechanism is of undoubted 
interest in view of the fact that in a number of experi
ments[2-5] a minimum has been observed at some tem
perature tm in the differential resistance Pf. The ap
pearance of this minimum, its depth, and also the de
pendence of tm on the magnetic field are explained by 
the appeat:ance of a thermal diSSipation mechanism (see 
below). The present work is also devoted to a detailed 
microscopic consideration of the thermal mechanism. 

1. The viscosity coefficient. The flow of transport 
current causes motion of the Abrikosov vortical struc
ture, due to the action of the Lorentz force. At the lead
ing edge of the vortex in this case a transition of the 
super conducting phase into the normal phase takes 
place, and at the back wall, the reverse transition. In
asmuch as the entropies of superconducting and the nor
mal phases are not equal, these transitions lead to the 
appearance of temperature gradients. Thermal currents 
and the energy dissipation associated with them are de
veloped here. This is the thermal mechanism of dissi
pation. 

The energy dissipation is described by the following 
formula: 

W - S n (V1:,,)' d + S ,(V1:.)' d .- x --T- r x --T- r. (1) 
Irl<1. Itl>~ 

It is clear that the first and second terms on the right 
side of (1) describe the dissipative losses in the vortex 
core and in the remaining region, respectively. A rigor
ous derivation of (1) is given in the Appendix. The heat 
conduction coefficients KS and Kn are known from the 
microscopic theory of superconductivity (see, for ex
ample/a]) and the theory of a normal metal. The basic 
problem, as is seen from (1), reduces to the calculation 
of the microscopic temperature gradients VTn and VTs 
which arise in the motion of the vortex structure. We 
note that a similar problem was considered by Andreev 
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and Dzhikaev [7] in a study of a moving filamentary struc
ture and in the intermediate state. 

As is well known, the system of vortices in the con
sidered case constitutes a regular triangular lattice, 
and the vortices move with constant velocity V in the 
superconducting phase (V lies in a plane perpendicular 
to the filaments). Let us find the distribution of the mi
croscopic temperature T in a set of coordinates connec
ted with the moving vortices. It follows from the sym
metry of the problem that the microscopic temperature 
T(r) satisfies the condition (we consider an unbounded 
sample) 

r(r) =1: (r+r,;), 

where the set {rij} describes the position of the normal 
vortices. Consequently, we need to know the microscopic 
temperature distribution in the unit cell (the unit cell is 
a regular hexagon with center on the vortex axis). 

We first choose the origin of the coordinates at the 
center of the cell. The microscopic temperature T sa
tisfies the Laplace equation D.T(r) = 0, whose solution 
we seek in the form (see also[7]) 

T"=-g,,r if Irl<s, 

T.,= -g.r+2dr/lrl' if Irl>6, 

where gn, gs and d are constant vectors. 

(2) 

On the phase separation boundary, i.e., at Irl = L the 
conditions 

't"='t',, 
-x" (VT,,, n) + (x'V1:" n) =Q(Vn); n=r! Irl (3) 

should be satisfied, where Q = T(Sn - Ss); Kn and KS are 
the heat conduction coefficients in the normal and super
conducting regions. The third necessary condition for 
the determination of gn' gs and d is the vanishing of the 
macroscopic gradient: 

~ S VT"dr+ ~ S hdr=O, (4) 
1rl<; Irl>; 

where the integrals are taken within the limits of the 
area of the cell S. 

Substituting (2) in (4) and (3), we obtain the following 
set of equations for gn' gs and d: 

g" =2x'g/ (x"+x') +QY! (x"+x'), 

6' 6' [ x'-x" liY ] 
d= 2 (g,-g,,) = 2 %'+x" g,- %'+%'] . (5) 

x"g,,+x,g.+D=O, 

where xn and Xs are the densities of the normal and 
superconducting regions, respectively. It is easy to see 
that the vector D defined by the equation 
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Ir!.>; 

2dr 
drv-

1 .. 1' • 

vanishes alter integration over the cell. 

We note (see (2» that the system of vortices turns 
out in the given case to be similar to a system of plane 
dipoles. The relations (5) in this connection can be ob
tained by another method-with the help of the electro
static analogy (here one must use the boundary conditions 
(3) and the Lorentz formula; the quantity T is similar to 
the electrostatic potential). The solution of the set (5) is 
of the form 

{ , 2x' x" }" QV 
= 1,--- --

g" x"+x' x, x"+x· ' 

=-- 1+ --x" { 2x'x" }-' QV 
g. x, (x"+,,')x, ,,"+x' ' 

(6) 

d=-- 1- H --~' { (x'-x")x" [ x,,2x' ]-'} QV 
2 (x'+x")x, x.(x"+,,,) x"+x' . 

We now proceed to the calculation of the energy (1) re
leased in type-II superconductors and connected with 
temperature gradients. With account of (2) and (6), we 
arrive at the following expression for W q: 

H'q= Itt c c. XU 1+..,..--,-....,:--"TH '(t) [dH (t)ldt]' {[ 2X'X,,]-' 
16,.,Tc' (x"+x') , (x"+x·')x. 

+xnx," x$ 1 + . 11. [ ( 2x'x )']-' 
(X"+x')x. 

(7) 

+x'[ 1-x,,] [1- (X'-x") x" (1 + 2x'X"lx,) -']'} V'. 
(x"+x")x, x"+x·' 

We have made use of the well-known thermodynamic 
identity Sn - Ss =- (Hc (t)/41TTc ) (dHc(t)/dt), where 
Hc(t) is the thermodynamic critical field, Tc is the 
temperature of the superconducting transition at H = 0, 
and t = T/Tc is the relative temperature. 

In fields H satisfying the condition Hc1 < H «Hc2 
(Hc1 and Hc2 are the lower and upper critical fields, 
respectively), Eq. (7) is considerably simplified: 

W = <ll,TH!(t) [dH,(t)ldt]'V' [l __ X_' ___ H_] (8) 
• 32,.,T!H,,(t) (x"+x') x"+x' H,,(t) . 

The following relations were used (see, for example,[B]) 

s'=qJ,/2;rH,,(t) , (['=2<ll,IHV3 

(+0 is the flux quantum) and use was also made of the 
equation that follows from them: 

x"lx.=ns'IS=O.5HI H,,(t). 

Further, using the well-known formula W = 'I7(t)V 2 

('I7(t) is the coefficient of viscosity), we obtain for 'l7q (t) 
the following expression, which characterizes the in
vestigated temperature mechanism of dissipation: 

t = <ll,TH!(t) [dH,(t)ldt]' [1 __ X_' ___ H_] 
'1.( ) 32nT!H,,(t) (x"+x') x"+x' H,,(t) . 

(9) 

2. Minimum of the differential resistance. Dependence 
of Pf on H. In the following, we shall investigate the quan
tityriq='I7q(t)/1)(O),where1)(O) =ap oHc 2(0)C 2Pn (a:::< 1) 
is the viscosity coefficient, which corresponds to the 
ordinary electromagnetic mechanism of dissipation at 
T = oy, 10] We then get from (9): 

(10) 

where he (t) = Hc (t)/HcO, K~ is the coefficient of elec
tronic thermal conductivity in the normal metal, 
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a=: 64x." (nT,xGLl.' . 

For ordinary superconductors with weak coupling, 
we get aBCS = 0.63, using the relations 41TYT~/H~ 
= 2.115 KGL = 0.75 cePnyl/2kB (see, for example, ]) 
and the Wiedemann-Franz law. In superconductors with 
strong coupling, the connection of HcO with T c, and the 
expression KGL turn out to be different, [11-13] which must 
be taken into account in a comparison of the theory with 
experiment. The difference between a and aBCS can be ex
pressed in terms of the value of the jump in the specific 
heat [3, inasmuch as [3 is measured directly by experi
ment. According to[13], we find a = 0.63 [1 + 0.5{[3-[3BCS))' 

It is easy to see that the function 77q (t) has a maximum 
at some temperature. This maximum is connected with 
the temperature dependence of the product hc (t)[dhdt)/dtJ2. 
The function hc(t), which has a maximum at t = 0, falls 
off with increase in temperature and vanishes at t = 1. 
The derivative dhc (t)/dt, on the other hand, is equal to 
zero at t = 0, and increases as t - 1. It is the presence 
of a maximum in the function 1iq (t) which leads to the 
observed minimum minimum Pf (see below). The tem
perature tm corresponding to the maximum 'i1q can be 
calculated most easily for superconductors with weak 
coupling, when hc (t) can be approximated by the empi
ricallaw he(t) = 1- e. The expression (10) now takes 
the form 

_ x,"t'(1-t') [ x' H] 
11.=2.52 x"+x' 1- x"+x' JI,,(t) . (11) 

We note immediately that the very appearance of the 
maximum of 1)q(t) is connected with the entropy factor 
~e(1-e), but Its position depends materially on the 
temperature dependence of the heat conduction coeffi
cients and the value of the field H. The relation hc (t) 
= 1 -e, as is well known, is approximate even for or
dinary superconductors with weak coupling. In super
conductors with strong coupling (such as the alloy 
Nb-Zr, in which the thermal dissipation mechanism has 
been investigated experimentally(51) the temperature 
dependence of hc (t) is quite different from the ordinary 
parabolic law. This must be taken into account in a de
tailed comparison of theory with experiment. 

According to the theory, the function hc (t) is of the 
form[13] 

h,(t) i,_,=(1-cxt') , 
a=1.0i {1-2.3 (TJw) '[In (wiT,) +0.2]}; (12) 

h.(t) i,_,=A(1-t), 
A=l.i:J[ 1 +7.:i:'i (Tjf,\) , In (wiT.) J. (12') 

Here (j) is the characteristic frequency of the phonon 
spectrum. With the help of the formula[14] ,MO)/Tc 
= 1.76[1 + 5.3(Ts;/w)2ln(W/Tc)] the coefficient which de
termines the hc It) dependence can be expressed in terms 
of the experimentally determined ratio t.(O)/Tc ' 

Of greatest convenience to us is the formula in which 
the character of the hc (t) dependence is connected with 
the magnitude of the jump in the specific heat [3 
= (C s - Cn)/Cnf Tc ' inasmuch as the value of [3 is very 
easily measured experimentally Y3] 

h,(t) i,_,=L4W'(1-t). (12', 
This relation turns out to be valid also for superconduc
tors with strong coupling. This dependence is satisfac
torily maintained to temperatures To ~ Tc/2. In the cal
culation of the quantity g(t) = hc (t)[dhc (t)/dt)2, which en
ters into (10), the formulas (12)- (12") must be used 
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for superconductors with strong coupling. It can be 
shown that get) = 6.6J31/2e(1- t) is a satisfactory approxi
mation for the function get). We then obtain the follow
ing expression for 7iq (t) in the case of superconductors 
with strong coup ling: 

_ () _'? ~"[I+j).5(~-~GL )]x,,"t'(1-t) [. x' H] 
1]. t -'i._ i-----

xn+x, x"+x' H,,(t) 
(13) 

We now proceed to the calculation of the temperature 
tm which corresponds to the maximum of Tiq (t) and con
sequently to the minimum Pf. The value of tm is deter
mined from the equation 

di]. (t) idt=O. (14) 

With account of (11), we arrive at the following equation, 
which determines tm for superconductors with weak 
coupling: 

_~[1 __ x~' _~] =t' [l-~P(t)]/[l-~P(t)] 
2 x"+x' lI" (0) 4 2' 

(15) 
P(t) =tK: (t)1 (HK.(t». K. (t) =x'/x·. 

In the general case (see (13)), we get the equation 

~ [1 x.:x' H~~:~~~) ]=t[1--k- P (t) ]/[l--}P(t) l (15') 

Equations (15) and (15') allow us to study the depen
dence of tm on the magnetic field. Thus, with account 
of (15), we easily obtain the relation 

_ dIl =const l [ HK.(t) ][4+4K,(t)-5tK,' (t)+t'K,"(t) 1 . (16) 
dt [1+K,-tK,' (t) l' 

If K~ (t) < 0 (this condition is satisfied if the lattice 
thermal conductivity Kpe plays the main role; this quan
tity, as is well known, Increases on decrease in the tem
perature below Tc) then, as is seen from (16), dtm(H)/dH 
< 0 ordinarily. We note that K~e in alloys makes a large 
contribution to the heat flux (see[6]). Consequently, the 
minimum of Pf shifts with increase in field (for Kg (t) 
< 0) in the direction of lower temperatures, as is ob
served experimentally (see below). 

The coefficient of viscosity of the moving vortices 
and the differential resistivity Pf are connected by the 
relation[lS] 

1](t) =(JJ,Hlc'p,. (17) 

We represent 1)(t) in the form 

1] (t) =T).+1].(t). (18) 

where 1)0 = 1)(0) + 1)o(t) corresponds to the ordinary elec
tromagnetic mechanism of dissipation[9, 10, 16] (the ex
pression for 1)(0) '" 1)0 (T = 0) was given above) 1Jq is the 
viscosity coefficient for the thermal mechanism. 

With account of (17) and (18),the expression for 
Pf/Pn can be written in the form 

PI H 

pn H" (0) H1].+f]. ' 
(19) 

where 1)0 = 1)(t)/1)(O); Tiq is determined above (see (10)). 
It is seen that the experimentally observed minimum 
(see below) can be connected with the maximum i7q• 

3. Comparison with experiment. In a number of ex
perimental works (2-s1, the minimum of the differential 
resistance Pf has been observed. The study of the ther
mal mechanism of dissipation (see above) permits us to 
explain the appearance of this minimum. With the help 
of Eqs. (10), (15), (15'), (16), we can make a detailed 
comparison of theory with experimental data. The works 
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of Gonacharov et al. [5] are especially interesting in this 
sense; they obtained the temperature dependence of Pf 
for the alloy Nb2a-Zrao and studied in detail the singu
larities of Pf associated with the appearance of the ther
mal dissipation mechanism. 

As is seen from (10), (15), (16), the value of the tem
perature tm depends significantly on the character of 
the dependence of KS (T) and Kn(T) on the temperature. 
The KS(T) dependence for the alloy Nb-Zr was studied 
in[51 and is a function that iricreases with decrease in 
temperature belowl) T c' This means that in this case 
the principal role is played by the lattice thermal con
ductivity (increase in the coefficient of thermal conduc
tivity with decrease in the temperature below Tc is 
typical of the phonon thermal conductivity K~; see, for 
example, (61). In the range of temperatures where KS 

increases with decrease in temperature, the function 
KS(T) for the alloy Nb-Zr is approximated with suffi
cient accuracy by the function Ks (t) = KS /Kn = 0.2te-1.8/t. 

In the calculation of tm , we begin with Eq. (15'). We 
first determine tm as H - O. The problem reduces to 
the solution of the equation 

t(1-P(t)/3) (1-P(t)/2) =2/3. 

The function P (t) is defined in (15). After simple cal
culations, we find tm(H - 0) = 0.7. This result is in sa
tisfactory agreement with the experimental data of[5] 
(~P(H - 8) = 0.68). 

We note that the function Tio can affect the location of 
the minimum (see (19)); however, the rather good agree
ment of the maximum 1)theor and minimum Plxp indi
cates that fio depends ra~er weakly on the temperature 
at temperatures corresponding to tm. 

We now consider the question of the dependence of 
the location of the minimum on H. It was shown above 
(see (16)) that the value of tm shifts to lower tempera
tures with increase in H. This conclusion agrees with 
the experimental data. A more detailed comparison can 
be made with the help of (15'). It is seen that the value 
of tm depends on the form of the function Ks (t) and the 
value of J3 (some contribution can be made by Tio). The 
measurements of KS and Kn obtained for the alloy Nb-Zr 
were used in the analysis. If {3 = {3BCS = 1.43, thene for 
example, H = 8.34 kOe corresponds to tm = 0.66 (t~P 
= 0.61 [5J), and for H = 24 kOe, tm = 0.59 (~XP = 0.50[5]). 
It is seen that the theory agrees with the experimental 
data, but for a more detailed comparison, measure
ments of J3 should be carried out. 

The depth of the minimum of Pf is also measured ex
perimentally . The figure shows the dependence of the 
relative depth of the minimum on the magnetic field for 
the alloy Nb-Zr /51 determined from the experimental 
dependence of Pf(t) from the formula of[ S], which can be 
obtained from the relations (17}-(19): 

AT)/1](H, 1)=PI(H, l)/p,(H, t",)-1 (20) 

(Pf(H,1) is the value of Pf in the field H at T = I'K). Using 
(19), we can write the expression (20) in the form 

~= Tj.(H,t",)-~q(H,l) 

T) (H, 1) ~. (H,n +1]0 
(21) 

The curve Al)/1)(H,1) is constructed in this same figure. 
It is calculated from (21) with i7q(t) determined from 
(15'). The result also depends on whether the investi
gated material is a superconductor with weak coupling 
or whether it is necessary to take into account the ef-
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Dependence of the relative depth of the 
minimum of Pf, described by the relation 
t.p/p(tm ) = t.1)/1)(H, I), on the magnetic 
field. The points are the experimental data 
of [5]; the so lid curves are theoretical: 
I-il = ilBCS= 1.4; 2-il = 2. 

fects of strong coupling in it. This is determined directly 
by the value of the jump in the specific heat f3. We have 
carried out a comparison for two values of f3: 1) f3 = f3BCS 
= 1.43; 2) f3 = 2. It is seen that the theory on the whole 
adequately agrees with the experiment, but a detailed 
comparison is possible after measurement of f3. 

In a quantitative investigation of the singularities in 
the behavior of Pf, associated with the thermal dissipa
tion mechanism, we have used data on the measurement 
of the thermal conductivity KS of the superconducting 
alloy Nb-Zr. In this connection, we note that a compari
son of the theory with experiment can be made even 
without measurement of the dependence KS(T), inasmuch 
as the character of the change of both the electron (K~) 
and the lattice (K~) thermal conductivities is known 
from the microscopic theory of superconductivity (see[6]). 
However, for the corresponding calculation, it is neces
sary to know the values of K~(Tc) and K~(Tc) (in the the
ory of superconductivity the form of the functions 
K~(T)/Kg(T) and K~(T)/Krl(Tc) is known), i.e., a separa
tion of the electron and Pattice contributions to the ther
mal flux in the normal phase should be made (see[17]). 
For this purpose, the measurement of the conductivity 
should be carried out along with the measurement of the 
thermal conductivity. Use of the Wiedemann-Franz law 
allows us to separate the electron contribution to the 
thermal conductivity, i.e., to determine K~(Tc). 

It is thus necessary to know the values of K~(Tc), 
~g(Tc) and f3 for comparison of theory with experiment. 
m this connection, the setting up of the corresponding 
experiments both in the alloy Nb-Zr and in other super
conducting alloys is of interest. 

In conclusion, we express our sincere gratitude to 
1. N. Goncharov, G. L. Dorofeev and 1. S. Khukharev for 
numerous discussions pertaining to the experimental 
situation, and also for acquainting us with the results 
ofP ] before its publication, and A. F. Andreev, B. T. 
Gellikman, M. 1. Kaganov and 1. M. Lifshitz for inter-
e sting discussions. 

APPENDIX 

We now carry out a rigorous derivation of Eq. (1). 
The irreversible losses that are associated with the tem
perature gradient per unit time are determined by the 
expression 

S v,; 
W.= drq(r)r' (A.1) 
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where q (r) is the thermal flux vector, arising from the 
gradient VT, S is the area of the elementary cell (Wq 
corresponds to the energy in the calculation over unit 
length of the vortex). A contribution to the thermal flux 
q (r) will be made by both the electrons and phonons. The 
total thermal flux will be equal to 

q(r) =q,(r) +q, (r). 

We consider the energy losses associated with qe(r): 

S v. 
W.'= drq,(r)r' q,(r) =<Iii,(r) 1 >, (A.2) 

s 

where cie is the operator of the electron thermal flux, 
which can be rewritten in the form [IB] 

ci:(r) =i,~·+ (r') $(r) 1.,_,. 
~ '\IV' V-V' 
L,= [~-Il+V 12mi . 

(A.3) 

We transform to the Fermi amplitudes in (A.3); these 
describe the ground state of the type-II superconductor 
(see[B]) : 

$(r, t)= L, [u.(rh.t-v;(rh'l+j, 
ft 

(A.4) 
$(r, t)= L, [u.(r)ln l+ v;(rh.t+]· 

We then get the following expression for Wq: 

W .. = J dr L, i,F •• (r, r') 1,, __ VT,; (,,(.+,,(.), 

(A.5) 
F'n~tl.- (r') tl" (r) +v" (r') v,,' (r). 

The function F En( r ,r') in the case Ep. < t. agrees with 
the exponential law for Irf > H~e-Irl/~, see, for ex
ample,[S]). The "step" model of Bardeen and Stephen[9] 
is a sufficiently good approximation for .t.(r): 

~(r)=O for Irl<;; A(r)=1, for Irl>~. 

With account of the above, we arrive at the following ex
pression for W~: 

w;= J dry.," (V;')' + S dry.,' (V;')'. 
,r·<; Irl>: 

The problem of the irreversible losses associated 
with qp(r) can be considered in similar fashion. As a 
result, we obtain Eq. (1) for the complete dissipation 
function. 

Note added in proof (May 23, 1975). As T -Tc, the 
quantity 1)q is small: 1)q ~ ll.4 (see[l] and (7)). A calcula
tion has been carried out by Kopnin (this issue, pre
ceding article) with accuracy ~ t.2 , which led to 1)q = O. 
Furthermore, the phonon contribution to the mechanism, 
which plays (see above) the fundamental role) was not 
considered by him. 

I)The measurements of the thermal conductivity of the alloy Nb-Zr 
were carried out by L. G. Mezhov-Deglin and coworkers. 
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