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An expression for heat flow in superconducting alloys is obtained on the basis of nonstationary 
superconductivity theory. It is shown that the energy dissipation mechanism proposed by Clem (1968) does 
not operate in the mixed state. The Ettingshausen and Nernst effects are investigated near the critical' 
temperature and in weak fields H<Hc2' The anisotropy of the thermal conductivity in the mixed state near 
Tc and at low temperatures is also considered. 
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1. INTRODUCTION 

Kinetic phenomena in type-II superconducting alloys 
are presently the subject of intensive experimental and 
theoretical research. Particularly detailed studies were 
made, in the mixed state, of the energy dissipation ac
companying the motion of Abrikosov vortices(l] and 
leading to a finite resistivity Pf of the sample (see the 
references in(2]). On the other hand, effects connected 
with heat transfer (thermal conductivity, the effects of 
Nernst and Ettingshausen, and others) in the mixed 
state have not been sufficiently well investigated theo
retically, despite the fact that they have a number of 
features that distinguish them from the normal metal. 
In particular, experiments reveal, in dirty alloys, an 
anisotropy of the thermal conductivity with respect to 
the magnetic field direction P] and large values of the 
Ettingshausen and Nernst effects. (4] 

The Ettingshausen effect is the name given to the ap
pearance, in the presence of a magnetic field HOz , of a 
temperature gradient Vy T perpendicular to the electric 
current jx; under the condition that the heat flux q is 
equal to zero, while the Nernst effect is the appearance 
of an electric field Ex perpendicular to the temperature 
gradient VyT under the condition j = O. These effects are 
described by the coefficients O!xy(H) and f3yx(H) in the ex
pressions 

j,=o!E,-ao. (H) T-' V AT, q,=-KV iT+~iA (H) E., (1) 

where I7f = Prl, and K is the thermal conductivity. Pheno
menological models were proposed to calculate these 
coefficients (5, 6]. The first attempt at a microscopiC 
study of the Ettingshausen and Nernst effects in the re
gion of magnetic fields close to the upper critical field 
Hc2 were made by Caroli and Maki. (7] Their result, how
ever, has the important shortcoming that the entropy 
carried by the moving vortex does not vanish as T - O. 
Further attempts(B] to eliminate this shortcoming have 
led to kinetic coefficients (lik(H) and t3ik(H) in (1) that 
did not satisfy the Onsager relations: 

a .. (H)=~,,(-H). 

This circumstance was pointed out in(g). 

De Lange(lO] calculated the entropy flux in the mixed 
state by differentiating, with respect to the temperature, 
the free-energy flux obtained by Schmid(ll] for the phe
nomenological Ginzburg-Landau equation as a function 
of the time. The he.at flux given in(10] did not contain the 
term that results from the deviation of the distribution 
function from equilibrium. This effect, as will be shown 
below, plays an important role in heat-transfer pro
cesses. 
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The method proposed in this paper makes it pos
sible, on the basis of the stationary superconductivity 
theory developed by Gar'kov and Eliashberg, (12] to cal
culate for superconducting alloys in the mixed state the 
kinetic coefficients Clik and .Btk as well as the thermal 
conductivity K. The concrete calculations are performed 
for temperatures close to critical in the field range 
Hc1 < Ho« Hc2. 

We consider below also the question of the additional 
energy dissipation in the mixed state on the basis of a 
mechanism proposed by ClemY3] The corresponding 
contribution to the dissipation. was phenomenologically 
taken into account in[14J. It is shown in the present pa
per that the local changes of the energy (entropy) den
sity, which occur when the vortex filaments move, do 
not lead to the appearance of local (in a region on the 
order of the filament dimension ~) temperature gradi
ents and make no additional contribution to the expres
sion for the conductivity in comparison with that ob
tained in the isothermal technique (eg., in(15, 16]). 

Since we are dealing below with dirty alloys, we con
sider those parts of the thermal conductivity and of the 
other kinetic coefficients which are due to electron-im
purity collisions. 

2. THE ENERGY BALANCE EQUATION 

It is necessary first to define uniquely such quantities 
as the energy density, the energy flux, the heat flux, 
etc.; it is convenient here to write them in terms of the 
Green's functions used to express the electric current 
j and the self-consistency equation and to formulate the 
kinetic equations. We introduce, in accord with(17], the 
complete Green's functions 

S".,.(p+,p_)= C~+ ~), 

where E± = E ± w/2 and p± = P ± k/2. Then 

j.=- : J {(P-+A )G.",.(p+,p_) 

( e) } d'p de 
- p+-;A G", •. (p+,p-) (2;'1)' 4ni' 

The functions ~E+ E_satisfy kinetic equations(17] of the 
following form in 'matrix notation: 

{So-'S -SSo-'} - {~RS_S~A}+{SR:~:-~SA} =0. (2) 

Here 

~o,-'(p)= 
( 

-e+ (p-eAlc)2 
--;2:-'m--

Ll', 

!-I+e<p, 
-,1 ) 

(p+eAlc) 2 , 

e + 2m - fl+e<p 
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A and cp are the vector and scalar potentials, and Jl is 
the chemical potential which, generally speaking, dif
fers somewhat from EF. The abbreviated notation such 
as {~~} denotes the convolution 

S de' d"k, 
p::&}= ~h"'(k,)&"".(p+-k,,p_)z;;- (2:t)' ' 

The self-energy part is 

1 d'p 
~ = 2nv (0); S & (P+, p-) (2n) , ' 

where T is the free-path time and v(O) = mPF/21f3 is the 
state density on the Fermi surface. The kinetic equation 
(2) contains the regular functions :fR and :fA, defined 
from the equation 

Equation (2), just as the usual kinetic equation, con
tains the laws of particle-number conservation (contin
uity equation) and energy conservation. The former is 
given by 

aNe/at+div j=O, 

where N is the density of the number of electrons and e 
is the electron charge. We note that in a metal, owing to 
the electroneutrality condition, it is necessary to use in 
lieu of the continuity equation the relation 

divj=O .. (3) 

Since (2) contains the excitation energy reckoned from 
the chemical potential, 

1 ( e)' - p--A -f.l, 
2m c 

the egergy-conservation law is formulated for the quan
tity tf = tf - J1.N, where tf is the excitation-energy den
sity, in the following manner: 

a~ ... al' 
7it+ dIVh=jE-N at' (4) 

where 

__ S dB d'p ILlI' 
~- e{G,.".(p+,p_)-li,., •. (p+,p-)}---+--Necp (5) 

41ii (2",)' Igl ' 

Li=- ~ S e{ (P-+A )G,.,jp+,p_) 
(6) 

+( +~A)(J ( )}~~-' p C h,'. p+, p- 41ii (2",)' J'I', 

and E = - aA/cat - vcp. We have changed over in (4) to a 
coordinate representation in p. - p- = k and E+ -E· = W. 

To derive (4) it suffices to multiply the matrix equation 
(2) by E, take the trace and integrate it with respect to 
dE/41fi and d3p/(21f)3. The integral for the collisions with 
the impurities (the last two brackets in (2) then vanishes 
upon integration with respect to d3p/(21f)3. 

Using the electroneutrality condition (3), we can re
write the balance equation (4) for the energy tf in the 
form 

a~/at+div h=jE 

or for the total energy!) 6"t = tf + H2/81f: 

a~t/at+div j.,=O, j.,=h+(c/4",) [EXHJ. 

It is thus clear that tf is the density of the internal ener
gy, and jtf is the flux of the internal energy. 

For practical purposes it is more convenient to use 
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not the energy tf but the quantity i. The point is that the 
Green's functions ~ are expressed in terms of the vari
ables T and J1., while i is precisely a function of the in
dependent variable Jl, with a?' /aJ1. = -N. We therefore 
rewrite the balance equation (4) in the form 

(a,f/at).+div h=jE. (7) 

In superconductors in the mixed state, the processes 
of energy dissipation and heat transfer are accompanied 
by the motion of the vortex structure. All the quantities, 
including the energy density, contain then an explicit 
time dependence. Therefore the time derivative of i 
contains, besides the usual term with the heat capacity 

as aT aT 
T-aTTt=Cat , 

also an additional term (a; fat) Jl T' where the differen
tiation of the explicit dependence' on t takes place: 

( ai) = C!!.. + ( aE) 
at. at at ., .. 

The right-hand side of (7) describes the work per
formed by the electromagnetic field on the excitations 
in the superconductor. This expression, generally speak
ing, is not positive-definite, namely, in the mixed state 
it contains the term jo· E, where jo is the current that 
circulates around the equilibrium vortex filaments. To 
determine the heat flux q with the aid of (7) it is neces
sary to represent the balance equation in such a form 
that its right-hand side contains the positive-definite 
dissipation function 

~(aE) + diV('!') = i,E _ qVT 
T at. T T T" 

where jl = j - jo. It is clear that for this purpose it is 
necessary to subtract from the internal-energy flux 
j tf the vector j;', which satisfies the equation 

divj,'=j,E. 

The heat flux is thus q = itf - j;g.. 

3. EXPRESSION FOR THE HEAT FLUX IN THE 
MIXED STATE NEAR THE CRITICAL TEMPERATURE 

Consider a sample placed in an external magnetic 
field Ho in the range Hcl < Ho « Hc2. In this field re
gion, the vortex filaments can be regarded as isolated. 
A transport current itr flows through the sample perpen
dicular to the magnetic field, and in addition a tempera
ture gradient may be maintained along the sample. Just 
as before, we assume that the Ginzburg-Landau para
meter K » 1, and confine ourselves to corrections of 
first order in the vortex-filament velocity vL and in the 
temperature gradient. In this approximation, the time 
derivatives a/et are replaced by spatial derivatives 
-vL V of the static quantities. 

To calculate the heat flux it suffices to confine one
self in (2) and (6) to the principal terms in Tel J1., and 
therefore we can change over in all the expressions to 
Green's functions integrated with respect to[17] 
~ = p2/2m - J1.: 

g(v"r)= S~(p,r)~= (g ~). 
m -j+ g 

Now (2) takes the form 

-iv,V g,+ .'_ -B+O,g,+ ,,_ +g,+ ,._ o,B_+{Rg-gR},+.,_ 

i i 
_2;{g,Rg-U,"},+,,_ + 2;{g"g,_g,gA},+ "_ =0, 

(8) 
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where 
• dQ 

- () ~ • vp go r = g ('-P. ,.) -,- . 
'i.:"'t 

We use here the gauge-invariant combinations 

ILlI, ip=ql+x/2e. ~=A-cVxI2e. 

X being the phase of the order parameter. The absolute
value sign of A will henceforth be omitted. Equation (8) 
must be supplemented by the relations[16] 

J ..R(A) R(A) de., I 
I .... I., .• ' 2;=2n1i(E-e); 

J { • A de. , ••• ,J .... ·+I •.• ,!.' .• ·}2; =0. 

(9) 

We separate in the complete g-function the part con
taining the equilibrium distribution function 21 no(E) 
= 1/2(1- tanh(E/2T»: 

makes no contribution to jO". It is also easy to verify 
that j~ is also small. Thus, 

\"(01 i' . - dOv F 
(/ =, - --;;;- j8\"p(g.('-F' ,.) -:- g,(VF. r»4;tde 

\,(O)"F\ -
= - 12 j ESp (g,) de. 

(15) 

At temperatures close to Tc and in the region of 
fields HQ « Hc2' the retarded and advanced functions 
are connected by the relations[lS] 

fJn,,=,;={-fJo'. lei>~. if=( g; /) =(e'-Ll')-'!'( e; Ll) 
• if,", lel<Ll' -I; -g -Ll; -e . 

(16) 

With the aid of (16) we readily find from (12) and (13) 
that Sp(gl) = 0 at I €I < A and that at I d > A we have 

~ {an. e } Sp(g,)=81 ---VT+Vn,(e) , 
iie T 

(10) where the quantity 

where gl describes the deviation of the distribution func
tion from equilibrium. Substituting (10) in (8) and (9), 
we obtain, accurate to the principal terms in w: 

-iv, V 1.-e(o.t.-t.o.)+{Rl,-k,R}- .,!-U,Bk,-I,loA } +-2i {gB! .. -glOU'A} 
wT 't" 

an. {-8 }' --2a;- -t(V,VT)y(!R-r)+ro(!RR_-H.gA) , (11) 

n,(e) =-(/,+/,+)/8/ 

has the meaning of the deviation of the distribution func
tion n( E) from the equilibrium Fermi function. The equa
tion for nl is also obtained from (11), (12), and (16), and 
takes the form 

an. e an, ii 
Dv'n, (e) -a;:rDV'T = - ~at(£'-Ll')", (17) 

(12) where D = lVF/3 is the diffusion coefficient. This equa
tion should be compared with Eq. (20) of[lS]. Finally, 

In dirty alloys, the Green's functions g(vF, r) are ap
proximately isotropic in the directions of the vector vF, 
and can therefore be represented in the form[lS] 

v I 
I,(v" r) =glO(r) +......!...g, (r), Ig,l- TglO. 
. v" '0 

The succeeding calculations are analogous to those ofP6 ]. 
Averaging once Eqs. (11) and (12) with respect to the 
directions of the vector vF, and then averaging the same 
equations but multiplied by vF, we get 

~ I{ - R - + A} an. {e g,=- g, og" llOiJl, -2-a;-1 T VT(1-g."U',") 

-i6) ~Q.(o,-g,Ro.I") }. (13) 

Here 1 = VF7 is the mean free path and 

. ( V g.. (V -2ieQ/C)f,) 
iJg,= . 

- (V+2ieQ/c) t, +. V g. 

Proceeding now to concrete calculations as T -Tc' 
we note first that (8) yields, in the principal approxima
tion in Tc - T, 

;;=~ .-'V (0) Ll', (14) 

where in = O"n - fJ.N corresponds to the normal metal: 

<lf~=2 J en.(E)v(E)de. 

Subtracting from (14) the value of C at large distances 
from the vortex;; n - 1I(0)6!" we obtain the density of the 
energy connected with the presence of a single vortex: 

(14') 

When calculating the heat flux (6) as T -Tc ' the part 
containing the regular functions gR and gA admits of ex
pansion in powers of A/T. Direct calculations show that 
in the approximation that we need in A/T, this part 
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(18) 

It is easy to verify with the aid of (14), (17), and (18) 
that the energy balance equation, in the approximation 
linear 10 the vortex velocity (in this case aT/at = 0) 

(o~/Ot) •. T+div q=o, (19) 

is identically satisfied regardless of the value of the 
temperature gradient, and in particular also at VT = O. 
This circumstance is due to the relative long time of 
homogeneous energy relaxation in our case. Indeed, when 
the vortex filament moves past a given point of the sample, 
excitations are produced in the vicinity of this point and 
have an excess energy in comparison with the excitations 
at larger distances from the filament. This excess ener
gy can by distributed in two ways: part of it will flow 
away from the given point of the sample, owing to diffu
sion of the excitation, while the remainder, owing to in
elastic electron-electron and electron-phonon collisions, 
will lead to a local heating of the excitations. However, 
the energy relaxation times T€ corresponding to the in
elastic collisions are quite large in comparison with dif
fusion relaxation time tD ~ eJD (7 € is of the order 
~/T3 for electron-phonon collisions and of the order 
of EF/T2 for electron-electron collisions). For this rea
son, the predominant part of the excess energy is di
verted by diffusion of the excitations. It is therefore pos
sible to neglect the processes of homogeneous energy 
relaxation in the kinetic equation (2). 

At the same time, the foregoing means that in our 
case, when 7 € » to, the excitations do not manage to 
become thermalized over the characteristic scales of 
the problem, which are of the order of ~. It follows 
therefore that no local temperature gradients can arise. 
We emphasize that the absence of local temperature 
gradients (in a region of the order of the filament dimen-
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sion 1;), neglecting homogeneous energy relaxation pro
cesses, is not connected with the assumption that T is 
c lose to T c' but takes place at arbitrary temperatures. 
The energy balance is then ensured by diffusion of the 
excitations, Le., Eq. (19) can be satisfied at arbitrary 
temperature, as can be readily verified with the aid of 
(2), at a constant temperature. 

Thus, if the same temperature is maintained on the 
sample boundaries, then the existence of heat fluxes 
does not lead to the additional energy dissipation that 
would arise in the presence of local temperature gra
dients on account of the term -q. VT/T in the dissipa
tion function. Consequently there is no energy-dissipa
tion mechanism in the large-T E approximation proposed 
by Clem [13]. . 

Let us explain the foregoing using as an example the 
motion of vortices near the critical temperature. As
sume that the same temperature is maintained on the 
sample boundaries. From (17) we get 

'lin = - _1_ ch-'.!..[ (e'-~')'/'-(e'-~ ')'Iojv , 4TD 2T ~ L 
(20) 

(we have written down the expression for Vn1 only at 
E > Ax, , since only values E ~ T will be of importance 
to us from now on). The boundary conditions are chosen 
such that the heat flux at large distances from the vor
tex must vanish when the average temperature gradient 
is zero. With the aid of (18) we obtain 

q=VLV (0) J ~ch-'~[ (e2-n') "'-(e'-~~2)"'jde=vL.!fo, (21) 
• T 2T 

where the energy density tfo is given by (14'). Thus, the 
heat flux transports precisely the "proper" energy of 
the vortex, Le., as the vortex moves it effects a heat 
"convection" of sorts, in accordance with the fact that 
the diffusion mechanism ensures complete removal of 
the excess excitation energy. 

4. THE EFFECTS OF ETTINGSHAUSEN 
ANDNERNST 

Expression (21) yields the heat-flux density in the 
vicinity of an isolated moving vortex. The heat flux 
averaged over the sample is equal to 

q=vLnL S .!fotf'r, 
v, 

where nL = B/if>o is the density of the vortex filaments 
and <110 = rrc/e is the magnetic-flux quantum. The inte
gration extends over the unit cell of the vortex-filament 
lattice. The quantity 

V(O) 
Sd=-T-J (n~'-n')d2r 

v, 

has here the meaning of the energy transported by one 
vortex of unit length. Expressing the velocity vL in 
terms of the electric field 

E=B,c'[nnXVr.l. 

we get 

q=-cTSJ[n" XEj/<Do, 

where nH is a unit vector in the direction of the mag
netic field. 

Assume now that, under the conditions of the experi
ment, a constant temperature difference is maintained 
on the sample boundaries. Then a temperature gradient 
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satisfying the condition div(KVT) = 0 is established in 
the sample. With the aid of (17) and (18) we get 

q=-cTSd[n"XEj/Cllo-KVT, (22) 

where the thermal conductivity K takes as T -- Tc the 
form 

K = v(O)D -S ' h-,_e_ d T' 1\ C 2T e . . (23) 

We defer the discussion of this formula to the next sec
tion. 

We now assess the effect of the presence of the tem
perature gradient on the value of the transport current. 
To this end we use the method developed earlier 
in[lS, 16, 191• We represent 6.,3, and Q in the form 

~=~o (T(r-\'Lt), r-vr.t) +~" 
j=jo(T(r-vLt), r-vLt)+j, 

etc., where 6.0 and 30 correspond to the static quantities. 
Linearizing the equations for 6. and for the current in 
terms of 6.1 and Q1 we obtain, exactly as in [161, 

c-' S (j,(aV)Qo-(a\7)joQ,)d'r=-4\"(0)J (aV)~od'r f fn,(e}de, (24) 

where a is an arbitrary constant vector. The left-hand 
side reduces to an integral over a surface remote from 
the core of the vortex and is expressed with the aid of 
the Londons' equation in terms of the two-dimensional 
vector u(r) of the deformation of the vortex lattice[191~ 

c' S (j,(aV)Qo-(aV)joQ,)d"'=II L -' V(CII-C",):lV divu 

(25) 

where cik are the elastic moduli obtained by Labusch( 20] 

for a triangular lattice of vortex filaments. 

To connect the lattice deformation with the transport; 
current and with the temperature gradient, we write 
down the Gibbs thermodynamic potential of the system 
of vortex filaments in a given field H (cf.[191): 

fF=fFo+ S {[ +(cII-c .. ) (:::)' +c .. (::: ). +C" (~~I) '] 
(H-Ho) } , 

-~B-S(T(r)-To) dr 

(i, k = 1, 2). The last term describes the influence of the 
temperature gradient. The entropy per unit volume near 
T c is obviously equal to 

S=-v (0) "'. 'IT+nLSd. 

The sought relations can be obtained from the condition 
that the potential be minimal with respect to the varia
tion ~ui of the deformation vector. Then 

As a result we get 

Calculating curl H = (4rr/c)jtr, we find 
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Comparing this expression with (24) and (25), we get 
ultimately 

• cS. 4v(O)e J . S-[D"XalJ,,=-(aVT)--- (a,):-'d-r /11,(£)(12. 
«D, :t 

> 

The fWlction nl (d is determined from (20) and coincides 
exactly with that obtained inI 15). Thus, the complete ex
pression for the transport current is 

j,,=O!E+CSd[1I11 X V Tj/r)),,, 

where the conductivity is3 ) 

0,=,[> (T)o,H"(T)/B" f> (1') =1.1 (l-T/T,)-. 

(26) 

We assume for the sake of argument that the electric 
field is parallel to the x axis and VT is parallel to the 
y axis; then relations (22) and (26) take the form (1), 
where the coefficients axy (H) and i3yx(H) satisfy the 
Onsager relations: 

a,. (H) =f> .. ( -H) =(1111) ,cTSd/(fJ •. 

The transported entropy is 

s.= v(O)T"'-'"6' S (i-w')d'x, 

", 
(27) 

where Iji (x) = 1:1/ A,., and x = p/L In the calculation of Sd 
it can be assumed, with logarithmic accuracy in d/~, 
that the elementary cell is rOWld. At large x we have 
Iji = 1- 1/2x2. Thus, 

Sd"<!av (O)Dln(d/s) """I,av(O)D In (H"IB,), 

where a = 2JT4/7l:(3) = 23.1 (we have assumed for con
creteness that the distance d between the vortices is 
smaller than the field penetration depth x). Putting 
EF = 1040K and l = 10-6 cm, we get 

5.=0.6 In (H,,;8.,) . 1\)-7 [erg/deg· cm] 

The Wlits of Sd were chosen for convenience in compari
son with experiment. (4) 

We call attention to the fact that the results of mea
surements of (Jf are greatly influenced by the heat trans
fer from the sample bOWldaries. Indeed, assume that 
no heat is removed: qy = O. In this case there arises a 
temperature gradient 

V.T=-a,,EJK, 

as a result of which we obtain 

j.= (0,+ (a..) 'I KT) E •. 

That is to say, the quantity measured as the conductivity 
is 

The increment to (Jf is small in weak fields Bo « Hc2 
and as T - Tc, but if H ~ Hc2 and T S Tc it may turn 
out to be comparable with (Jf. 

In the case of ideal heat removal (v: T = 0), one 
measures (Jf directly. In the real situaeon it is probable 
that the intermediate case is realized, as a result of 
which, in strong fields H ~ Hc2, one measures a some
what overestimated value of (Jf. 

Expression (26) shows also that in the presence of a 
temperature gradient VyT and at jtr = 0 the vortex fila
ments go into motion at a velocity 
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directed from the hotter edge of the sample to the less 
heated one. This effect was recently observed experi
mentally.[l) It results in an additional "convective" heat 
flow. The total thermal conductivity K 1 (jtr = 0) (in a plane 
perpendicular to the magnetic field) satisfies the relation 

It follows from (27), at first glance, that the super
conducting thermomagnetic phenomena do not vanish at 
T = Tc' It must be borne in mind, however, that (27) is 
valid if one assumes a widely-spaced lattice of vortex 
filaments (d» ~ (T)). At a fixed external field Ho, with 
increasing temperature the dimension of the vortex core 
increases, and this leads to an overlap of the vortex 
cores, Le., the situation Ho ~ Hc2(T) sets in. With fur
ther increase of T, the entropy Sd vanishes as Hc2 (T) 
-H{j. 

5. THERMAL CONDUCTIVITY 

The thermal conductivity K is measured directly in 
experiment either at a zero electric-field component 
perpendicular to the gradient temperature, or in the 
presence of pinning forces, Le., at vL = O. This limita
tion pertains, obviously, only to the thermal conductivity 
in a plane perpendicular to the magnetic field. 

The thermal conductivity of superconducting alloys 
in the mixed state in the region of strong fields 
(Ho ~ Hc2) was calculated by Caroli and Cyrot.(22) In 
weak fields (Ho« Hc2) near the critical temperature 
the thermal conductivity is given by (23). The same for
mula is valid also for a homogeneous superconductor at 
any temperature, since its derivation is based on rela
tions (16) which are valid, of course, for a homogeneous 
superconductor at all temperatures. In this latter case, 
Eq. (23) was first derived by Gentkman(23) and by Bar
deen et al.(24) A formula for the thermal conductivity of 
superconducting alloys in the mixed state, suitable at 
any temperature, is given (without proof) inC 25). There, 
however, the anisotropy of K with respect to the direc
tion of the magnetic field was not investigated. 

Near T c we obtain from (23) 

K=Kn-v(0)D""/3T', 

where Kn = 21T2v(0)DT /3 is the thermal conductivity of 
the normal metal. This expression must be averaged 
over a surface perpendicular to the temperature grad
ient. Assume that initially VT \I Ho; then the thermal 
conductivity is 

v(O)D'" ' { . "") } 
K,,=Kn - :31" - 1-nL S ( 1- ",_., d'r . 

v. -

For the expression in the curly bracket we obtain with 
logarithmic accuracy 

3 B, H" 
l---In-. 

4 H" B, 

Let now VT 1 Ho, By virtue of the equation div(KVT) 
= 0 we can choose any surface for the calculation of the 
heat flux. Taking a surface that passes everywhere far 
from the vortex cores, we get 

KJ.. =Kn-v (O)Dtl._ '/31", 

with the ratio 

K,,-K n 3 Bo H" 
---=I---ln-. 
KJ..-Kn 4 fl" Bo 

N. B. Kopnin 190 



The strongest anisotropy of the thermal conductivity 
occurs at low temperatures (T « .c.). Indeed, if the tem
perature gradient is perpendicular to the magnetic field 
Ho then, choosing a surface that passes far from the vor
tex cores, we see that the thermal conductivity is given 
by formula (23) for a homogeneous superconductor at 
T « .c. and decreases exponentially with temperature. 
The electronic thermal-conductivity component due to 
collisions with phonons behaves similarly. In this case 
the decisive factor is the lattice thermal conductivity 
(phonon scattering by impurities), which is proportional 
to T3. 

Matters are different when the temperature gradient 
is parallel to Ro• Now the main heat flux is through re
gions occupied by the vortex cores, where the thermal 
conductivity is of the order of the electronic thermal 
conductivity Kn of the normal metal, which decreases 
linearly with temperature. 

From (13) with the aid of«12) we obtain at T« .c. 
(cf.[16]) 

Sp gt=-1{8~-"'- VT+V (g"-g,, )} {. 
De T g 

and (11) yields div Sp gl = O. At VT II Ho we can put 
glO - glO = O. Finally we get 

dO)D (S~ e) I .. K,,(p)=~ e'ch-' 2T de g' ,~o =K..g,-~,,(p). 
o 

The function g(:» is defined in[16]. It is the state density 
normalized to v(O) and depends on the distance from the 
center of the filament. As p ~ 0 we have gE=O ;: 1, and at 
large p the function gE=O decreases exponentially over 
the distance ~. 

Averaging over a surface perpendicular to Ho, we get 

Bo S Ki.=K'-H g'(x)xdx. 
" 

Using the results of Watts-Tobin and Waterworth, [26] 
who calculated the function g(x), we can obtain the nu
merical value of the integral: 

K"=O.62K"BoIH,,. 

In conclusion, the author thanks L. P. Gor'kov for 
constant interest in the work and A. F. Andreev, Yu. N. 
Ovchinnikov, and R. S. Thomson for usefUl. discussions. 

I)The term with E2 in the energy can be neglected 
2)Expression (10) is equivalent to resolving the complete g-function 

into the regular and anomalous parts (see, e.g., [16,1']). 
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3)The numerical factor 1.1 in Il(T) was obtained in [IS] using an inter
polation formula for A(p). 
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